Criteria

Text:
Content:
Display:

Results

Viewing 181 to 210 of 1745
2014-02-26
Standard
J2293/2_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
2014-02-25
WIP Standard
J2263
This SAE Recommended Practice establishes a procedure for determination of vehicle road load force for speeds between 115 and 15 km/h (71.5 and 9.3 mph). It employs the coastdown method and applies to vehicles designed for on-road operation. The final result is a model of road load force (as a function of speed) during operation on a dry, level road under reference conditions of 20°C (68°F), 98.21 kPa (29.00 in-Hg), no wind, no precipitation, and the transmission in neutral.
2014-02-24
WIP Standard
J3066
Develop a standardized method for calculating and reporting vehicle fuel consumption.
2014-02-21
Standard
J2191_201402
This SAE document defines a recommended practice for implementing circuit identification for electrical power and signal distribution systems of the Class 8 trucks and tractors. This document provides a description of a supplemental circuit identifier that shall be utilized in conjunction with the original equipment manufacturer’s primary circuit identification as used in wire harnesses but does not include electrical or electronic devices which have pigtails. The supplemental circuit identifier is cross-referenced to a specified subsystem of the power and signal distribution system identified in Section 5.
2014-02-06
Standard
AIR844B
This document reviews briefly the subject of woven metal screens. Conditions that can promote damaging corrosion in stainless steel filter screens are discussed and recommendations are listed for minimizing corrosion damage. This is a general document only; for specific applications it is suggested that the reader refer to the technical literature, and selected references listed below.
2014-02-05
Standard
J2973_201402
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
2014-02-03
Standard
AIR1615B
This document provides a summary of names commonly used throughout the industry for aircraft fuel system components. It is a thesaurus intended to aid those not familiar with the lexicon of the industry.
2014-01-24
Standard
J2951_201401
This SAE Recommended Practice establishes uniform procedures for evaluating conformity between the actual and target drive speeds for chassis dynamometer testing utilizing standard fuel economy and emissions drive schedules.
2014-01-24
Standard
J2264_201401
This procedure covers vehicle operation and electric dynamometer load coefficient adjustment to simulate track road load within dynamometer inertia and road load simulation capabilities.
2014-01-23
WIP Standard
J2953/2
This SAE Recommended Practice SAE J2953/2 establishes the test procedures to ensure the interoperability of Plug-In Vehicles (PEV) and Electric Vehicle Supply Equipment (EVSE) for multiple suppliers.
2014-01-22
Standard
J2953/2_201401
This SAE Recommended Practice SAE J2953/2 establishes the test procedures to ensure the interoperability of Plug-In Vehicles (PEV) and Electric Vehicle Supply Equipment (EVSE) for multiple suppliers.
2014-01-14
Standard
AIR1168/4A
This section presents the basic equations for computing ice protection requirements for nontransparent and transparent surfaces and for fog and frost protection of windshields. Simplified graphical presentations suitable for preliminary design and a description of various types of ice, fog, frost, and rain protection systems are also presented.
2014-01-10
Standard
J1766_201401
Electric, Fuel Cell and Hybrid vehicles may contain many types of high voltage systems. Adequate barriers between occupants and the high voltage systems are necessary to provide protection from potentially harmful electric current and materials within the high voltage system that can cause injury to occupants of the vehicle during and after a crash. This SAE Recommended Practice is applicable to Electric, Fuel Cell and Hybrid vehicle designs that are comprised of at least one vehicle propulsion voltage bus with a nominal operating voltage greater than 60 and less than 1,500 VDC, or greater than 30 and less than 1,000 VAC. This Recommended Practice addresses post-crash electrical safety, retention of electrical propulsion components and electrolyte spillage.
2014-01-09
Standard
AS1701D
Delete AS7108, clarify thickness requirements for coating of threads, clarify tape test requirements, update references, and general revision.
2014-01-03
Standard
AIR5433B
This SAE Aerospace Information Report (AIR) establishes guidance for the specification of formulated lubricant properties which contribute to the lubricating function in bearings, gears, clutches and seals of aviation propulsion and drive systems.
2014-01-02
Standard
ARP5996B
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under single phase flow conditions found in certain parts of gas turbine engines, for instance in bearing feed tubes. This method is applicable to lubricants with a coking propensity, as determined by this method, falling in the range 0.01 to 3.00 mg.
2013-12-17
Standard
J356_201312
The SAE Standard covers normalized electric-resistance welded flash-controlled single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications due to the potential leak path that would be caused by the ID weld bead or scarfed region. Assumption of risks when using this material for single flare applications to be defined by agreement between the producer and tube purchaser. This specification also covers SAE J356 Type-A tubing. The mechanical properties and performance requirements of standard SAE J356 and SAE J356 Type-A are the same. Therefore, the designated differences of Type-A tubing are not meant to imply that Type-A tubing is in anyway inferior to standard SAE J356.
2013-12-13
Standard
ARP219A
This procedure will be generally applicable to three classes of hydraulic components as listed below:
2013-12-10
Standard
ARP4865A
The intent of this SAE Aerospace Recommended Practice (ARP) is to define and recommend to the Aerospace Industry standardized test procedures for establishing fuel nozzle operating performance including types of tests, controlled and measured parameters, and test configurations.
2013-12-10
Standard
J2380_201312
This SAE Recommended Practice describes the vibration durability testing of a single battery (test unit) consisting of either an electric vehicle battery module or an electric vehicle battery pack. For statistical purposes, multiple samples would normally be subjected to such testing. Additionally, some test units may be subjected to life cycle testing (either after or during vibration testing) to determine the effects of vibration on battery life. Such life testing is not described in this procedure; SAE J2288 may be used for this purpose as applicable. Finally, impact testing, such as crash and pothole, is not included in this procedure.
2013-12-10
Standard
J2847/3_201312
This document applies to a Plug-in Electric Vehicle (PEV) which is equipped with an onboard inverter and communicates using the Smart Energy Profile 2.0 Application Protocol (SEP2). It is a supplement to the SEP2 Standard, which supports the use cases defined by J2836/3™. It provides guidance for the use of the SEP2 Distributed Energy Resource Function Set with a PEV. It also provides guidance for the use of the SEP2 Flow Reservation Function Set, when used for discharging. It is not intended to be a comprehensive guide to the use of SEP2 in a PEV.
2013-11-11
Standard
AIR4994A
Gas compressors (air and other compressible fluids) have been used sporadically since the 1940's for various utility functions in aerospace applications. They have been used to provide power to gun purge and drive systems, engine or APU starters (recharge accumulators), reservoir pressurization, cockpit pressurization, braking systems, canopy seals, engine control devices, landing gear activation, and boosted flight controls (see Table 1). In current state-of-the-art aircraft, most pneumatic system power is extracted from a stage of compression in the turbo-jet engine. As more and more demands are put on new generation engines for fuel economy and performance there is an increasing need for a new source of pneumatic power. This document is intended to describe current state-of-the-art technology in compressors, define the limitations, discuss enhancements needed and attempt to predict the needs of the future.
2013-11-05
Standard
J2847/1_201311
This document describes the details of the Smart Energy Profile 2.0 (SEP2.0) communication used to implement the functionality described in the SAE J2836/1™ use cases. Each use case subsection includes a description of the function provided, client device requirements, and sequence diagrams with description of the steps. Implementers are encouraged to consult the SEP2.0 Schema and Application Specification for further details. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
2013-10-28
Standard
AS838A
This specification established (1) the common requirements for hydraulic units capable of functioning as starters and as pumps suitable for use in aircraft and missiles and (2) the methods to be used for demonstrating compliance with these requirements.
2013-10-25
WIP Standard
J2954/2
TIR SAE J2954/2 establishes an industry-wide specification guideline that defines acceptable criteria for the interoperability, electromagnetic compatibility, minimum performance, safety and testing for wireless power transfer (WPT) of electric and plug-in electric heavy-duty vehicles.
2013-10-22
WIP Standard
J2953/1
This SAE Recommended Practice J2953/1 establishes requirements and specification by which a specific Plug-In Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) pair can be considered interoperable. The test procedures are further described in J2953/2.
2013-10-11
Standard
ARP6131
This SAE Aerospace Recommended Practice (ARP) shall provide guidelines for the maintenance, inspection, and support of rotary and linear mechanical actuators on in-service and aging aircraft.
2013-10-07
Standard
J2953/1_201310
This SAE Recommended Practice J2953/1 establishes requirements and specification by which a specific Plug-In Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) pair can be considered interoperable. The test procedures are further described in J2953/2.
2013-10-04
Standard
AIR1082C
The importance of adequate component procurement specifications to the success of a hardware development program cannot be overemphasized. Specifications which are too stringent can be as detrimental as specifications which are too lax. Performance specifications must not only identify all of the component requirements, but they must also include sufficient quality assurance provisions so that compliance can be verified. It should be understood that in almost every case specifications for components will ultimately become part of a BINDING, WRITTEN CONTRACT (PO). The purpose of this document is to describe types of specifications, provide guidance for the preparation of fluid component specifications, and identify documents commonly referenced in fluid component specifications.
Viewing 181 to 210 of 1745