Criteria

Text:
Display:

Results

Viewing 241 to 270 of 16633
2017-03-28
Technical Paper
2017-01-0781
Philip Zoldak, Jeffrey Naber
Abstract The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
2017-03-28
Technical Paper
2017-01-0780
Dongwei Wu, Baigang Sun, Qinghe Luo, Xi Wang, Yunshan Ge
Abstract The combustion characteristics of hydrogen-air mixtures have significance significant impact on the performance and control of hydrogen-fueled internal combustion engines and the combustion velocity is an important parameter in characterizing the combustion characteristics of the mixture. A four-cylinder hydrogen internal combustion engine was used to study hydrogen combustion; the combustion characteristics of a hydrogen mixture were experimentally studied in a constant-volume incendiary bomb, and the turbulent premixed combustion characteristics of hydrogen were calculated and analyzed. Turbulent hydrogen combustion comes under the folded laminar flame model. The turbulent combustion velocity in lean hydrogen combustion is related not only to the turbulent velocity and the laminar burning velocity, but also to the additional turbulence term caused by the instability of the flame.
2017-03-28
Technical Paper
2017-01-0778
Vishnu Vijayakumar, P. Sakthivel, Bhuvenesh Tyagi, Amardeep Singh, Reji Mathai, Shyam Singh, Ajay Kumar Sehgal
Abstract In the light of major research work carried out on the detrimental health impacts of ultrafine particles (<50 nm), Euro VI emission standards incorporate a limit on particle number, of which ultrafine particles is the dominant contributor. As Compressed Natural Gas (CNG) is a cheaper and cleaner fuel when compared to diesel, there has been a steady increase in the number of CNG vehicles on road especially in the heavy duty segment. Off late, there has been much focus on the nature of particle emissions emanating from CNG engines as these particles mainly fall under the ultrafine particle size range. The combustion of lubricant is considered to be the dominant source of particle emissions from CNG engines. Particle emission due to lubricant is affected by the oil transport mechanisms into the combustion chamber which in turn vary with engine operating conditions as well as with the physico chemical properties of the lubricant.
2017-03-28
Technical Paper
2017-01-0876
Senthil Kumar Masimalai, Jai Kumar Mayakrishnan
Abstract Different methods to improve the performance of a WCO (waste cooking oil of sunflower) based mono cylinder compression ignition (CI) engine were investigated. Initially WCO was converted into its emulsion by emulsification process and tested as fuel. In the second phase, the engine intake system was modified to admit excess oxygen along with air to test the engine with WCO and WCO emulsion as fuels under oxygen enriched environment. In the third phase, the engine was modified to work in the dual fuel mode with hydrogen being used as the inducted fuel and either WCO or WCO emulsion used as the pilot fuel. All the tests were carried out at 100% and 40% of the maximum load (3.7 kW power output) at the rated speed of 1500 rpm. Engine data with neat diesel and neat WCO were used for comparison. WCO emulsion indicated considerable improvement in performance. The smoke and NOx values were noted to be less than neat WCO.
2017-03-28
Technical Paper
2017-01-0874
Thorsten Langhorst, Felix Rosenthal, Thomas Koch
Abstract Throughout the world cost-efficient Naphtha streams are available in refineries. Owing to less processing, CO2 emissions emitted in the course of production of these fuels are significantly lower than with conventional fuels. In common CI/SI engines, however, the deployment of Naphtha is considerably restricted due to unfavourable fuel properties, e.g. low cetane/octane numbers. Former investigations illustrated high knocking tendency for SI applications and severe pressure rise for CI combustion. Moreover, the focus of past publications was on passenger vehicle applications. Hence, this paper centers on heavy-duty stationary engine applications. Consequently, measures to increase the technically feasible IMEP with regard to limitations in knocking behaviour and pressure rise were explored whilst maintaining efficient combustion and low emissions.
2017-03-28
Technical Paper
2017-01-0875
Valentin Soloiu, Jose Moncada, Martin Muinos, Aliyah Knowles, Remi Gaubert, Thomas Beyerl, Gustavo Molina
Abstract This paper investigates the performance of an indirect injection (IDI) diesel engine fueled with Bu25, 75% ultra-low sulfur diesel (ULSD#2) blended with 25% n-butanol by mass. N-butanol, derivable from biomass feedstock, was used given its availability as an alternative fuel that can supplement the existing limited fossil fuel supply. Combustion and emissions were investigated at 2000 rpm across loads of 4.3-7.2 bar indicated mean effective pressure (IMEP). Cylinder pressure was collected using Kistler piezoelectric transducers in the precombustion (PC) and main combustion (MC) chambers. Ignition delays ranged from 0.74 - 1.02 ms for both operated fuels. Even though n-butanol has a lower cetane number, the high swirl in the separate combustion chamber would help advance its premixed combustion. The heat release rate of Bu25 became initially 3 J/crank-angle-degree (CAD) higher than that of ULSD#2 as load increased to 7.2 bar IMEP.
2017-03-28
Technical Paper
2017-01-0869
Job Immanuel Encarnacion, Edwin Quiros
Abstract The Philippine Biofuels Act of 2006 (RA 9367) requires commercial diesel fuel to be mixed with Coconut Methyl Ester (CME) in accordance with the Philippine Clean Air Act of 1999 (RA 8749). As of 2015, the blend percentage is at 2% CME v/v, contrary to the scheduled 5% as stipulated in the biofuels act. Researches done locally showing the performance and emissions of CME-fueled engines are few and thus the basis for the CME percentage increase is still questionable and hampers the drive for the further implementation of the policy. The study investigates the influence of varying percentages of CME blends (2%, 5%, 10%, 15%, 20% v/v) to the performance and emissions of a heavy-duty turbocharged common rail direct injection (CRDI) engine. The engine is run at steady state at partial load (50Nm and 250 Nm) and at near full load (500Nm). Each run is set at three pedal positions, α (25%, 50% and 60%), controlled directly from the engine control unit.
2017-03-28
Technical Paper
2017-01-0866
Edwin N. Quiros, Karl B.N. Vergel, Ernesto B. Abaya
Abstract This paper presents a preliminary study to estimate, using on-road and laboratory tests, the mileage range of liquefied petroleum gas (LPG) as an alternative fuel for diesel-fed public utility jeepneys in the Philippines. Data from the study would be used by the Philippine Department of Energy to formulate and implement alternative fuel programs for public transport. On-road fuel consumption, load factor, and GPS speed data from selected in-use LPG and diesel jeepneys plying a chosen urban route were gathered to develop corresponding drive cycles for chassis dynamometer testing at 100% load factor were conducted to estimate an upper limit for fuel consumption. Measured on-road diesel jeepney mileage was about 6.7 km/liter at 63.5% load factor while that for LPG jeepney was 3.8-4.2 km/liter at 59.8% load factor. Drive cycle tests yielded 5.2 km/liter for diesel and 2.6-3.1 km/liter for LPG.
2017-03-28
Technical Paper
2017-01-0872
Sunil Kumar Pathak, Vineet sood, Yograj Singh, Shubham Gupta, Salim Abbasbhai Channiwala
Abstract In this study, A Gasoline Passenger car (Euro IV) was experimentally investigated for performance and emissions on three different fuels i.e. Gasoline, LPG (Liquefied Petroleum Gas) and DME (Di-methyl ether) blend with a concentration of 20% by mass in LPG (DME20). In particular, emission characteristics (including Hydrocarbon, CO, NOx, and CO2) over the Modified Indian Driving Cycle (MIDC) and fuel economy were investigated at the Vehicle Emission Laboratory (VEL) at the CSIR- Indian Institute of Petroleum, Dehradun, India. The experimental results showed that Vehicle complies with Euro IV legislation on gasoline and LPG fuel, however, showed higher NOx Emissions on DME 20 fuel. LPG kit was reconfigured for DME and LPG blend to bring down the emissions within the specified emission limits. The Emission values observed for DME20 were 0.635 g/km (CO), 0.044 g/km (THC), and 0.014 g/km (NOx) against the Euro IV limits of 1.0 g/km, 0.1 g/km and 0.08 g/km, respectively.
2017-03-28
Technical Paper
2017-01-0870
Yuanxu Li, Xiangyu Meng, Karthik Nithyanandan, Chia-Fon Lee, Zhi Ning
Abstract Due to the increasing consumption of fossil fuels, alternative fuels in internal combustion engines have attracted a lot of attention in recent years. Ethanol is the most common alternative fuel used in spark ignition (SI) engines due to its advantages of biodegradability, positively impacting emissions reduction as well as octane number improvement. Meanwhile, acetone is well-known as one of the industrial waste solvents for synthetic fibers and most plastic materials. In comparison to ethanol, acetone has a number of more desirable properties for being a viable alternative fuel such as its higher energy density, heating value and volatility.
2017-03-28
Technical Paper
2017-01-0861
Balasubramanian N., Karthick Durairaj, Jayabalan Sethuraman
Abstract Asian countries hold a vast majority of the global two-wheeler population. Currently majority of these two wheelers are fueled by carburetors owing to their low cost and ease of maintenance. As these countries try to adopt emission norms similar to that of Euro 6 in a few years from now, they will be migrating to an injection system like port fuel injection (PFI), as it offers good control over emissions by using closed loop corrections, based on the exhaust lambda feedback. Stanadyne R&D has developed an innovative injection system that can be applied for such port fuel injection in two-wheelers. In this innovative design, the pump and injector are integrated into a single unit, making the system simple, compact and less expensive. The integrated injector uses a solenoid and spring arrangement, for pressurizing the fuel in a small chamber, and consumes less current. The pressurized fuel is then injected through orifice to produce spray in the intake port.
2017-03-28
Technical Paper
2017-01-1180
Stefan Brandstätter, Michael Striednig, David Aldrian, Alexander Trattner, Manfred Klell, Tomas Dehne, Christoph Kügele, Michael Paulweber
Abstract The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
2017-03-28
Technical Paper
2017-01-1012
Sunil Kumar Pathak, Vineet sood, Yograj Singh, Salim Abbasbhai Channiwala
Abstract In developing countries like India, large numbers of portable gensets are used as a power source due to the scarcity of grid power supply. The portable gensets, ranging from 0.5 kW to 5 kW are very popular in the residential areas, for example, small restaurants, and shopping complexes, etc. These gensets are using various fuels like gasoline, diesel, LPG, and kerosene in small internal combustion engines. Such engines are the significant source of air pollution, as these are running in the vicinity of populated areas and higher human exposure to these pollutants.Theses gensets are regulated by exhaust and noise emissions norms, set by statutory bodies like the ministry of environment and forest and central pollution control board of India.
2017-03-28
Technical Paper
2017-01-1019
Bentolhoda Torkashvand, Andreas Gremminger, Simone Valchera, Maria Casapu, Jan-Dierk Grunwaldt, Olaf Deutschmann
Abstract The effect of increased pressure relevant to pre-turbine catalyst positioning on catalytic oxidation of methane over a commercial Pd-Pt model catalyst under lean conditions is investigated both experimentally and numerically. The possible gas phase reactions due to high temperature and pressure were tested with an inert monolith. Catalyst activity tests were conducted for both wet and dry gas mixtures and the effect of pressure was investigated at 1, 2 and 4 bar. Aside from the water in the inlet stream, the water produced by oxidation of methane in dry feed inhibited the activity of the catalyst as well. Experiments were carried out to check the effect of added water in the concentration range of water produced by methane oxidation on the catalyst activity. Based on the experimental results, a global oxidation rate equation is proposed. The reaction rate expression is first order with respect to methane and -1.15 with respect to water.
2017-03-28
Technical Paper
2017-01-1077
Nicolas Arnault, Nicolas Batailley, Arnaud Maria, Laurent Bechu
Abstract PSA Group, SOLVAY and SOGEFI have teamed-up to produce the first Plastic Diesel Fuel Filter fully made of recycled polyamide 66, ready for mass-production. This has been achieved by using the brand new plastic compound developed by SOLVAY Engineering Plastics. This material is 100% recycled from airbag wastes, providing a premium material able to stand demanding applications requirements supplied through circular economy, which is quite unusual in automotive industry yet. SOGEFI has used this material through its existing plastic injection process, and tested the parts on extensive bench validation tests. It confirmed that this material is fully compatible with standard injection process, and that all the tests have been passed successfully. Finally, PSA Group has driven the choice of the tested parts: DV engine 1.6l Euro6b application, homologated the material grade and evaluated the whole validation process.
2017-03-28
Technical Paper
2017-01-1076
Mohammad Moetakef, Abdelkrim Zouani, Esra Demren
Abstract In this presentation, two cases of CAE simulations of oil pump-induced tonal noises are presented. The first case involves oil pump-induced whine in an I4engine during coast down. The second case addresses oil pan moan during hot idle and the effect of oil pump pick-up tube positioning inside the oil pan of an I5 engine. The investigations include several design modifications to the pump and the pick-up tube to prevent the tonal noise. Test data are also included to demonstrate the accuracy of the CAE simulation.
2017-03-28
Technical Paper
2017-01-1079
Suresh Kumar Kandreegula, Sayak Mukherjee, Rahul Jain, Shivdayal Prasad, Kamal Rohilla
Abstract Flex Connectors are intended for mitigating the relative movement of exhaust system components along the axis of the system arising from the thermal expansion due to intermittent engine operation. Flex connectors must not be installed in locations, where they will be subjected to destructive vibration. Hence, the stiffness of the flex connector plays an important role, while designing or selecting the right design. It consists of a multi-ply bellows combined with an inside and an outside steel braid. The liner is included to reduce the temperature of the bellows and improve flow conditions. The braid is included for mechanical protection and to limit the possible extension of the joint. It has only axial translational motion.
2017-03-28
Technical Paper
2017-01-1081
Chongzhi Zhong, Tieqiang Fu, Chunbei Dai, Taiyu Zhang, Ke Wu, Wangwen Gu
Abstract In order to study the single cavity and double cavity canister work performance, the L/D, as well as the similarities and differences among the diameter of the adsorption mouth, purge mouth and air mouth have been studied. At the same time, the work performance of ORVR canister and common canister is also studied. The results demonstrate that the similar of L/D, efficient work ability and efficient adsorption rate of the double cavity canister is better than the single cavity canister. The bigger of L/D, the stronger work ability of the canister. However, the excessive increase of the L/D is not conducive to the canister desorption, instead resulting in the increase of RARCP. The adsorption mouth diameter of common canister is generally smaller or similar to the purge mouth, while for ORVR canister the adsorption mouth diameter is bigger than the purge mouth and similar to air mouth.
2017-03-28
Technical Paper
2017-01-1069
Igor Trevas, Adm José baeta, Charles Pimenta, Heder Fernandes, Matheus Carvalho, Raphael Montemor
Abstract Variable Valve Actuation system (VVA) is a technology developed for improving fuel economy, reducing emissions, and enhancing engine performance mainly by reducing pumping losses. Many automakers have used VVA in their engine projects with excellent results. Usually, VVA systems are built to control the valve events in four different ways: changing the amplitude of the valve lift, the valve opening angle, the valve closing angle or a combination of those modes. A special attention at the calibration activity is needed to reach the optimum performance of this system, beyond this, it was necessary to develop a different way to calibrate, much more focused on the development of the combustion and the gas exchange process requiring an intense use of a pressure indicating system. This work presents a comparison between different way of actuation in combustion analysis of a VVA system on a spark ignition engine.
2017-03-28
Technical Paper
2017-01-1096
Robin Temporelli, Philippe Micheau, Maxime Boisvert
Abstract Automated Manual Transmission (AMT) based on classic electrohydraulic clutch actuation gives high performances and comfort to a recreational vehicle. However, overall power consumption remains high due to the pump efficiency. In addition, the pump is often driven by the vehicle’s engine and thus is continuously working. To address this issue, a new electrified clutch based on electromechanical actuation has been designed and prototyped. In order to evaluate the effective fuel consumption reduction using this new clutch actuator, a low-cost and agile method is presented and used in this paper. Indeed, instead of integrating the clutch actuator in a real vehicle and performing expensive real emission test cycles on a road, this original method proposes to perform accurate semi-virtual emission test cycles. Moreover, the method allows to perform numerous test iterations in a short time.
2017-03-28
Technical Paper
2017-01-1086
Cagri Sever, Todd Brewer, Scott Eeley, Xingfu Chen, Ruichen Jin, Emad Khalil, Michael Herr
Abstract For aluminum automotive cylinder head designs, one of the concerning failure mechanisms is thermo-mechanical fatigue from changes in engine operating conditions. After an engine is assembled, it goes through many different operating conditions such as cold start, through warm up, peak power, and intermediate cycles. Strain alternation from the variation in engine operation conditions change may cause thermo-mechanical fatigue (TMF) failure in combustion chamber and exhaust port. Cylinder heads having an integrated exhaust manifold are especially exposed to this failure mode due to the length and complexity of the exhaust gas passage. First a thermo-mechanical fatigue model is developed to simulate a known dynamometer/bench thermal cycle and the corresponding thermo-mechanical fatigue damage is quantified. Additionally, strain state of the cylinder head and its relation to thermo-mechanical fatigue are discussed. The bench test was used to verify the TMF analysis approach.
2017-03-28
Technical Paper
2017-01-1087
Pengfei Zang, Zhe Wang, Yu Fu, Chenle Sun
Abstract The Linear Internal Combustion Engine-Linear Generator Integrated System (LICELGIS) is different from conventional crank-based engine for reducing frictional losses by eliminating the crankshaft. Thus, the LICELGIS piston stroke is not constrained geometrically and the system compression ratio is variable. During steady-state operation, the LICELGIS converts the fuel chemical energy into electric power with piston assembly reciprocating motion, which can be used as a range-extender in hybrid electric vehicles. The LICELGIS scavenging process is prerequisite and key for the system steady-state operation, which has remarkable influence on mixture gas and, eventually, on engine combustion performance. In order to achieve high scavenging performance, a LICELGIS is investigated in this paper. The LICELGIS motion characteristics and scavenging process were analyzed.
2017-03-28
Technical Paper
2017-01-0012
Zia Hossain, Shengling Deng, Jim Sellers, Gary Loechelt, Mo Grimaldi, Irene Wan, Emily Linehan, Alexander Young, Ali Salih
Abstract To meet the increasing demand for lower RDS(ON) MOSFETs in medium voltage automotive applications, the shielded gate trench MOSFET architecture is becoming increasingly popular in recent years for its ability to achieve both lower RDS(ON) and faster switching speed. The lower specific drain-to-source resistance (RDS(ON).Area) translates into smaller chip size and consequently cheaper die cost for the end customers. Furthermore, shielded gate trench architecture offers smaller gate-to-drain capacitance by utilizing the shielding effect from the shield-poly, leading to lower G-D charge (QGD), faster switching speed, and increased dv/dt immunity. A comprehensive portfolio of medium voltage shielded gate power MOSFET products in several voltage classes (40V, 60V, 80V, and 100V) in automotive and industrial markets is presented in this paper.
2017-03-28
Technical Paper
2017-01-0190
Neelakandan Kandasamy, Steve Whelan
Abstract The range of Plug-In Electric Vehicles (EVs) is highly influenced by the electric power consumed by various sub systems, the major part of the power being used for vehicle climate control strategies in order to ensure an acceptable level of thermal comfort for the passengers. Driving range decreases with low temperatures in particular because cabin heating system requires significant amount of electric power. Range also decreases with high ambient temperatures because of the air conditioning system with electrically-driven compressor. Both thermal systems reduce EV driving range under real life operating cycles, which can be a barrier against market penetration. The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature.
2017-03-28
Technical Paper
2017-01-0090
Ondrej Santin, Jaroslav Beran, Jaroslav Pekar, John Michelini, Junbo Jing, Steve Szwabowski, Dimitar Filev
Abstract Conventional cruise control systems in automotive applications are usually designed to maintain the constant speed of the vehicle based on the desired set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods namely adopting the Model Predictive Control (MPC) technology utilizing the road grade preview information and allowance of the vehicle speed variation. This paper is focused on the extension of the Adaptive Nonlinear Model Predictive Controller (ANLMPC) reported earlier by application to the trailer tow use-case. As the connected trailer changes the aerodynamic drag and the overall vehicle mass, it may lead to the undesired downshifts for the conventional cruise controller introducing the fuel economy losses. In this work, the ANLMPC concept is extended to avoid downshifts by translating the downshift conditions to the constraints of the underlying optimization problem to be solved.
2017-03-28
Technical Paper
2017-01-1287
Markus Sartory, Markus Justl, Patrick Salman, Alexander Trattner, Manfred Klell, Ewald Wahlmüller
Abstract Hydrogen as carbon-free energy carrier, produced from renewable sources like wind, solar or hydro power, is a promising option to overcome the impacts of the anthropogenic climate change. Recently, great advances regarding the early market introduction of FCVs have been achieved. As the availability of hydrogen refueling stations is highly limited, a modular, scalable and highly efficient hydrogen supply infrastructure concept is presented in this paper. The focus lies on cost-effectiveness and flexibility for the utilization in different applications and for growing markets. Based on the analysis of different use cases, the requirements for the newly developed concept are elaborated. The modular system design, utilizing a standardized high pressure PEM electrolysis module, allows a scalable hydrogen production of up to several hundred kilograms per day.
2017-03-28
Technical Paper
2017-01-0871
Alexander K. Voice, Tom Tzanetakis, Michael Traver
Abstract Lubricity is an empirically-determined tribological property, which is a function of the fluid properties and system, and which is known to influence fuel system wear durability. In this work, the lubricity of various fuels was tested using a modified version of ASTM D6079, which uses a high frequency reciprocating rig (HFRR). The fuels were tested as received and with various amounts of commercial diesel lubricity additives. Lubricity of all light-end fuels test as received (without lubricity additives) was found to be substantially worse than additized diesel certification fuel, and lowest for unadditized straight-run gasoline. All diesel lubricity additives tested were able to substantially improve the lubricity of the light-end fuel formulations. The best additives reduced the wear scar diameter in the HFRR test to around 200 μm at a concentration of 200 mg/kg, putting them well within the maximum allowable limit for market No. 2 diesel fuel.
2017-03-28
Technical Paper
2017-01-1187
Tatsuya Sugawara, Takuma Kanazawa, Naoki Imai, Yu Tachibana
Abstract This paper describes the motorized turbo compressor, which is a key technology for reducing the size of the fuel cell system for the Clarity Fuel Cell. The oxygen needed for fuel cell power generation is sent into the fuel cell by compressing the air from the atmosphere by a compressor. The conventionally used Lysholm compressor needed numerous sound absorbers, such as silencers and covers, to help achieve quietness when driving. Therefore, changing to a turbo compressor enhanced quietness and helped to eliminate or reduce the size of these auxiliary sound absorbers. Furthermore, a two-stage supercharging structure was used and the air pressure supplied to the fuel cell was increased to 1.7 times the previous air pressure. This increased the fuel cell power, which enabled to reduce the number of cells needed, and reduced the needed humidification amount which enabled to reduce the size of the humidifier. These enhancements helped to reduce the system size.
2017-03-28
Technical Paper
2017-01-1145
Eric De Hesselle, Mark Grozde, Raymond Adamski, Thomas Rolewicz, Mark Erazo
Abstract Hybrid electric vehicles are continuously challenged to meet cross attribute performance while minimizing energy usage and component cost in a very competitive automotive market. As electrified vehicles become more mainstream in the marketplace, hybrid customers are expecting more attribute refinement in combination with the enhanced fuel economy benefits. Minimizing fuel consumption, which tends to drive hybrid powertrain engines to operate under lugging type calibrations, traditionally challenge noise, vibration, and harshness (NVH) metrics. Balancing the design space to satisfy the cost metrics, energy efficiency, noise and vibration & drivability under the hybrid engine lugging conditions can be optimized through the use of multiple CAE tools. This paper describes how achieving NVH metrics can put undesirable boundaries on Powertrain Operation which could affect other performance attributes.
2017-03-28
Technical Paper
2017-01-1699
Luting Wang, Bo Chen
Abstract Vehicle-to-Grid (V2G) service has a potential to improve the reliability and stability of the electrical grid due to the ability of providing bi-directional power flow from/to the grid. However, frequent charging/discharging may impact the battery lifetime. This paper presents the analysis of battery degradation in three scenarios. In the first scenario, different battery capacities are considered. In the second scenario, the battery degradation with various depth of discharge (DOD) are studied. In the third scenario, the capacity loss due to different charging regime are compared. The charging/discharging of plug-in electric vehicles (PEVs) are simulated in a single-phase microgrid system integrated with a photovoltaics (PV) farm, an energy storage system (ESS), and ten electric vehicle service equipment (EVSE).
Viewing 241 to 270 of 16633