Criteria

Text:
Display:

Results

Viewing 241 to 270 of 16427
2017-03-28
Journal Article
2017-01-0896
Philip Griefnow, Jakob Andert, Dejan Jolovic
Abstract The range of tasks in automotive electrical system development has clearly grown and now includes goals such as achieving efficiency requirements and complying with continuously reducing CO2 limits. Improvements in the vehicle electrical system, hereinafter referred to as the power net, are mandatory to face the challenges of increasing electrical energy consumption, new comfort and assistance functions, and further electrification. Novel power net topologies with dual batteries and dual voltages promise a significant increase in efficiency with moderate technological and financial effort. Depending on the vehicle segment, either an extension of established 12 V micro-hybrid technologies or 48 V mild hybridization is possible. Both technologies have the potential to reduce fuel consumption by implementing advanced stop/start and sailing functionalities.
2017-03-28
Journal Article
2017-01-0901
Alex Pink, Adam Ragatz, Lijuan Wang, Eric Wood, Jeffrey Gonder
Abstract Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption. Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles.
2017-03-14
Journal Article
2016-01-9080
Yong-Yuan Ku, Jau-Huai Lu, Ko Wei Lin
Due to the rising price of crude oil, biofuel is being considered as a global alternative for fossil fuels to reduce the emission of greenhouse gases. Diesel blended with bio fuel is currently being widely adopted in many countries. The Taiwanese government has been enforcing the adoption of B2 since 2010. However, there have remained consistent concerns about engine durability related to the use of biofuel, especially regarding after-treatment systems. A selective catalytic reduction system (SCR) has been utilized recently to reduce NOX emission in order to meet the Euro IV and V emission standards. To evaluate the impact of biodiesel on the durability of engines equipped with the SCR system, a long-term testing program was organized for the purposes of this study. The results can be used as a reference for the development of marketing promotion strategies as well as government policies in Taiwan.
2017-01-10
Technical Paper
2017-26-0032
Anuroopa Varsha, Andreas Rainer, Prabhu Santiago, Ramdas Umale
Abstract Modern day diesel engines use systems like Exhaust Gas Recirculation (EGR), Variable Geometric Turbo Charger (VGT), inlet throttle for air regulation, multiple injection strategies, high pressure rail systems for fuel regulation to optimize the combustion for meeting the strict emission and fuel consumption demands. Torque based ECU structures which are commonly used for diesel engines require a large amount of calibration work. Conventional manual methods for emission and fuel consumption optimization (Full factorial or Line search method) results in increased test bed usage and it is almost impossible to use these methods as the number of parameters to optimize are very high. The conventional DoE tests have been limited by the necessity of calibration engineer’s expertise and manual prescreening of test points to be within thermal & mechanical limits of engine systems. This subsequently leads to excessive screening of variables; which is time consuming.
2017-01-10
Technical Paper
2017-26-0030
Sudhi Uppuluri, Ajay M Naiknaware, Hemant R Khalane
Abstract With the upcoming regulations for fuel economy and emissions, there is a significant interest among vehicle OEMs and fleet managers in developing computational methodologies to help understand the influence and interactions of various key parameters on Fuel Economy and carbon-di-oxide emissions. The analysis of the vehicle as a complete system enables designers to understand the local and global effects of various technologies that can be employed for fuel economy and emission improvement. In addition, there is a particular interest in not only quantifying the benefit over standard duty-cycles but also for real world driving conditions. Present study investigates impact of exhaust heat recovery system (EHRS) on a typical 1.2L naturally aspirated gasoline engine passenger car representative of the India market.
2017-01-10
Technical Paper
2017-26-0029
Shubham Saxena, Mudassir Ahmed
Abstract Higher fuel economy of the vehicle is a critical concern in automobile industry. Traditional internal combustion (IC) engines waste a large portion of the available fuel energy as heat loss via exhaust gas. This proposal aims at recovering the available exhaust heat of the IC engines using stirling engine (SE) as an add-on device. SE is a type of cyclic heat engine which operates by compression and expansion of the working fluid, at different temperature levels resulting in a conversion of the heat energy into mechanical work. A thermodynamic analysis is performed on the chosen beta SE rhombic drive configuration with different combinations of design parameters like working fluid mass, total dead volume, thermal resistance, and hot side and cold side temperatures. A regenerator temperature model is developed to account for first law consistency in the regenerator section of SE, along with heat transfer in accordance with mass flow within the regenerator.
2017-01-10
Technical Paper
2017-26-0052
Gopalakrishna Acharya, K.A. Subramanian, R K Malhotra
In India, there is a large population of heavy duty diesel engine powered vehicles such as trucks and buses. Buses are operated under normal speed & load conditions whereas trucks are generally overloaded with high severity on engine oil and lugging operation is common. Higher loading of soot in engine oil results in increase in viscosity of oil and also affects the friction properties and also wear in engine components. The engine oil keep the soot dispersed in order to meet the basic function of lubricating and also keep the engine components clean.
2017-01-10
Technical Paper
2017-26-0067
Durgada Sankesh, Petros Lappas
Abstract Significant research has been made on traditional pre-mixed charge Spark-Ignition Natural-Gas engines which have seen widespread usage across the automotive sector. Many researchers including those in industry are now exploring the Direct-Injection concept for Natural-Gas Spark-Ignition engines. Direct-Injection has significant performance benefits over port-fuel injection, primarily due to increased volumetric efficiency as a result of injecting the fuel after intake valve closure. This could lead to enhanced driving performance over port-fuel injection comparable to gasoline engines. Furthermore, Direct-Injection with increased compression ratio in conjunction with downsizing concepts has the potential to increase thermal efficiency while exhibiting significantly lower CO2 emissions.
2017-01-10
Technical Paper
2017-26-0063
Parashuram R Chitragar, K V Shivaprasad, G N Kumar
Abstract Hydrogen’s combustion properties made it as a gifted fuel and energy carrier to combat the current scenario of depletion of the fossil fuels and crisis of environmental pollution problems. Its superior thermo physical properties and least toxic emissions are favorable to use it in an internal combustion (IC) engine as an alternative fuel. This paper describes an experimental analysis of performance and emission parameters for a four cylinder, four stroke SI engine by supplementing hydrogen fraction with gasoline. Tests were carried out by using hydrogen fraction from 0-10% in step of 2% by volume. Study revealed an improvement in brake power, efficiency and brake specific energy consumption up to 8% hydrogen fractions in comparison with gasoline operation while volumetric efficiency decreased for all hydrogen fractions. Carbon monoxide (CO), Hydrocarbons (HC) emissions were reduced and Nitrogen oxides (NOx) was slightly increased for all hydrogen fractions than gasoline.
2017-01-10
Technical Paper
2017-26-0036
Ingo Steinberg, Dan Freiholtz, Gereon Hellenbroich
Abstract The reduction of CO2 emissions at vehicle level through the improvement of transmission efficiency represents the essential goal of transmission development engineers. New requirements, such as the recovery of the kinetic energy of the vehicle while coasting, the hybridization of drivetrains and autonomous driving, are challenges that can best be overcome with automatic transmissions. Dual clutch transmissions (DCT) with power-on-demand actuation systems offer a particularly efficient method of meeting the new requirements. However, many markets show vehicle applications with production volumes of less than 100.000 units per year. FEV’s new DCT family is conceived especially for customers in these markets. The re-use of proven subsystems which are already in series production results in a "business case" for applications with lower volumes also. This article introduces this transmission family.
2017-01-10
Technical Paper
2017-26-0041
Santosh Trimbake, Dileep Malkhede, Pandurang Devkate
Abstract Worldwide IC engine fuels are increasingly blended with oxygenate fuels to reduce the dependency on the conventional petroleum reserves. Among these fuels, biomass-derived ethanol is very popular for SI engine operation as it is not only economical and renewable source of energy, but it also allows increasing the engine performance. High latent heat of vaporization of ethanol combined with its high octane number make the engine less sensitive to knock. However, the real potential of ethanol blended fuels still has to be explored and their impact on engine combustion characterization has to be investigated. The objective of this study is to extend predictive fractal combustion model for ethanol/gasoline blends and assess the influence of ethanol addition to gasoline in a Port Fuel Injection (PFI) engine. Quasi dimensional simulation is carried out using AVL Boost under wide open throttle condition at 1500 and 3000 rpm.
2017-01-10
Technical Paper
2017-26-0051
Praveen Babu Kandavalli, Ramanathan Karthi, Suresh Suresh Kumar, M Anand
Abstract Lubrication system is a critical factor for engine health. But it creates parasitic load and increased fuel consumption of the engine. The oil demand of an engine depends on engine speed, load, bearing clearances, operating temperature and engine's state of wear. Ideally, the oil pump should adapt the delivery volume flow to actual engine oil demand and should avoid unnecessary pumping of oil which causes increased power and fuel consumption. However in a conventional mechanical oil pump, there is no control on the oil flow and it is purely a function of operating speed. A variable discharge oil pump (VDOP) is an approach to reduce the parasitic losses wherein the oil flow is regulated based on the mechanical needs of the engine. This study is based on the results of a two stage VDOP installed on a 1.2 litre, 3 cylinder MPFI engine. The oil supply is regulated by a solenoid control which receives command from Engine Control Unit (ECU). The study was done in two stages.
2017-01-10
Technical Paper
2017-26-0087
Prasad B Warule, Vaibhav V Jadhav
Abstract Hybridization of vehicle drive train is an important step to increase energy security, reduce crude oil import, improvement of air quality and GHG reduction. Heavy traffic congestion poses a great challenge in improvement of fuel economy. Nowadays urban climatic condition forces the passenger to keep air-conditioning (AC) on; thus further decreasing the fuel economy. In a typical urban drive; the vehicle commutes with low speed forcing IC Engine to run in its low efficiency operational points. Further it is characterized by frequent start-stop and crawling. It has been observed that the power consumption for AC is comparable to that required for the vehicle propulsion. Hence the AC on condition with propelling vehicle demands higher power from engine creating a challenge for fuel economy improvement.
2017-01-10
Technical Paper
2017-26-0072
Moqtik Bawase, M R Saraf
Abstract Utilization of higher ethanol blends, 20% ethanol in gasoline (E20), as an alternate fuel can provide apparent benefits like higher octane number leading to improved anti-knocking properties, higher oxygen content resulting in complete combustion. Apart from technical benefits, use of ethanol blends offer certain widespread socioeconomic benefits including option of renewable source of energy, value addition to agriculture feedstock resulting in increase in farm income, creation of more jobs in rural sector and creating job at local levels. Use of higher blends of ethanol can reduce dependence on foreign crude leading to substantial savings in cost of petroleum import. The impact of higher Gasoline-Ethanol blend (E20), on the fuel system components of gasoline vehicles must be known for assessment of whether the fuel system will be able to perform as intended for the complete design life of the system.
2017-01-10
Technical Paper
2017-26-0076
Prasanna Sutar, Ashwin Dsouza, Shailesh B Sonawane, S D Rairikar, Kishorkumar Kavathekar, Sukrut Thipse, Neelkanth Marathe, Siddaling Bhure, Mubeen Mapkar
Abstract Vehicles with direct injection engines employ various methods for mixing fuel and air in an engine cylinder. Efficient mixing increases combustion burn rate, improving combustion stability and knock suppression. Spark ignition engines may use tumble flow motion to generate turbulence, which includes rotational motion generally perpendicular to the cylinder axis to improve air and fuel mixing. Depending on operating conditions, more or less tumble may be advantageous. In this paper the tumble motion of the charge air is studied and simulated only in the suction stroke. A direct injected turbocharged combustion system employing central-mounted multihole injector. This paper presents the comparative study of effect of intake port design with various levels of tumble motion for fuels used in SIDI engines on the engine performance characteristics.
2017-01-10
Technical Paper
2017-26-0077
R Nagarajan, Aatmesh Jain, Kamalkishore Vora
Abstract Microalgae as feedstock are the potential third generation biofuels. Microalgae are photosynthetic microorganism which requires light, carbon-di-oxide, nitrogen, phosphorous, and potassium for growth and to produce lipids, proteins and carbohydrates in large amounts over short a periods of time. The production of biofuels from microalgal is a viable alternative due to their easy adaptability to growth conditions, possibility of growing biomass either in fresh or marine waters. Hence the current project was designed to elucidate the biodiesel producing ability of blue-green algae such as Spirulina platensis and Green algae Chlorella vulgaris. The selected algae were cultivated in suitable growth media such as modified Zarrouke medium and bold basal medium, respectively. The Spirulina platensis and Chlorella vulgaris were mass cultured for 8 days then harvested using 50 micron nylon filters and dried in sunlight to obtain dry biomass.
2017-01-10
Technical Paper
2017-26-0078
Nandagopalan Chidambaram, Sridhar Prasad Chandrasekar, VM Maheshwar, Prabaharan Palanivelu, Aravapalli Sriniwas
Abstract In the past few decades, improvement on fuel efficient technologies have progressed rapidly, whereas little emphasis is being made on how the vehicle should be driven. Driving habits significantly influences fuel consumption and poor driving habits leads to increased fuel consumption. In this paper a new system called “Green Drive” is being presented wherein driving habits are closely monitored, evaluated and details are systematically presented to the user. Green Drive system monitors key driving parameters like speed, gear selection, acceleration, unwanted engine idling periods, aggressive braking and clutch override and presents an ecoscore on the infotainment system which is reflection of users driving behavior. The system also offers guidance on the scope for improving driving habits to achieve better ecoscore and hence reduced fuel consumption.
2017-01-10
Technical Paper
2017-26-0107
Monanshi Gupta, Yasser Rafat, M. Saad Alam
Abstract Electric vehicles (EVs) are considered as zero emission vehicles because of no exhaust emissions (tailpipe emission). But electric power generation contributes in the well to wheel emissions. Hence, Electric vehicle cannot be regarded as completely pollution free. In Internal Combustion Engine (ICE) based vehicles, the pollution is from both the tailpipe (exhaust pipe) and from the well to wheel (extraction of the gasoline in this case). Tailpipe emissions are taken in compliance with Bharat stage emission standards. Standard emissions of CO2, NOx, PM and CH from refineries, during extraction of fuel (gasoline/diesel), are considered for well to wheel emissions. In this work a comparative study of tailpipe and well to wheel emissions from EVs and ICE vehicles is carried out. Three vehicle categories namely; Heavy Duty Vehicles, Passenger cars and 2 wheelers and four major pollutants, namely; CO2, NOx, PM and CH (hydrocarbons) are taken into consideration.
2017-01-10
Technical Paper
2017-26-0106
Zachary D. Asher, Van Wifvat, Anthony Navarro, Scott Samuelsen, Thomas Bradley
Abstract Optimal energy management of hybrid electric vehicles has previously been shown to increase fuel economy (FE) by approximately 20% thus reducing dependence on foreign oil, reducing greenhouse gas (GHG) emissions, and reducing Carbon Monoxide (CO) and Mono Nitrogen Oxide (NOx) emissions. This demonstrated FE increase is a critical technology to be implemented in the real world as Hybrid Electric Vehicles (HEVs) rise in production and consumer popularity. This review identifies two research gaps preventing optimal energy management of hybrid electric vehicles from being implemented in the real world: sensor and signal technology and prediction scope and error impacts. Sensor and signal technology is required for the vehicle to understand and respond to its environment; information such as chosen route, speed limit, stop light locations, traffic, and weather needs to be communicated to the vehicle.
2017-01-10
Technical Paper
2017-26-0145
Benjamin Rodriguez Sharpe, Oscar Delgado, Mehul Garg
Abstract This analysis is a comprehensive assessment of the fuel-saving technologies and technology packages for three representative diesel HDV types in India: a 40-tonne Gross Vehicle Weight (GVW) tractor-trailer, 25-tonne rigid truck, and a 16-tonne transit bus. These representative vehicle types are modeled after top-selling models in the Indian market based on sales data from fiscal year 2013-14. To model these vehicle types are accurately as possible, the study team acquired detailed engine maps that match the engine models in the respective vehicles and sought input on other vehicle systems from some of the leading Indian HDV manufacturers and suppliers. Using Autonomie as the vehicle simulation platform, the authors investigate the fuel consumption impacts of both individual technologies and combinations of technologies in the following areas: engine, transmission, driveline, aerodynamics, tires, material substitution (i.e., curb weight reduction), and hybridization.
2017-01-10
Technical Paper
2017-26-0367
Prasad S. Warwandkar, Ashutosh Dubey, Sonu Paroche
Abstract Wheel end bearing is one of the critical components of the vehicle as it directly faces the road loads for harsh operating environment. Bearing being a precisely manufactured component and rotating at high speed, utmost care is required while assembling as well as during operation. In operating condition wheel end is directly exposed to outside environment making it prone to entry of contamination. This contamination if not prevented from entering into wheel end through proper sealing it would cause lubricant contamination and consequently bearing failure. Bearing replacement and overall wheel end service is time consuming activity reducing the turn out time of the vehicle. In wheel ends, one side is sealed with the help of seal while the other side is protected by cap and gasket. This cap-gasket interface is very critical from sealing perspective and utmost importance needs to be taken while designing the same.
2017-01-10
Technical Paper
2017-26-0370
G. Meenakshi, Nishit Jain, Sandeep Mandal
Abstract Automobile industry is shifting its focus from conventional fuel vehicles to NexGen vehicles. The NexGen vehicles have electrical components to propel the vehicle apart from mechanical system. These vehicles have a goal of achieving better fuel efficiency along with reduced emissions making it customer as well as environment friendly. Idle start-stop is a key feature of NexGen vehicles, where, the Engine ECU switches to engine stop mode while idling to cut the fuel consumption and increase fuel efficiency. Engine restarts when there is an input from driver to run the vehicle. There is always a clash between the Engine ECU and automatic climate control unit (Auto-AC) either to enter idle stop mode for better fuel efficiency or inhibit idle stop mode to keep the compressor running for driver comfort. This clash can be resolved in two ways: 1 Hardware change and,2 Software change Hardware change leads to increase in cost, validation effort and time.
2017-01-10
Journal Article
2017-26-0364
Igor Gritsuk, Vladimir Volkov, Vasyl Mateichyk, Yurii Gutarevych, Mykola Tsiuman, Nataliia Goridko
Abstract The article suggests the results of experimental and theoretical studies of the engine heating system with a phase-transitional thermal accumulator when the vehicle is in motion in a driving cycle. The aim of the study is to evaluate the efficiency of the vehicle heating system within thermal accumulator and catalytic converter under operating conditions. The peculiarity of the presented system is that it uses thermal energy of exhaust gases to accumulate energy during engine operation. The article describes the methodology to evaluate vehicle fuel consumption and emission in the driving cycle according to the UNECE Regulation № 83-05. The methodology takes into account the environmental parameters, road conditions, the design parameters of the vehicle, the modes of its motion, thermal state of the engine cooling system and the catalytic converter.
2017-01-10
Journal Article
2017-26-0056
Suramya Naik, David Johnson, Laurence Fromm, John Koszewnik, Fabien Redon, Gerhard Regner, Neerav Abani
Abstract The government of India has decided to implement Bharat Stage VI (BS-VI) emissions standards from April 2020. This requires OEMs to equip their diesel engines with costly after-treatment, EGR systems and higher rail pressure fuel systems. By one estimate, BS-VI engines are expected to be 15 to 20% more expensive than BS-IV engines, while also suffering with 2 to 3 % lower fuel economy. OEMs are looking for solutions to meet the BS-VI emissions standards while still keeping the upfront and operating costs low enough for their products to attract customers; however traditional engine technologies seem to have exhausted the possibilities. Fuel economy improvement technologies applied to traditional 4-stroke engines bring small benefits with large cost penalties. One promising solution to meet both current, and future, emissions standards with much improved fuel economy at lower cost is the Opposed Piston (OP) engine.
2017-01-10
Journal Article
2017-26-0065
Sukrut S Thipse, Ashwin Dsouza, Shailesh B Sonawane, S D Rairikar, Kishorkumar Kavathekar, Neelkanth Marathe, Balasaheb Shinde, Sudhindra Kadkol, Kamlesh Bhandari, Mandar Joshi
Abstract CNG has recently seen increased penetration within the automotive industry. Due to recent sanctions on diesel fuelled vehicles, manufactures have again shifted their attention to natural gas as a suitable alternative. Turbocharging of SI engines has seen widespread application due to its benefit in terms of engine downsizing and increasing engine performance [1]. This paper discusses the methodology involved in development of a multi cylinder turbocharged natural gas engine from an existing diesel engine. Various parameters such as valve timing, intake volume, runner length, etc. were studied using 1D simulation tool GT power and based on their results an optimized configuration was selected and a proto engine was built. Electronic throttle body was used to give better transient performance and emission control. Turbocharger selection and its location plays a critical role.
2017-01-10
Journal Article
2017-26-0053
Sumit Rawat, Kumar Patchappalam, Abhijit Sahare
Abstract BSIV implementation for commercial vehicle in pans India effectively from April 2017. It’s very challenging job for performance and emission engineer to meet engine performance & fuel economy with stringent emission norms for high power and torque density HD diesel engine. In Altitude, lack of air availability & combustion energy passes by mechanical waste gate, lead to lower boost at partial load in waste gate region; which in turn leads to poor engine performance & fuel efficiency and higher turbo speed. To control the turbocharger design speed limit various methodologies adopted like engine derating or optimizing the combustion parameters leads to poor vehicle performance. Combustion parameter optimsation is having limited scope for turbocharger speed control.
2017-01-10
Journal Article
2017-26-0143
Saroj Pradhan, Arvind Thiruvengadam, Pragalath Thiruvengadam, Berk Demirgok, Marc Besch, Daniel Carder, Bharadwaj Sathiamoorthy
Abstract Three-way catalyst equipped stoichiometric natural gas vehicles have proven to be an effective alternative fuel strategy that has shown superior low NOx benefits in comparison to diesels equipped with SCR. However, recent studies have shown the TWC activity to contribute to high levels of tailpipe ammonia emissions. Although a non-regulated pollutant, ammonia is a potent pre-cursor to ambient secondary PM formation. Ammonia (NH3) is an inevitable catalytic byproduct of TWCduring that results also corresponds to lowest NOx emissions. The main objective of the study is to develop a passive SCR based NH3 reduction strategy that results in an overall reduction of NH3 as well as NOx emissions from a stoichiometric spark ignited natural gas engine. The study investigated the characteristics of Fe-based and Cu-based zeolite SCR catalysts in storage, and desorption of ammonia at high exhaust temperature conditions, that are typical of stoichiometric natural gas engines.
2017-01-10
Journal Article
2017-26-0075
Senthil Kumar G, Gokul Elumalai Kumar
Abstract E85 (85% Ethanol + 15% Gasoline), as an alternative fuel has been widely used in spark ignited engines used in light duty vehicles. However, they are rarely used in spark ignited heavy duty engines. In this study, we used E85 in a 5.8 litre, multi cylinder, turbocharged, multi point - port injected, spark ignited heavy duty engine, to analyze the performance capability. As E85 has higher octane rating, the compression ratio was increased to 11.5:1. Experimental investigation of In-cylinder pressure was done and the engine’s ignition timing and injection duration was calibrated to operate the engine below peak firing pressure limits, without knocking. The experimental results showed that exhaust gas recirculation resulted in lower peak firing pressure and rate of heat release. The results of the engine test showed that E85 can be used in heavy duty spark ignited engines. The scope for future work is on addressing the higher BSFC and cold start from subzero temperature levels.
2017-01-10
Journal Article
2017-26-0074
Jayakrishnan Krishnan Unni, Divesh Bhatia, Viresh Dutta, Lalit Mohan Das, Srinivas Jilakara, GP Subash
Abstract Air pollution caused by vehicular tail pipe emissions has become a matter of grave concern in major cities of the world. Hydrogen, a carbon free fuel is a clean burning fuel with only concern being oxides of nitrogen (NOx) formed. The present study focuses on the development of a hydrogen powered multi-cylinder engine with low NOx emissions. The NOx emissions were reduced using a combination of an in-cylinder control strategy viz. Exhaust Gas Recirculation (EGR) and an after treatment method using hydrogen as a NOx reductant. In the present study, the low speed torque of the hydrogen engine was improved by 38.46% from 65 Nm to 90 Nm @ 1200 rpm by operating at an equivalence of 0.64. The higher equivalence ratio operation compared to the conventional low equivalence ratio operation lead to an increase in the torque generated but increased NOx as well.
2017-01-10
Journal Article
2017-26-0073
B Ashok, K Nantha Gopal, Thundil Karuppa Raj Rajagopal, Sushrut Alagiasingam, Suryakumar Appu, Aravind Murugan
Abstract With the alarming increase in vehicular population, there is depletion of fossil fuel availability. Hence to overcome the difficulties, alternative fuels are tested and used in parts of the world. One of the difficulties with usage of alternate fuels is their high viscosity in comparison to fossil fuels. To overcome this, preheating of biofuel is a good option as it makes the fuel less viscous. In our research, we have used a helical coil heat exchanger to preheat the inlet fuel using the engine’s exhaust gas, making the system more sustainable since no external energy is used. In order to evaluate the effectiveness of preheating device a simulation study has been carried for the ethanol based biofuels. For simulation work, a set of boundary conditions has been arrived based on the experimental analysis. The results from the experiment such as velocity of air and fuel inlet were utilized as input for simulation work.
Viewing 241 to 270 of 16427