Criteria

Text:
Sector:
Content:
Display:

Results

Viewing 1 to 30 of 547
2017-04-06
WIP Standard
AIR7484
This document discusses various specification and fit for purpose characteristics of jet fuel, and how these impact fuel system design
2017-04-05
WIP Standard
ARP6078A
The Aerospace Recommended Practices of this document are intended for nitrogen-based Flammability Reduction Means (FRM) implemented on transport category, turbine powered airplanes. The recommended practices herein, therefore, relate only to the transport category aircraft, and focus specifically on contemporary inerting systems equipment. Such systems are referred to a Fuel Tank Inerting Systems (FTIS) in this document. This document does not cover the following: - Military aircraft applications - Air separation technologies other than hollow fiber membrane (HFM) and pressure swing adsorption (PSA) - Inerting of conventional unheated wing tanks or aircraft dry bays - Expected future technology solutions for the generation of inert gas. The advice contained in this document is aimed towards providing aircraft manufacturers with guidance on the key issues associated with contemporary aircraft fuel tank inerting systems to supplement the guidance in FAA Advisory Circular AC 25.981-2.
CURRENT
2017-04-05
Standard
ARP6156
The lubricant performance capability for aero propulsion drive systems is derived from the physical properties of the oil and the chemical attributes associated with the oil formulation. All properties, such as viscosity, pressure-viscosity coefficient and full-film traction coefficient are inherent properties of the lubricating fluid. Chemical attributes are critical for the formation of protective boundary lubricating films on the surfaces to prevent wear and scuffing. To assure performance and to provide needed information for engineering design, test methodologies for at least five oil properties or attributes are being addressed: (1) pressure-viscosity coefficient, (2) full-film traction coefficient, (3) scuffing resistance, (4) wear resistance, and (5) micropitting propensity. While viscosity versus temperature data are readily available, the above five properties or attributes must be measured under relevant conditions for aero propulsion hardware systems.
CURRENT
2017-03-31
Standard
AMS3023B
This specification covers a trimethylol propane triheptanoate fluid (see 8.2) representative of standard type (SPC) gas turbine engine oils.
2017-03-07
WIP Standard
ARP1616B
This document defines design, performance, and test criteria for self-sealing breakaway valves for use in crash-resistant aircraft fuel systems.
2017-03-07
WIP Standard
AS81790B
This specification covers the requirements for aircraft external electric power receptacles.
2017-03-07
WIP Standard
AIR1616B
This document defines design, performance, and test criteria for self-sealing breakaway valves.
CURRENT
2017-03-03
Standard
AMS3025D
This specification covers two types of polyalkylene glycol in the form of a liquid.
2017-03-02
WIP Standard
AMS3050/8
The foundation specification (AMS 3050) and this category specification (AMS 3050/8) cover anti-seize greases conforming to the requirements but using the anti-seize ingredient Graphite+Aluminum.
2017-03-02
WIP Standard
AMS3050/9
The foundation specification (AMS 3050) and this category specification (AMS 3050/9) cover anti-seize greases conforming to the requirements but using the anti-seize ingredient Graphite+Calcium Fluoride.
2017-03-02
WIP Standard
AMS3050/7
The foundation specification (AMS 3050) and this category specification (AMS 3050/7) cover anti-seize greases conforming to the requirements but using the anti-seize ingredient Copper+Graphite+Aluminum.
2017-03-02
WIP Standard
AMS3050/6
The foundation specification (AMS 3050) and this category specification (AMS 3050/6) cover anti-seize greases conforming to the requirements but using the anti-seize ingredient Nickel and Graphite.
2017-03-02
WIP Standard
AMS3050/5
The foundation specification (AMS 3050) and this category specification (AMS 3050/5) cover anti-seize greases conforming to the requirements but using the anti-seize ingredient PTFE.
2017-03-02
WIP Standard
AMS3050/4
The foundation specification (AMS 3050) and this category specification (AMS 3050/4) cover anti-seize greases conforming to the requirements but using the anti-seize ingredient Molybdenum Disulphide; Graphite.
2017-03-02
WIP Standard
AMS3050/3
The foundation specification (AMS 3050) and this category specification (AMS 3050/3) cover anti-seize greases conforming to the requirements but using the anti-seize ingredient Nickel.
2017-03-02
WIP Standard
AMS3050/2
The foundation specification (AMS 3050) and this category specification (AMS 3050/2) cover anti-seize greases conforming to the requirements but using the anti-seize ingredient Aluminum.
2017-03-02
WIP Standard
AMS3050/1
The foundation specification (AMS 3050) and this category specification (AMS 3050/1) cover anti-seize greases conforming to the requirements but using the anti-seize ingredient Copper only.
CURRENT
2017-03-02
Standard
AS6858
This is a joint SAE/EUROCAE development. This document will be released as both an SAE Aerospace Specification (AS) and a EUROCAE Minimum Aviation System Performance Standard (MASPS). This document defines the technical requirements for the safe integration of gaseous hydrogen fueled Proton Exchange Membrane (PEM) Fuel Cell Systems (FCS) within the aircraft. Most of the technical concepts and approaches covered by this document represent current industry "best practice". Others require specific approval from the procuring activity before use. This requirement for approval is not intended to prohibit their use; but rather to ensure that the prime contractor has fully investigated their capability to perform reliably and to be sufficiently durable under the required conditions and that the prime contractor can present substantiating evidence for approval before the design is committed to.
2017-02-28
WIP Standard
AIR6919
Over the past several years the FZG A/8.3/90 test method has been used to evaluate current qualified aviation lubricants. The results of the effort have been summarized in this document as a historical reference to document the findings made from the committee.
CURRENT
2017-01-10
Standard
AS1701F
This document covers the performance requirements for solid dry film lubricants, air dried or heat cured, for use in aerospace applications. These lubricants are intended to prevent galling, and may be capable of remaining effective for extended periods of time after exposure to extreme environmental conditions.
CURRENT
2016-12-20
Standard
AS6349
This SAE Aerospace Standard (AS) establishes the minimum performance standards for equipment used as secondary alternating current (AC) electrical power sources in aerospace electric power systems.
2016-11-23
WIP Standard
AS407E
To specify minimum requirements for Fuel Flowmeters for use primarily in reciprocating engine powered civil transport aircraft, the operation of which may subject the instruments to the environmental conditions specified in Section 3.3. This Aeronautical Standard covers two basic types of instruments, or combinations thereof, intended for use in indicating fuel consumption of aircraft engines as follows: TYPE I - Measure rate of flow of fuel used. TYPE II - Totalize amount of fuel consumed or remaining.
2016-11-07
WIP Standard
AIR7483
This AIR provides information about polymeric materials (Super Absorbent Polymers - SAP) used in Filter Monitors for free water removal, the possibility of migration of such material in to aircraft fuel systems and the potential impact on fuel system operation along with light incidents traceable to the migration of SAP in to the aircraft fuel system are enumerated. The measures taken to minimize SAP migration are also discussed.
CURRENT
2016-10-27
Standard
AS6302A
This specification covers one type of fuel pressure transmitter designated MS28005-7.
2016-10-26
WIP Standard
AS6449C
This document establishes the requirements for a dry film lubricant AS6449 lubricant for use on breathing oxygen system and potable water system components, for a temperature range of -90 to +300 °F. This document also establishes the Non-Destructive Test (NDT) procedures and criteria for coated production parts. This document requires qualified products and product applicators.
2016-10-11
WIP Standard
AIR5713A
An industry survey has been completed to determine the incidence of jam and excessive backlash in rotary and linear mechanical actuators subject to "primary flight control like" duty cycles. The data is valuable for understanding how existing mechanical actuators behave in service, identifying areas for potential improvement and possibly being used as a reference to support future primary flight control system trade-off studies.
CURRENT
2016-09-12
Standard
AMS3084C
This specification covers a solid film lubricant in the form of a ready-to-use, sprayable suspension.
2016-08-17
WIP Standard
ARP4553B
This SAE Aerospace Recommended Practice (ARP) is intended to provide design and qualification requirements for self-displacing hydraulic accumulators.

These requirements are intended to be included in the Producrement Specification for the accumulator. Those requirements identified by the use of "shall" are considered to be essential requirements; those requirements identified by the use of "should" are considered to be optional requirements for inclusion in the Specificaiton at the discretion of the Purchaser.

In addition, test methods for production acceptance and qualification purposes are provided.

The accumulator is intended for use in military aerospace hydraulic systems with rated pressures of up to 8000 psi (55,158 kPa) and of the following types as specified in SAE AS 5440: Type I: -65 to +160 °F (-54 to +71 °C) fluid temperature; Type II: -65 to +275 °F (-54 to +135 °C) fluid temperature.

Viewing 1 to 30 of 547

Filter

  • Aerospace
    547
  • Standard
    547