Criteria

Text:
Display:

Results

Viewing 181 to 210 of 16633
2017-09-04
Technical Paper
2017-24-0133
Jelica Pavlovic, Alessandro Tansini, Georgios Fontaras, Biagio Ciuffo, Marcos Garcia Otura, Germana Trentadue, Ricardo Suarez Bertoa, Federico Millo
Abstract Plug-in Hybrid Electric Vehicles (PHEVs) are one of the main technology options for reducing vehicle CO2 emissions and helping vehicle manufacturers (OEMs) to meet the CO2 targets set by different Governments from all around the world. In Europe OEMs have introduced a number of PHEV models to meet their CO2 target of 95 g/km for passenger cars set for the year 2021. Fuel consumption (FC) and CO2 emissions from PHEVs, however, strongly depend on the way they are used and on the frequency with which their battery is charged by the user. Studies have indeed revealed that in real life, with poor charging behavior from users, PHEV FC is equivalent to that of conventional vehicles, and in some cases higher, due to the increased mass and the need to keep the battery at a certain charging level.
2017-09-04
Journal Article
2017-24-0097
Epaminondas Mastorakos, Patton Allison, Andrea Giusti, Pedro De Oliveira, Sotiris Benekos, Yuri Wright, Christos Frouzakis, Konstantinos Boulouchos
Abstract Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid.
2017-09-04
Journal Article
2017-24-0118
Marius Zubel, Stefan Pischinger, Benedikt Heuser
Abstract Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
2017-08-29
Journal Article
2017-01-9002
Abdul Hakim Siddique Miah, Stephen Morse, James Goddin, Gary Moore, Kevin M Morris, Jayne Rogers, Isabelle Delay-Saunders, Andrew Clifton, Jacquetta Lee
Abstract Within the aerospace industry there is a growing interest in evaluating and reducing the environmental impacts of products and related risks to business. Consequently, requests from governments, customers, manufacturers, and other interested stakeholders, for environmental information about aerospace products are becoming widespread. Presently, requests are inconsistent and this limits the ability of the aerospace industry to meet the informational needs of various stakeholders and reduce the environmental impacts of their products in a cost-effective manner. Energy consumption is a significant business cost, risk, and a simple proxy value for overall environmental impact. This paper presents the initial research carried out by an academic and industry consortium to develop standardised methods for calculating and reporting the embodied manufacturing energy content of aerospace products.
2017-08-25
Journal Article
2017-01-9381
Oliver M. Smith, Nga Nguyen, Ewan Delbridge, James Burrington, Binbin Guo, Jason Hanthorn, Yanshi Zhang
Abstract Increasing pressure to deliver vehicle fuel efficiency without compromising engine durability places significant demands on engine lubricants. The antiwear capability of the formulation is extremely important as wear on engine parts can lead to engine inefficiency. The rapidly advancing and diversifying array of engine architectures creates ever more arduous conditions under which lubricant additives must perform. The evolution of engine design brings with it the propensity for a variety of wear mechanisms to occur. This paper reports research conducted to rapidly collect key information from which to begin to conceive the design of better screening technologies. An exploration of wear mechanisms using simple bench-top experiments was conducted using a variety of lubricants. A lab based oil-aging technique was used to attempt to create an oil sample with wear properties mimiking those of real engine drains.
2017-08-25
Journal Article
2017-01-9382
Oliver M. Smith, Nga Nguyen, Ewan Delbridge, James Burrington, Binbin Guo, Jason Hanthorn, Yanshi Zhang
Abstract The global commitment to reduce CO2 emissions drives the automotive industry to create ever more advanced chemical and engineering systems. Better vehicle fuel efficiency is demanded which forces the rapid evolution of the internal combustion engine and its system components. Advancing engine and emission system technology places increasingly complex demands on the lubricant. Additive system development is required to formulate products capable of surpassing these demands and enabling further reductions in greenhouse gas emissions. This paper reports a novel method of generating fundamental structure-performance knowledge with real-world meaning. Traditional antiwear molecule performance mechanisms are explored and compared with the next generation of surface active additive system (SAAS) formulated with only Nitrogen, Oxygen, Carbon and Hydrogen (NOCH).
2017-08-18
Journal Article
2017-01-9377
Senthil Ramalingam, Silambarasan Rajendran
Abstract Biodiesel as an alternative diesel fuel prepared from vegetable oils or animal fats has attracted more and more attention because of its renewable and environmental friendly nature. Many recent studies shows that 20% proportion of biodiesel-diesel blend (B20) can substantially reduce the hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. However, there is a slight increase in NOx emission for B20 than that of diesel and it was a barrier to market expansion. The addition of antioxidant additives was the most effective method to mitigate the NOx emission. Hence, in this paper experimental investigation has been carried out to mitigate the NOx emission in Annona biodiesel (A20) operated diesel by addition of antioxidant additives. The antioxidant additives such as p-phenylenediamine, A-tocopherol acetate and L-ascorbic acid were used in the present investigation. In recent years Annona biodiesel has been considered as potential novel renewable energy source in India.
2017-08-18
Journal Article
2017-01-9378
Eric Kurtz, Christopher J. Polonowski
Abstract The design of modern diesel-powered vehicles involves optimization and balancing of trade-offs for fuel efficiency, emissions, and noise. To meet increasingly stringent emission regulations, diesel powertrains employ aftertreatment devices to control nitrogen oxides, hydrocarbons, carbon monoxide, and particulate matter emissions and use active exhaust warm-up strategies to ensure those devices are active as quickly as possible. A typical strategy for exhaust warm-up is to operate with retarded combustion phasing, limited by combustion stability and HC emissions. The amount of exhaust enthalpy available for catalyst light-off is limited by the extent to which combustion phasing can be retarded. Diesel cetane number (CN), a measure of fuel ignition quality, has an influence on combustion stability at retarded combustion phasing. Diesel fuel in the United States tends to have a lower CN (both minimum required and average in market) than other countries.
2017-08-11
Journal Article
2017-01-9379
John Thomas, Shean Huff, Brian West, Paul Chambon
Abstract Aggressive driving is an important topic for many reasons, one of which is higher energy used per unit distance traveled, potentially accompanied by an elevated production of greenhouse gases and other pollutants. Examining a large data set of self-reported fuel economy (FE) values revealed that the dispersion of FE values is quite large and is larger for hybrid electric vehicles (HEVs) than for conventional gasoline vehicles. This occurred despite the fact that the city and highway FE ratings for HEVs are generally much closer in value than for conventional gasoline vehicles. A study was undertaken to better understand this and better quantify the effects of aggressive driving, including reviewing past aggressive driving studies, developing and exercising a new vehicle energy model, and conducting a related experimental investigation.
2017-07-10
Technical Paper
2017-28-1934
Anil Thakur, Md Tauseef Alam, Venkatesh Kumar PS, P D Kulkarni, Senthur Pandian
Abstract Current high rating thermal loaded engines must have super-efficient lubrication system to provide clean oil at appropriate pressure and appropriate lube oil temperature to every part of the engine at all engine RPM speeds and loads. So oil pump not only have to satisfy above parameters but also it should be durable till engine life. Gerotor pumps are internal rotary positive-displacement pumps in which the outer rotor has one tooth more than the inner rotor. The gear profiles have a cycloidal shape. Both are meshed in conjugate to each other. Gerotor takes up engine power through crankshaft and deliver to various engine consumers at required pressure and required time. Over the complete engine rpm speed and loads range, oil pump need to perform efficiently to provide proper functioning of the engine.
2017-07-10
Technical Paper
2017-28-1954
Premkumarr Santhanamm, K. Sreejith, Avinash Anandan
A local and global environmental concern regarding automotive emissions has led to optimize the design and development of Power train systems for IC engines. Blow-by and Engine oil consumption is an important source of hydrocarbon and particulate emissions in modern IC engines. Great efforts have been made by automotive manufacturers to minimize the impact of oil consumption and blow-by on in-cylinder engine emissions. This paper describes a case study of how simulation played a supportive role in improving piston ringpak assembly. The engine taken up for study is a six cylinder, turbocharged, water cooled diesel engine with a peak firing pressure of 140 bar and developing a power output of 227 KW at 1500 rpm. This paper reveals the influence of stepped land, top groove angle, ring face profile, twist features with regard to tweaking of Blow-by & LOC. Relevant design inputs of engine parameters were provided by the customer to firm up the boundary conditions.
2017-07-10
Technical Paper
2017-28-1958
Jyothivel Giridharan, Gokul Kumar
Bio-fuels potentially represent a more environmentally friendly alternative to fossil fuels as they produce fewer greenhouse gas emissions when burned. Ethanol is one such bio-fuel alternative to the conventional fossil fuels. Towards the initiative of sustainable transportation using alternative fuels, it is attempted to develop an ethanol powered engine for commercial vehicles and this paper attempts to explain the 1D thermodynamic simulation carried out for predicting the engine performance and combustion characteristics, as a part of the engine development program. Engine simulation is becoming an increasingly important engineering tool for reducing the development cost and time and also helps in carrying out various DOE iterations which are rather difficult to be conducted experimentally in any internal combustion engine development program. AVL Boost software is used for modeling and simulation.
2017-07-10
Technical Paper
2017-28-1964
Rajaganesh Ramamoorthy, T. Venkatesan, R. Rajendran
Abstract Machining of materials has received significant consideration due to the increasing use of machining processes in various industrial applications. In machining, the heat generated in the cutting zone during machining is critical in deciding the work piece quality. Lubricants are widely used to reduce the heat generation. Their usage poses threat to environment and health hazards. Hence, there is a need to identify eco-friendly and user-friendly alternatives to conventional cutting fluids. Modern tribology has facilitated the use of solid lubricants such as graphite, calcium fluoride, molybdenum disulphide, and boric acid as an alternative to cutting fluids in machining. Solid lubricant assisted machining is an environmental friendly clean technology for improving the surface quality of the machined work piece.
2017-07-10
Technical Paper
2017-28-1963
Pavan Bharadwaja Bhaskar, S Srihari
Abstract In recent times control of emissions has been the major issue resulting strict emission norms. Oxides of nitrogen (NOx) reduction is a major concern over the years and diesel engine has big hand when compared to gasoline. Several promising techniques have been developed, homogeneous charge compression ignition (HCCI) is one of the effective ways to trim down the NOx emissions by keeping thermal efficiency identical to diesel engine. However, this concept lags in controlling CO and HC emissions. Methanol fuel blends are chosen as it significantly improves the combustion quality. Oxygen content in methanol drags attention as it can compensate HC and CO emissions caused by HCCI mode of combustion. In this work conventional diesel engine is converted into HCCI engine by mounting diesel vaporizer at inlet manifold to attain homogenous mixture. An experimental investigations have been carried out to analyse performance and emission characteristics using different methanol blends.
2017-07-10
Technical Paper
2017-28-1975
ANIL P M, K Nantha Gopal, B. Ashok
Abstract The present research deals with study of pongamia oil methyl ester as a lubricant by blending with anti-wear additive ZDDP. The experimental work carried in this work aims to investigates the friction and wear characteristics by blending zinc diakyldithio phosphates (ZDDP) with pongamia oil methyl ester as lubricant under various loading conditions and temperatures. The coefficient of friction and wear scar depth were determined using pongamia biodiesel blended with 0.3%, 0.6% and 1 % ZDDP by concentration through high frequency reciprocating wear testing machine for 2 h duration. The reciprocating wear tests were performed on an engine liner-piston ring contact under the loads of 40 N, 60 N and 80 N for 2 h duration at temperatures of 100°C, 125°C 150° C with 10 Hz oscillation frequency. The addition of ZDDP with pongamia biodiesel showed marginal reduction in friction coefficient and wear scar depth under all loads and temperatures.
2017-07-10
Technical Paper
2017-28-1921
Jyotirmoy Barman
Abstract Engine down speeding is rapidly picking up momentum in many segment of world market. Numerous engine down speeding packages from OEM have been tailored to take advantage of the increased efficiencies associated with engine down speeding. Running engine at lower rpm has numerous advantages. The most obvious of these is reduced fuel consumption, since the engine can spend more time running within its optimum efficiency range. By down speeding, the engine is made to run at low speeds and with high torques. For the same power, the engine is operated at higher specific load- Brake Mean Effective pressure (BMEP) which results in higher efficiency and reduced fuel consumption-Brake Specific Fuel Consumption (BSFC). The reasons for increased fuel efficiency are reduced engine friction due to low piston speeds, reduced relative heat transfer and increased thermodynamic efficiency.
2017-07-10
Technical Paper
2017-28-1957
Anant Parashar, Thangaraja Jeyaseelan
Oxygenated fuels like biodiesel and ethanol possess prominent characteristics as an alternative fuel for diesel engines. However, these fuels are corrosive in nature and hygroscopic. This might results in material incompatibility with the fuel supply system of an automobile. The filter consists of a filter membrane that that traps the contaminants from the fuel and prevents them from entering into the combustion chamber. The operational hours of the filter membrane depend on the quality of fuel employed. The conventional filter is designed for fossil diesel operation and hence the filter life might degrade earlier in the case of oxygenated fuels like biodiesel or ethanol. The proposed work focuses on the impact of oxygenated fuels, viz. karanja and ethanol blended karanja biodiesel on the filter membrane and its flow characteristics. Two tests, pressure difference and contaminant retention test are carried out in accordance with Japanese standard D1617:1998.
2017-06-29
Journal Article
2017-01-9280
Marco Braun, Johannes Palmer, Timo van Overbrueggen, Michael Klaas, Reinhold Kneer, Wolfgang Schroeder
Abstract The influence of in-cylinder flow on the propagation of 2-Butanone and Ethanol sprays is studied. To solely evaluate the interaction of air flow and fuel, high-speed Mie-Scattering Imaging of hollow cone sprays is conducted both in a single-cylinder optical engine with tumble movement and in a pressure vessel with negligible air flow. The direct comparison reveals an improved spray propagation of 2-Butanone due to the engine’s air flow. The lower viscosity of 2-Butanone causes an enhanced jet breakup compared to Ethanol such that the spray consists of more and smaller droplets. Small droplets possess a lower momentum, which allows the droplets to be more efficiently transported by the air flow. Consequently, the fuel distribution across the cylinder is enhanced. As the liquid fuel is distributed to a larger volume, improved convection accelerates evaporation.
2017-06-29
Journal Article
2017-01-9279
Davide Di Battista, Roberto Cipollone
Abstract The use of reciprocating internal combustion engines (ICE) dominates the sector of the on-road transportation, both for passengers and freight. CO2 reduction is the present technological driver, considering the major worldwide greenhouse reduction targets committed by most governments in the western world. In the near future (2020) these targets will require a significant reduction with respect to today’s goals, reinforcing the importance of reducing fuel consumption. In ICEs more than one third of the fuel energy used is rejected into the environment as thermal waste through exhaust gases. Therefore, a greater fuel economy could be achieved if this energy is recovered and converted into useful mechanical or electrical power on board. For long haul vehicles, which run for hundreds of thousands of miles per year at relatively steady conditions, this recovery appears especially worthy of attention.
2017-06-29
Journal Article
2017-01-9376
Alexander Weinebeck, Olivier Reinertz, Hubertus Murrenhoff
Abstract The cluster of excellence “Tailor-Made Fuels from Biomass” (TMFB) at RWTH Aachen University seeks to identify and investigate new potential biofuels and their production routes. To ensure a safe handling in common-rail systems the lubricity of future biofuels is part of the investigations. To further deepen the understanding of the behaviour of such fluids in the regime of boundary lubrication a group of twelve potential biofuels and systematically derived fluids was investigated by a modified version of the standardised High Frequency Reciprocating Rig test procedure for Diesel lubricity. Insufficient lubricity is observed for most biofuels whereas linear molecules with polar head groups provide good or very good lubrication. For all studied groups longer molecules provide better lubricities. The position of the functional group significantly influences the overall lubricity and impact of the carbon chain length.
2017-06-27
Journal Article
2017-01-9179
Mike Liebers, Dzmitry Tretsiak, Sebastian Klement, Bernard Bäker, Peter Wiemann
Abstract A vital contribution for the development of an environmental friendly society is improved energy efficiency in public transport systems. Increased electrification of these systems is essential to achieve the high objectives stated. Since the operating range of an electrical vehicle is heavily influenced of the available energy, which primarily is used for propulsion and thermal passenger comfort, all heat losses in the vehicle systems must be minimized. Especially for urban buses, the unwanted heat losses through open doors while passengers are boarding, have to be controlled. These energy fluxes are due to the large temperature gradients generated between in- and outdoor conditions and to install air-walls in the door opening areas have turned out to be a promising technical solution. Based on air-wall technologies used for climate control in buildings, this paper presents an experimental investigation on the reduction of heat losses in the door opening of urban buses.
2017-06-22
Technical Paper
2017-36-0045
Juliano Mologni, Jefferson Ribas, Cesareo Siqueira
Abstract We have seen recently in Brazil a significant number of medium and high voltage power cables falling on vehicles causing catastrophic accidents leading to serious injuries and deceases. It is advised that the car works as a shield so passengers inside the vehicle should not open doors and windows, but to the knowledge of the authors no work has presented a quantified study showing details like electromagnetic field intensity and 3D plots to really illustrate this situation. This work uses numerical simulation to replicate a scenario of a high power cable in direct contact with a vehicle and numerous positions of human body models inside and outside of the vehicle. Electromagnetic field is calculated showing the shielding effectiveness of the vehicle chassis. Also, current density are calculated to show the path of the current including the human body models.
2017-06-22
Technical Paper
2017-36-0047
Felipe Lima dos Reis Marques, Sender Rocha dos Santos, Mauro Fernando Basquera Junior, Thiago Chiachio do Nascimento, Raul Fernando Beck, Maria de Fátima Negreli Campos Rosolem, Ricardo Souza Figueiredo, Rogério Valentim Pereira
Abstract One main feature of the power demand profile is it varies time to time and its price changes accordingly. During the peak the less cost-effective and flexible power supplies must complement the base-load power plants in order to supply the power demand. Conversely, during the off-peak period when less electricity is consumed, those costly power plants can be stopped. This is a scenario which Energy Storage System (ESS) and photovoltaic (PV) generation plants could add flexibility and cost reduction to the customers and utilities. These aspects are only achieved due to the ESS, which enables the optimal use of energy produced by the photovoltaic modules through load management and discharge of the battery in the most convenient times.
2017-06-05
Journal Article
2017-01-1777
Thomas Wellmann, Kiran Govindswamy, Dean Tomazic
Abstract The automotive industry continues to develop new technologies aimed at reducing overall vehicle level fuel consumption. Powertrain and driveline related technologies will play a key role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Specifically, use of technologies such as downsized engines, idle start-stop systems, aggressive torque converter lock-up schedules, wide-ratio spread transmissions, and electrified propulsion systems are vital towards meeting aggressive fuel economy targets. Judicious combinations of such powertrain and driveline technology packages in conjunction with measures such as the use of low rolling resistance tires and vehicle lightweighting will be required to meet future OEM fleet CO2 targets. Many of the technologies needed for meeting the fuel economy and CO2 targets come with unique NVH challenges. In order to ensure customer acceptance of new vehicles, it is imperative that these NVH challenges be understood and solved.
2017-06-05
Technical Paper
2017-01-1801
Sivasankaran Sadasivam, Aditya Palsule, Ekambaram Loganathan, Nagasuresh Inavolu, Jaganmohan Rao Medisetti
Abstract Powertrain is the major source of noise and vibration in commercial vehicles and has significant contribution on both interior and exterior noise levels. It is vital to reduce the radiated noise from powertrain to meet customer expectations of vehicle comfort and to abide by the legislative noise requirements. Sound intensity mapping technique can identify the critical components of noise radiation from the powertrain. Sound intensity mapping has revealed that oil sump as one of the major contributors for radiated noise from powertrain. Accounting the effect of dynamic coupling of oil on the sump is crucial in predicting its noise radiation performance. Through numerical methods, some amount of work done in predicting the dynamic characteristics of structures filled with fluid.
2017-05-18
Journal Article
2017-01-9375
Lukas Moeltner, Lucas Konstantinoff, Verena Schallhart
Abstract The increasingly stringent emission legislation worldwide and the demand for independence from fossil energy carriers represent major challenges for the future development of diesel engines, particularly for maintaining the diesel engine’s positive characteristics, such as its dynamic driving performance and fuel economy, while drastically reducing emissions. This survey investigates alternative fuel blends used in a state-of-the-art EURO 6 diesel engine with different shares of biomass to liquid, hydrotreated vegetable oils and fatty acid methyl ester, which present a possibility to meet these requirements. In particular, the reduction of particulate matter and, as a result, the possibility to reduce nitrogen oxides emissions holds remarkable potential for the application of synthetic fuels in diesel engines. The investigated fuel blends generally demonstrate good applicability when used in the test engine with standard settings.
2017-05-10
Technical Paper
2017-01-1928
David Mumford, Dale Goudie, James Saunders
Globally, many jurisdictions are working toward greenhouse gas (GHG) emissions standards for medium- and heavy-duty vehicles that will take effect in the next decade and require GHG reductions of up to 25% from 2017 legislated levels. While diesel engines will require increasingly complex improvements, high pressure direct injection (HPDI) of natural gas can provide GHG reductions of approximately 20% (75% or more with renewable natural gas / bio-methane) while preserving the same power density, torque and performance as diesel. This paper will provide an overview of the improvements in the Westport™ HPDI 2.0 components as well as performance and emissions results demonstrated to-date. The potential and challenges of higher injection pressures will be explored while also investigating sources of and methods to eliminate methane venting on the vehicle.
2017-04-19
Technical Paper
2017-01-5000
Alexander Koder, Florian Zacherl, Hans-Peter Rabl, Wolfgang Mayer, Georg Gruber, Thomas Dotzer
Abstract An effective way to reduce greenhouse gas emissions (GHGs) is to use rurally produced straight jatropha oil as a substitute for diesel fuel. However, the different physical and chemical properties of straight vegetable oils (SVOs) require a customized setup of the combustion engine, particularly of the injection timing and quantity. Therefore, this study demonstrates the differences in the injection and combustion processes of jatropha oil compared to diesel fuel, particularly in terms of its compatibility with exhaust gas recirculation (EGR). A 2.2 l common-rail diesel engine with a two-stage turbocharging concept was used for testing. To examine the differences in injection rate shaping of diesel fuel and jatropha oil, the injector was tested with an injection rate analyzer using both the fuels. To investigate the combustion process, the engine was mounted at an engine test bench and equipped with a cylinder pressure indication system.
2017-04-11
Journal Article
2017-01-9075
Rami Abousleiman, Osamah Rawashdeh, Romi Boimer
Abstract Growing concerns about the environment, energy dependency, and the unstable fuel prices have increased the sales of electric vehicles. Energy-efficient routing for electric vehicles requires novel algorithmic challenges because traditional routing algorithms are designed for fossil-fueled vehicles. Negative edge costs, battery power and capacity limits, vehicle parameters that are only available at query time, alongside the uncertainty make the task of electric vehicle routing a challenging problem. In this paper, we present a solution to the energy-efficient routing problem for electric vehicles using ant colony optimization. Simulation and real-world test results demonstrate savings in the energy consumption of electric vehicles when driven on the generated routes. Real-world test results revealed more than 9% improvements in the energy consumption of the electric vehicle when driven on the recommended route rather than the routes proposed by Google Maps and MapQuest.
2017-04-11
Journal Article
2017-01-9178
Arash E. Risseh, Hans-Peter Nee, Olof Erlandsson, Klas Brinkfeldt, Arnaud Contet, Fabian Frobenius lng, Gerd Gaiser, Ali Saramat, Thomas Skare, Simon Nee, Jan Dellrud
The European Union’s 2020 target aims to be producing 20 % of its energy from renewable sources by 2020, to achieve a 20 % reduction in greenhouse gas emissions and a 20 % improvement in energy efficiency compared to 1990 levels. To reach these goals, the energy consumption has to decrease which results in reduction of the emissions. The transport sector is the second largest energy consumer in the EU, responsible for 25 % of the emissions of greenhouse gases caused by the low efficiency (<40 %) of combustion engines. Much work has been done to improve that efficiency but there is still a large amount of fuel energy that converts to heat and escapes to the ambient atmosphere through the exhaust system. Taking advantage of thermoelectricity, the heat can be recovered, improving the fuel economy.
Viewing 181 to 210 of 16633