Criteria

Text:
Display:

Results

Viewing 211 to 240 of 16433
2017-03-28
Journal Article
2017-01-1005
Yizhou Zhang, Jaal Ghandhi, David Rothamer
Abstract The effect of direct-injected fuel on particle size distributions (PSDs) of particulate matter emitted from dual-fuel combustion strategies was investigated. The PSD data were acquired from a light-duty single-cylinder diesel engine operated using conventional diesel combustion (CDC) and two diesel/natural gas dual-fuel combustion strategies. Three different direct-injection (DI) fuels (diesel, 2,6,10-trimethyldodecane, and a primary reference fuel blend) and two different injector nozzles were studied. The DI fuels were chosen to have similar energy and ignition characteristics (heat of combustion and cetane number) but different physical and chemical properties (volatility, aromatics %, viscosity, density). The two nozzles (with different orifice diameter and spray angle) allowed a wide range in DI fuel quantity for the dual-fuel combustion strategies.
2017-03-28
Journal Article
2017-01-1082
Mohammed Yusuf Ali, Thomas Sanders, Mikhail A. Ejakov, Reda Adimi, Alexander Boucke, Jochen Lang, Gunter Knoll
Abstract Strict requirements for fuel economy and emissions are the main drivers for recent automotive engine downsizing and an increase of boosting technologies. For high power density engines, among other design challenges, valve and guide interactions are very important. Undesirable contact interactions may lead to poor fuel economy, engine noise, valve stem to valve guide seizure, and in a severe case, engine failure. In this paper, the valve stem and valve guide contact behavior is investigated using computational models for the camshaft drive in push and pull directions under several misalignment conditions for an engine with roller finger follower (RFF) valvetrain and overhead cam configuration. An engine assembly analysis with the appropriate assembly and thermal boundary conditions are first carried out using the finite element solver ABAQUS.
2017-03-28
Journal Article
2017-01-1092
Jianbo Lu, Sanghyun Hong, Jonathan Sullivan, Guopeng Hu, Edward Dai, Dennis Reed, Ryan Baker
Abstract This paper proposes an approach that uses the road preview data to optimize a shift schedule for a vehicle equipped with an automatic transmission. The road preview is inferred here from the so-called electronic horizon of a digital map that includes road attributes such as road grade, curvature, segment speed limit, functional class, etc. The optimized shift schedule selects the gear ratio whose optimization is conducted through applying a hybrid model predictive control method to the powertrain system, which is modelled as the multiple plants associated with multiple gears together with engine models. The goal of this optimization of shift schedule includes improving real world fuel economy and drivability. The real-world fuel economy gains using the proposed approach are achieved through optimizing gear ratio w.r.t. the road grade variations of the road ahead.
2017-03-28
Technical Paper
2017-01-0464
Guang Wang, Xueyuan Nie, Jimi Tjong
Abstract Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
2017-03-28
Technical Paper
2017-01-0699
Sampad Mukhopadhyay, Sunil Srinivas Badavath, Naeim Henein
Abstract The superior fuel economy of direct injection internal combustion engines (diesel and gasoline) is related to use of a high compression ratio to auto-ignite the fuel and the overall lean combustible mixture. Two of the major problems in diesel engine emissions are the NOx and soot emissions, which are caused by the heterogeneity of the charge and the properties of the diesel fuel. Conventional Direct Injection Spark Ignition Gasoline engines don't have these problems because of the fuel properties particularly its volatility. However, its efficiency and specific power output are limited by the knock, knock produced preignition and the sporadic preignition phenomenon. The Gasoline Direct Injection Compression Ignition (GDICI) engine combines the superior features of the two engines by increasing the compression ratio and use of gasoline as a fuel.
2017-03-28
Journal Article
2017-01-0743
Kukwon Cho, Eric Latimer, Matthew Lorey, David J. Cleary, Mark Sellnau
Abstract Fuel efficiency and emission performance sensitivity to fuel reactivity was examined using Delphi’s second-generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The study was designed to compare a US market gasoline (RON 92 E10) to a higher reactivity gasoline (RON 80) at four operating conditions ranging from light load of 800 rpm / 2.0 bar gross indicated-mean-effective pressure (IMEPg) to medium load of 2000 rpm / 10.0 bar IMEPg. The experimental assessment indicated that both gasolines could achieve good performance and Tier 3 emission targets at each of the four operating conditions. Relative to the RON 92 E10 gasoline, better fuel consumption and engine-out emissions performance was achieved when using RON 80 gasoline; consistent with our previously reported single-cylinder engine research [1].
2017-03-28
Journal Article
2017-01-0747
John Storey, Samuel Lewis, Melanie Moses-DeBusk, Raynella Connatser, Jong Lee, Tom Tzanetakis, Kukwon Cho, Matthew Lorey, Mark Sellnau
Abstract Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEPg) to medium load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEPg). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations.
2017-03-28
Technical Paper
2017-01-0806
Genki Kikuchi, Masashi Miyagawa, Yoshiaki Yamamoto, Naruhiko Inayoshi
Abstract Exhaust Gas Recirculation (EGR) systems reduce exhaust emissions and improve fuel efficiency. Recently, the number of EGR system installed vehicles has been increasing, especially for gasoline engine systems. One of the major causes of decreasing EGR function is deposit accumulation on a gas passage. The deposit consists mainly of hydrocarbons which are degradation products of fuel, thus the amount of deposit seems to be strongly affected by fuel compositions. Unfortunately there are not as many studies on EGR deposits with gasoline fuel as there are with diesel fuel. In this study, the influence of gasoline fuel compositions, especially aromatics which are major components of EGR gas, on chemical structures of the deposit were investigated. To clarify the accumulation mechanism of EGR deposits, a thermal oxidative degradation test with an autoclave unit and an actual gasoline engine test were employed.
2017-03-28
Technical Paper
2017-01-0817
Remi Konagaya, Ken Naitoh, Kohta TSURU, Yasuo Takagi, Yuji Mihara
Abstract For various densities of gas jets including very light hydrogen and relatively heavy ones, the penetration length and diffusion process of a single high-speed gas fuel jet injected into air are computed by performing a large eddy simulation (LES) with fewer arbitrary constants applied for the unsteady three-dimensional compressible Navier-Stokes equation. In contrast, traditional ensemble models such as the Reynolds-averaged Navier-Stokes (RANS) equation have several arbitrary constants for fitting purposes. The cubic-interpolated pseudo-particle (CIP) method is employed for discretizing the nonlinear terms. Computations of single-component nitrogen and hydrogen jets were done under initial conditions of a fuel tank pressure of gas fuel = 10 MPa and back pressure of air = 3.5 MPa, i.e., the pressure level inside the combustion chamber after piston compression in the engine.
2017-03-28
Technical Paper
2017-01-1002
Daisuke Tanaka, Ryo Uchida, Toru Noda, Andreas Kolbeck, Sebastian Henkel, Yannis Hardalupas, Alexander Taylor, Allen Aradi
Abstract The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
2017-03-28
Technical Paper
2017-01-0382
Oscar Hernandez Cervantes, Antonio Espiritu Santo Rincon
Abstract The development of an automatic control system for a towing dynamometer used for testing is described in this paper. The process involved the deployment of new power electronics circuit boards, a TELMA retarder, instrumentation and a human machine interface (HMI) achieved through an open source platform. The purpose of this platform is to have a low cost system that allows further function development, data acquisition and communication with other devices. This system is intended as a novel solution that will allow closed loop and automated tests integrated with PCM data for engine calibration. It is projected to be part of a flexible calibration system with direct communication to the interfaces used during development (ATI, ETAS), which will be used to achieve lean test and development schedules.
2017-03-28
Technical Paper
2017-01-0519
Maziar Khosravi, Aadinath Harihar, Heinz Pitsch, Carsten Weber
Abstract The performance of modern boosted gasoline engines is limited at high loads by knock, stochastic Low Speed Pre-Ignition as well as megaknock. The main objective of the present work is to develop a predictive combustion model to investigate auto-ignition and megaknock events at high load conditions in gasoline engines. A quasi one-dimensional combustion simulation tool has been developed to model abnormal combustion events in gasoline engines using detailed chemical kinetics and a multi zone wall heat transfer model. The model features six boundary layers representing specific geometrical features such as liner and piston with individual wall temperatures and chemistry to accurately track the individual zone’s thermodynamic properties. The accuracy of the utilized auto-ignition and one-dimensional spark ignition combustion models was demonstrated by validating against experimental data.
2017-03-28
Journal Article
2017-01-0133
Bin Xu, Adamu Yebi, Simona Onori, Zoran Filipi, Xiaobing Liu, John Shutty, Paul Anschel, Mark Hoffman
Abstract This paper presents the transient power optimization of an organic Rankine cycle waste heat recovery (ORC-WHR) system operating on a heavy-duty diesel (HDD). The optimization process is carried on an experimentally validated, physics-based, high fidelity ORC-WHR model, which consists of parallel tail pipe and EGR evaporators, a high pressure working fluid pump, a turbine expander, etc. Three different ORC-WHR mixed vapor temperature (MVT) operational strategies are evaluated to optimize the ORC system net power: (i) constant MVT; (ii) constant superheat temperature; (iii) fuzzy logic superheat temperature based on waste power level. Transient engine conditions are considered in the optimization. Optimization results reveal that adaptation of the vapor temperature setpoint based on evaporation pressure strategy (ii) provides 1.1% mean net power (MNP) improvement relative to a fixed setpoint strategy (i).
2017-03-28
Journal Article
2017-01-1179
Tatsuya Arai, Ozaki Takashi, Kazuki Amemiya, Tsuyoshi Takahashi
Abstract Polymer electrolyte membrane fuel cell (PEFC) systems for fuel cell vehicles (FCVs) require both performance and durability. Carbon is the typical support material used for PEFC catalysts. However, hydrogen starvation at the anode causes high electrode potential states (e.g., 1.3 V with respect to the reversible hydrogen electrode) that result in severe carbon support corrosion. Serious damage to the carbon support due to hydrogen starvation can lead to irreversible performance loss in PEFC systems. To avoid such high electrode potentials, FCV PEFC systems often utilize cell voltage monitor systems (CVMs) that are expensive to use and install. Simplifying PEFC systems by removing these CVMs would help reduce costs, which is a vital part of popularizing FCVs. However, one precondition for removing CVMs is the adoption of a durable support material to replace carbon.
2017-03-28
Journal Article
2017-01-1184
Kiyoshi Handa, Shigehiro Yamaguchi, Kazuya Minowa, Steven Mathison
Abstract A new hydrogen fueling protocol named MC Formula Moto was developed for fuel cell motorcycles (FCM) with a smaller hydrogen storage capacity than those of light duty FC vehicles (FCV) currently covered in the SAE J2601 standard (over than 2kg storage). Building on the MC Formula based protocol from the 2016 SAE J2601 standard, numerous new techniques were developed and tested to accommodate the smaller storage capacity: an initial pressure estimation using the connection pulse, a fueling time counter which begins the main fueling time prior to the connection pulse, a pressure ramp rate fallback control, and other techniques. The MC Formula Moto fueling protocol has the potential to be implemented at current hydrogen stations intended for fueling of FCVs using protocols such as SAE J2601. This will allow FCMs to use the existing and rapidly growing hydrogen infrastructure, precluding the need for exclusive dispensers or stations.
2017-03-28
Technical Paper
2017-01-1187
Tatsuya Sugawara, Takuma Kanazawa, Naoki Imai, Yu Tachibana
Abstract This paper describes the motorized turbo compressor, which is a key technology for reducing the size of the fuel cell system for the Clarity Fuel Cell. The oxygen needed for fuel cell power generation is sent into the fuel cell by compressing the air from the atmosphere by a compressor. The conventionally used Lysholm compressor needed numerous sound absorbers, such as silencers and covers, to help achieve quietness when driving. Therefore, changing to a turbo compressor enhanced quietness and helped to eliminate or reduce the size of these auxiliary sound absorbers. Furthermore, a two-stage supercharging structure was used and the air pressure supplied to the fuel cell was increased to 1.7 times the previous air pressure. This increased the fuel cell power, which enabled to reduce the number of cells needed, and reduced the needed humidification amount which enabled to reduce the size of the humidifier. These enhancements helped to reduce the system size.
2017-03-28
Journal Article
2017-01-1182
Xin Guo, Xu Peng, Sichuan Xu
Abstract Startup from subzero temperature is one of the major challenges for polymer electrolyte membrane fuel cell (PEMFC) to realize commercialization. Below the freezing point (0°C), water will freeze easily, which blocks the reactant gases into the reaction sites, thus leading to the start failure and material degradation. Therefore, for PEMFC in vehicle application, finding suitable ways to reach successful startup from subfreezing environment is a prerequisite. As it’s difficult and complex for experimental studies to measure the internal quantities, mathematical models are the effective ways to study the detailed transport process and physical phenomenon, which make it possible to achieve detailed prediction of the inner life of the cell. However, review papers only on cold start numerical models are not available. In this study, an extensive review on cold start models is summarized featuring the states and phase changes of water, heat and mass transfer.
2017-03-28
Journal Article
2017-01-1183
Kenneth Johnson, Michael J. Veenstra, David Gotthold, Kevin Simmons, Kyle Alvine, Bert Hobein, Daniel Houston, Norman Newhouse, Brian Yeggy, Alex Vaipan, Thomas Steinhausler, Anand Rau
Abstract Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
2017-03-28
Journal Article
2017-01-0930
Christine K. Lambert, Timothy Chanko, Mark Jagner, Jon Hangas, Xin Liu, James Pakko, Carl Justin Kamp
Abstract To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash.
2017-03-28
Technical Paper
2017-01-0931
Michiel Van Nieuwstadt, Joseph Ulrey
Abstract While not commonly in production today, Gasoline Particulate Filters (GPFs) are likely to see widespread deployment to meet stringent EU6.2 and China particulate number (PN) standards. In many ways the operating conditions for GPFs are orthogonal to those of their diesel counterparts, and this leads to different and interesting requirements for the control strategy. We will present some generic system architectures for exhaust systems containing a GPF and will lay out an architecture for the GPF control strategy components which include: regeneration assist feature, soot estimation algorithm, GPF protection. The regeneration assist feature uses spark retard to increase exhaust temperature. The soot estimation algorithm describes how we can estimate soot from an open loop model or from a normalized pressure metric. The GPF protection feature controls oxygen flow to limit the soot burn rate.
2017-03-28
Journal Article
2017-01-0462
Marcel Meuwissen, Jippe Van Ruiten, Thijs Besseling, Robbert van Sluijs, Maik Broda, Brian Pearce, Fenton I. O'Shea
Abstract Fuel economy improvement efforts in engines have focused on reducing parasitic losses. This paper addresses the friction losses in the valve train chain drive system where about half of the losses is caused by the chain sliding on plastic guide and tensioner arm faces (Figure 1). Efforts have been made to reduce these friction losses by optimizing the chain link profile, the geometry of the guide and tensioner arm rails, and developments towards low friction materials. This paper describes the approach taken for the development of new low-friction chain tensioner arm plastic materials. The approach is characterized by building an understanding of the friction mechanisms and identifying the most critical material’s properties. A lab-scale test is used for a first assessment of the friction performance of materials. The correlation between this lab-scale test and the actual chain-on-tensioner arm application is discussed.
2017-03-28
Technical Paper
2017-01-0664
Mohd Asif, Karl Giles, Andrew Lewis, Sam Akehurst, Niall Turner
Abstract The causes of engine knock are well understood but it is important to be able to relate these causes to the effects of controllable engine parameters. This study attempts to quantify the effects of a portion of the available engine parameters on the knock behavior of a 60% downsized, DISI engine running at approximately 23 bar BMEP. The engines response to three levels of coolant flow rate, coolant temperature and exhaust back pressure were investigated independently. Within the tested ranges, very little change in the knock limited spark advance (KLSA) was observed. The effects of valve timing on scavenge flow and blow through (the flow of fresh air straight into the exhaust system during the valve overlap period) were investigated at two conditions; at fixed inlet/exhaust manifold pressures, and at fixed engine torque. For both conditions, a matrix of 8 intake/exhaust cam combinations was tested, resulting in a wide range of valve overlap conditions (from 37 to -53°CA).
2017-03-28
Technical Paper
2017-01-0686
Mohammed Jaasim Mubarak Ali, Francisco Hernandez Perez, S. Vedharaj, R. Vallinayagam, Robert Dibble, Hong Im
Abstract Pre-ignition in SI engine is a critical issue that needs addressing as it may lead to super knock event. It is widely accepted that pre-ignition event emanates from hot spot(s) that can be anywhere inside the combustion chamber. The location and timing of hotspot is expected to influence the knock intensity from a pre-ignition event. In this study, we study the effect of location and timing of hot spot inside the combustion chamber using numerical simulations. The simulation is performed using a three-dimensional computational fluid dynamics (CFD) code, CONVERGE™. We simulate 3-D engine geometry coupled with chemistry, turbulence and moving structures (valves, piston). G-equation model for flame tracking coupled with multi-zone model is utilized to capture auto-ignition (knock) and solve gas phase kinetics. A parametric study on the effect of hot spot timing and location inside the combustion chamber is performed.
2017-03-28
Journal Article
2017-01-0689
Gautam Kalghatgi, Ibrahim Algunaibet, Kai Morganti
Most studies on knock ignore the stochastic nature of knock and focus on the onset of knock which is determined by chemical kinetics. This paper focuses on knock intensity (KI) which is determined by the evolution of the pressure wave following knock onset in a hot spot and highlights the stochastic processes involved. KI is defined in this study as the maximum peak-to-peak pressure fluctuation that follows the onset of knock. It depends on ξ = (a/ua) where ua is the speed of the autoignition front and a is the speed of sound. When ua is small, KI can be related to the product of a parameter Z, which depends on Pko, the pressure at knock onset and the square of (∂x/∂T), which is the inverse of the gradient of temperature with distance in the hot spot. Both Z and (∂x/∂T) were calculated using measured KI and Pko for hundreds of individual knocking cycles for different fuels.
2017-03-28
Journal Article
2017-01-0799
Arjun Prakash, Chongming Wang, Andreas Janssen, Allen Aradi, Roger Cracknell
Modern spark ignition engines can take advantage of better fuel octane quality either towards improving acceleration performance or fuel economy via an active ignition management system. Higher fuel octane allows for spark timing advance and consequently higher torque output and higher engine efficiency. Additionally, engines can be designed with higher compression ratios if a higher anti-knock quality fuel is used. Due to historical reasons, Research Octane (RON) and Motor Octane Number (MON) are the metrics used to characterize the anti-knock quality of a fuel. The test conditions used to compute RON and MON correlated well with those in older engines designed about 20 years ago. But the correlation has drifted considerably in the recent past due to advances in engine infrastructures mainly governed by stringent fuel economy and emission standards.
2017-03-28
Journal Article
2017-01-0801
Keith Vertin, Brent Schuchmann, William Studzinski, Richard S. Davis, Thomas G. Leone, James E. Anderson, Asim Iqbal
Abstract Automakers are designing smaller displacement engines with higher power densities to improve vehicle fuel economy, while continuing to meet customer expectations for power and drivability. The specific power produced by the spark-ignited engine is constrained by knock and fuel octane. Whereas the lowest octane rating is 87 AKI (antiknock index) for regular gasoline at most service stations throughout the U.S., 85 AKI fuel is widely available at higher altitudes especially in the mountain west states. The objective of this study was to explore the effect of gasoline octane rating on the net power produced by modern light duty vehicles at high altitude (1660 m elevation). A chassis dynamometer test procedure was developed to measure absorbed wheel power at transient and stabilized full power operation. Five vehicles were tested using 85 and 87 AKI fuels.
2017-03-28
Technical Paper
2017-01-0810
Jan-Hendrik Redmann, Maik Beutler, Jennifer Kensler, Martin Luebbers, Roger Cracknell
Abstract In light of increasingly stringent CO2 emission targets, Original Equipment Manufacturers (OEM) have been driven to develop engines which deliver improved combustion efficiency and reduce energy losses. In spark ignition engines one strategy which can be used to reach this goal is the full utilization of fuel octane number. Octane number is the fuel´s knock resistance and is characterized as research octane number (RON) and motor octane number (MON). Engine knock is caused by the undesired self-ignition of the fuel air mixture ahead of the flame front initiated by the spark. It leads to pressure fluctuations that can severely damage the engine. Modern vehicles utilize different strategies to avoid knock. One extreme strategy assumes a weak fuel quality and, to protect the engine, retards the spark timing at the expense of combustion efficiency. The other extreme carefully detects knock in every engine cycle and retards the spark timing only when knock is detected.
2017-03-28
Journal Article
2017-01-1043
Yang Liu, Tian Tian
Abstract A new ring pack model has been developed based on the curved beam finite element method. This paper describes the first part of this model: simulating gas pressure in different regions above piston skirt and ring dynamic behavior of two compression rings and a twin-land oil control ring. The model allows separate grid divisions to resolve ring structure dynamics, local force/pressure generation, and gas pressure distribution. Doing so enables the model to capture both global and local processes at their proper length scales. The effects of bore distortion, piston secondary motion, and groove distortion are considered. Gas flows, gas pressure distribution in the ring pack, and ring structural dynamics are coupled with ring-groove and ring-liner interactions, and an implicit scheme is employed to ensure numerical stability. The model is applied to a passenger car engine to demonstrate its ability to predict global and local effects on ring dynamics and oil transport.
2017-03-28
Journal Article
2017-01-0881
Takumaru Sagawa, Seiichi Nakano, Yohei Bito, Yusuke Koike, Sachiko Okuda, Rika Suzuki
Abstract A low viscosity API SN 0W-16 engine oil was developed to achieve a 0.5% improvement in fuel efficiency over the current GF-5/API SN 0W-20 oil. Oil consumption and engine wear are the main roadblocks to the development of low viscosity engine oils. However, optimization of the base oil and additives successfully prevent oil consumption and wear. First, it was confirmed in engine tests that NOACK volatility is still an effective indicator of oil consumption even for a low viscosity grade like 0W-16. As a result of base oil volatility control, the newly developed oil achieves the same level of oil consumption as the current GF-5/API SN 0W-20 oil. Second, it was found that the base oil viscosity and molybdenum dithiocarbamate (MoDTC) had a significant effect on chain wear in rig testing that simulated silent chain wear. For the same base oil viscosity, the new oil maintains the same oil film thickness under high surface pressure.
2017-03-28
Journal Article
2017-01-1047
Yang Liu, Yuwei Li, Tian Tian
Abstract A new ring pack model has been developed based on the curved beam finite element method. This paper describes the second part of this model: simulating oil transport around the ring pack system (two compression rings and one twin-land oil control ring (TLOCR)) through the ring-liner interfaces by solving the oil film thickness on the liner. The ring dynamics model in Part 1 calculates the inter-ring gas pressure and the ring dynamic twist which are used in the ring-liner lubrication model as boundary conditions. Therefore, only in-plane conformability is calculated to obtain the oil film thickness on the liner. Both global process, namely, the structural response of the rings to bore distortion and piston tilt, and local processes, namely, bridging and oil-lube interaction, are considered. The model was applied to a passenger car engine.
Viewing 211 to 240 of 16433