Criteria

Text:
Display:

Results

Viewing 91 to 120 of 16604
2017-10-08
Journal Article
2017-01-2293
Jim Barker, Jacqueline Reid, Sarah Angel Smith, Colin Snape, David Scurr, Graham Langley, Krina Patel, Anastarsia Carter, Cris Lapthorn, Frank Pullen
Abstract Studies of diesel system deposits continue to be the subject of interest and publications worldwide. The introduction of high pressure common rail systems resulting in high fuel temperatures in the system with the concomitant use of fuels of varying solubilizing ability (e.g. ULSD and FAME blends) have seen deposits formed at the tip of the injector and on various internal injector components. Though deposit control additives (DCAs) have been successfully deployed to mitigate the deposit formation, work is still required to understand the nature and composition of these deposits. The study of both tip and internal diesel injector deposits (IDID) has seen the development of a number of bench techniques in an attempt to mimic field injector deposits in the laboratory. One of the most used of these is the Jet Fuel Thermal Oxidation Tester or JFTOT (ASTM D3241).
2017-10-08
Journal Article
2017-01-2299
Susumu Nagano, Nozomi Yokoo, Koji Kitano, Koichi Nakata
Abstract The effects of high boiling point fuel additives on deposits were investigated in a commercial turbocharged direct injection gasoline engine. It is known that high boiling point substances have a negative effect on deposits. The distillation end points of blended fuels containing these additives may be approximately 15°C higher than the base fuel (end point: 175°C). Three additives with boiling points between 190 and 196°C were examined: 4-tert-Butyltoluene (TBT), N-Methyl Aniline (NMA), and 2-Methyl-1,5-pentanediamine (MPD). Aromatics and anilines, which may be added to gasoline to increase its octane number, might have a negative effect on deposits. TBT has a benzene ring. NMA has a benzene ring and an amino group. MPD, which has no benzene ring and two amino groups, was selected for comparison with the former two additives.
2017-10-08
Journal Article
2017-01-2298
Charles S. Shanahan, S. Scott Smith, Brian D. Sears
Abstract The ubiquity of gasoline direct injection (GDI) vehicles has been rapidly increasing across the globe due to the increasing demand for fuel efficient vehicles. GDI technology offers many advantages over conventional port fuel injection (PFI) engines, such as improvements in fuel economy and higher engine power density; however, GDI technology presents unique challenges as well. GDI engines can be more susceptible to fuel injector deposits and have higher particulate emissions relative to PFI engines due to the placement of the injector inside the combustion chamber. Thus, the need for reliable test protocols to develop next generation additives to improve GDI vehicle performance is paramount. This work discloses a general test method for consistently fouling injectors in GDI vehicles and engines that can accommodate multiple vehicle/engine types, injector designs, and drive cycles, which allows for development of effective GDI fuel additives.
2017-09-23
Technical Paper
2017-01-2013
Zhe Xu
Abstract The rapid development of connected vehicle technology provides a promising platform for traffic monitoring and traffic data collection. In the connected vehicle environment, the vehicles equipped with wireless communication devices can transmit vehicle safety messages to other connected vehicles and the Roadside Unit (RSU). The trajectory information in the safety message may provide potential usage for macroscopic traffic states estimation in the urban street network. Over the last few years, the applications of a macroscopic traffic states model, the Macroscopic Fundamental Diagram (MFD) has attracted increased attention. However, the detection of MFD remains a challenging task. This paper explores a potential method of measuring the macroscopic traffic states in terms of MFD based on Vehicle-to-Infrastructure (V2I) connected vehicle data. The methodology of generating MFDs is conducted and the potential characteristics of the macroscopic traffic states are explored.
2017-09-23
Journal Article
2017-01-1983
Bing Zhu, Shude Yan, Jian Zhao, Weiwen Deng, Ning Bian
Abstract Electric power steering (EPS) system is a kind of dynamic control system for vehicle steering, which can amplify the driver steering torque inputs to the vehicle to improve steering comfortable and performance, but the present EPS can’t cater to the driving habits of different people. In this paper, a personalized EPS controller is designed based on the driver behavior, which combines real-time driver behavior identification strategy with personalized assistance characteristic. Firstly, the driver behavior data acquisition system is designed and established, based on which, the input data of different kinds of drivers along with vehicle signals are collected under typical working conditions, then the identification of driver behavior online is realized using the BP neural network.
2017-09-23
Technical Paper
2017-01-1990
Xiangyu huang, Hao Zhou
Abstract The most important role of V2X technology is to significantly enhance driving safety. This paper proposes an Omni-directional collision warning method based on vehicle to vehicle communication. With the Basic Safety Message (BSM), the driving states of vehicles which communicate with host vehicle can be obtained. The warnings are divided into two categories based on the Lateral Offset calculation: forward collision warning (FCW) for vehicles moving in the same direction and cross collision warning (CCW) for vehicles moving in different directions. For vehicles which moves in the same direction, the lateral offset of the two vehicles, the time to collision (TTC) and time headway (THW) are used to estimate forward collision risk. For vehicles which moves in different directions, time to the closest point approach (TCPA) model and the separating axis theorem (SAT) are used for cross collision detection.
2017-09-19
Technical Paper
2017-01-2136
Almuddin Rustum Sayyad, Pratik Salunke, Sangram Jadhav
The objective of this work is to optimize the operating parameters of the Direct Injection single cylinder (5.2 kw) CI engine with respect to Brake Thermal Efficiency (BTHE), Hydro carbons (HC) and Carbon dioxide (CO2). For this investigation, we used Simarouba Biodiesel as an alternate fuel for diesel fuel which possesses low cetane number which is not sufficient to operate existing diesel engine. However, this could be combined with the diesel fuel in the form of blends. For this investigation four levels and four parameters were selected viz. Injection Pressure (IP), Fuel Fraction (FF), Compression Ratio (CR) and Injection Timing (Before TDC). Taguchi Method is used for minimizing the number of experiments and Multiple Regression Analysis is used to find the optimum condition. Three outputs variables such as; Brake Thermal Efficiency (BTHE), content of HC particles and CO2 in the emission are measured and considered its influence on CI Engine performance.
2017-09-19
Technical Paper
2017-01-2135
Alex Thirkell, Rui Chen, Ian Harrington
Electrification of aircraft is on track to be a future key design principal due to the increasing pressure on the aviation industry to significantly reduce harmful emissions by 2050 and the increased use of electrical equipment. This has led to an increased focus on the research and development of alternative power sources for aircraft, including fuel cells. These alternative power sources could either be used to provide propulsive power or as an Auxiliary Power Unit (APU). Previous studies have considered isolated design cases where a fuel cell system was tailored for their specific application. To accommodate for the large variation between aircraft, this study covers the design of an empirical model, which will be used to size a fuel cell system for any given aircraft based on basic design parameters. The model was constructed utilising aircraft categorisation, fuel cell sizing and balance of plant sub-models.
2017-09-19
Technical Paper
2017-01-2137
Dnyaneshwar V. Kadam, Sangram D. Jadhav
Vibration is the most considerable factor in dynamics of machinery. Vibration causes unfavorable effects on engine components and may reduce the life of engine. The conventional fossil fuel sources are limited in the world. The dependency on diesel should be reduced by using biodiesel as an alternative fuel in next few years. The input parameters are affected on engine performance and emission. The present study mainly focuses on an optimization of vibrations, performance and emission using Taguchi and multiple regression analysis for biodiesel as a fuel. The test was performed on single cylinder, four-stroke, diesel engine with VCR. Taguchi method is used to prepare the design of experiment of L16 array for minimizing number of experiments and multiple regression analysis for finding the best relationship between the input and output parameters. The selected input parameters are: fuel fraction, compression ratio, injection pressure and injection timing.
2017-09-19
Technical Paper
2017-01-2037
Daniel Schlabe, Dirk Zimmer, Alexander Pollok
The thermal inertia of aircraft cabins and galleys is significant for commercial aircraft. The aircraft cabin is controlled by the Environment Control System (ECS) to reach, among other targets, a prescribed temperature. Allowing a temperature band of e.g. 2 K around the prescribed temperature, it is possible to use the cabin dynamics as an energy storage. This storage can then be used to reduce electrical peak power, increase efficiency of ECS, reduce thermal cooling peak power, or reduce engine offtake if it is costly or not sufficiently available. In the same way, also the aircraft galleys can be exploited. Since ECS and galleys are among the largest consumers of electrical power or bleed air, there is a large potential on improving energy efficiency or reducing system mass to reduce fuel consumption of aircraft. This paper investigates different exploitation strategies of cabin and galley dynamics using modelling and simulation.
2017-09-19
Technical Paper
2017-01-2034
Bailey Hall, Benjamin Palmer, Tyler Milburn, Luis Herrera, Bang Tsao, Joseph Weimer
Abstract Future aircraft will demand a significant amount of electrical power to drive primary flight control surfaces. The electrical system architecture needed to source these flight critical loads will have to be resilient, autonomous, and fast. Designing and ensuring that a power system architecture can meet the load requirements and provide power to the flight critical buses at all times is fundamental. In this paper, formal methods and linear temporal logic are used to develop a contactor control strategy to meet the given specifications. The resulting strategy is able to manage multiple contactors during different types of generator failures. In order to verify the feasibility of the control strategy, a real-time simulation platform is developed to simulate the electrical power system. The platform has the capability to test an external controller through Hardware in the Loop (HIL).
2017-09-19
Technical Paper
2017-01-2033
Minh-khoa. Lam, Christopher Buterhaugh, Luis Herrera, Bang Tsao
Abstract The amount of electrical power required for future aircraft is increasing significantly. In this paper, a comprehensive model of a drive shaft with multiple degrees of freedom was developed and integrated to detailed engine and electrical network models to study the impact of higher electrical loads. The overall system model is composed of the engine, shafts, gearbox, and the electric network. The Dynamic Dual Spool High Bypass JT9D engine was chosen for this study. The engine was modeled using NASA’s T-MATS (Toolbox for the Modeling and Analysis of Thermodynamic Systems) software. In the electrical side, one generator was connected to the Low Pressure (LP) shaft and the other to the High Pressure (HP) shaft. A modified model of the shafts between the engine and the accessory gearbox was created.
2017-09-19
Technical Paper
2017-01-2035
Eric C. Bauer, Nima Niassati, John Brothers, John Troth, Jeff Hensal, Jin Wang, Daniel Schweickart, Dennis Grosjean
Abstract As applications in aerospace, transportation and data centers are faced with increased electric power consumption, their dc operating voltages have increased to reduce cable weight and to improve efficiency. Electric arcs in these systems still cause dangerous fault conditions and have garnered more attention in recent years. Arcs can be classified as either low impedance or high impedance arcs and both can cause insulation damage and fires. Low impedance arcs release lots of energy when high voltage becomes nearly shorted to ground. High impedance arcs can occur when two current-carrying electrodes are separated, either by vibration of a loose connection or by cables snapping. The high impedance arc decreases load current due to a higher equivalent load impedance seen by the source. This complicates the differentiation of a high impedance arc fault from normal operation.
2017-09-19
Technical Paper
2017-01-2017
Catherine Ninah, Brian Strevens, Cole Barcia, Isabelle Labbe, Michael Frenna, Austin Faulconer, Keon Habbaba, Katherine Loundy, Louis Schaefer, Alexa Frost, Andrew Foran, Robert Brown, Luis Rabelo
National Aeronautics and Space Administration (NASA) is preparing for a manned mission to Mars to test the sustainability of civilization on the planet Mars. Our research explores the requirements and feasibility of autonomously producing fuel on Mars for a return trip back to Earth. As a part of NASA’s initiative for a manned trip to Mars, our team’s work creates and analyzes the allocation of resources necessary in deploying a fuel station on this foreign soil. Previous research has addressed concerns with a number individual components of this mission such as power required for fuel station and tools; however, the interactions between these components and the effects they would have on the overall requirements for the fuel station are still a mystery to NASA. By creating a baseline discrete-event simulation model in a simulation software called Simio, the research team has been able to replicate the fuel production process on Mars.
2017-09-19
Technical Paper
2017-01-2022
Katherine Loundy, Louis Schaefer, Andrew Foran, Catherine Ninah, Khristopher Bandong, Robert Brown, Hunter Heston, John-Paul Steed, William Young, Mark Heinrich, Luis Rabelo
The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an un-manned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
2017-09-19
Technical Paper
2017-01-2026
Narayanan Komerath, Shravan Hariharan, Dhwanil Shukla, Sahaj Patel, Vishnu Rajendran, Emily Hale
Our concept studies have indicated that a set of reflectors floated at high altitudes and supported by aerodynamic lift, can reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of global warming, is well within the financial abilities of the world. This paper describes one of the concepts for such reflectors. The basic element of a reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled fixed flying wing aircraft. The altitude rises above 30,480 meters (100,000 feet) in the daytime and does not sink below 28,288 meters (60,000 feet or Flight Level FL60) at night. While the reflector sheet easily supports its own weight with very small lift coefficient, the skin friction and induced drag components are large.
2017-09-19
Technical Paper
2017-01-2028
Steven Nolan, Patrick Norman, Graeme Burt, Catherine Jones
Turbo-electric distributed propulsion (TeDP) for aircraft allows for the complete redesign of the airframe so that greater overall fuel and emissions benefits can be achieved. Whilst conventional electrical power systems may be used for smaller aircraft, much larger aircraft are likely to require the use of superconducting electrical power systems to enable the required whole system power density and efficiency levels to be achieved. The TeDP concept requires an effective electrical fault management and protection system. However, the fault response of a superconducting TeDP power system and its components has not been well studied to date, limiting the effective capture of associated protection requirements. For example, with superconducting systems it is the possible that a hotspot is formed on one of the components, such as a cable. This can result in one subsection, rather than all, of a cable quenching.
2017-09-19
Technical Paper
2017-01-2031
Nisha Kondrath, Dalvir Saini, Nathaniel Smith
In aerospace applications, it is important to have efficient, small, affordable, and reliable power conversion units with high power density to supply a wide range of loads. Use of wide-band gap devices, such as Silicon Carbide (SiC) and Gallium Nitride (GaN) devices, in power electronic converters is expected to reduce the device losses and needs for extensive thermal management systems in power converters, as well as facilitate high-frequency operation, thereby reducing the passive component sizes and increasing the power density. A novel hybrid SiC-GaN based full-bridge dc-dc buck converter with improved efficiency for high power applications will be presented in this paper. With the current device manufacturing technology, GaN devices can only handle breakdown voltages up to 650 V, while SiC devices can handle up to 1200 V. GaN devices exhibit remarkable switching performance compared to SiC devices.
2017-09-19
Technical Paper
2017-01-2032
Nisha Kondrath
Efficient, small, and reliable dc-dc power converters with high power density are highly desirable in applications such as aerospace and electric vehicles, where battery storage is limited. Bidirectional full-bridge (FB) dc-dc converters are very popular in medium and high-power applications requiring regenerative capabilities. Full-bridge topology has several advantages such as: • Inherent galvanic isolation between input and output and high conversion ratio due to the transformer with a turns ratio n. • Reduction in passive component sizes due to the increase in inductor current frequency to twice the switching frequency. • Reduced voltage stresses on the low-voltage side switches and current stresses on the high-voltage side switches. However, due to the high number of switches, device losses increase.
2017-09-19
Technical Paper
2017-01-2062
Tushar Choudhary, Mithilesh Sahu, Shreya KRISHNA
Solid oxide fuel cell (SOFC) is the most promising candidate for utilization of waste generated from the GT based power system. By coupling SOFC with gas turbine (GT) based power system, a hybrid SOFC–GT power system has been developed and the thermal efficiency of the system can be enhanced upto 70-85%. This paper focuses of thermodynamic analysis of an internal reformed solid oxide fuel cell which is integrated with the gas turbine cycle to form a hybrid power generation system for an unmanned aerial vehicle (UAV) with a long range. Thermodynamic 1st and 2nd law, parametric analysis has been carried out and the effect of various parameters such as compressor pressure ratio, turbine inlet temperature, air flow rate has been examined. In order to validate the results, present work has been compared with the available literature and it shows good agreement.
2017-09-19
Journal Article
2017-01-2036
William Schley
Abstract Of all aircraft power and thermal loads, flight controls can be the most challenging to quantify because they are highly variable. Unlike constant or impulsive loads, actuator power demands more closely resemble random processes. Some inherent nonlinearities complicate this even further. Actuation power consumption and waste heat generation are both sensitive to input history. But control activity varies considerably with mission segment, turbulence and vehicle state. Flight control is a major power consumer at times, so quantifying power demand and waste heat is important for sizing power and thermal management system components. However, many designers sidestep the stochastic aspects of the problem initially, leading to overly conservative system sizing. The overdesign becomes apparent only after detailed flight simulations become available. These considerations are particularly relevant in trade studies comparing electric versus hydraulic actuation.
2017-09-17
Journal Article
2017-01-2480
Roberto Dante, Andrea Sliepcevich, Marco Andreoni, Mario Cotilli
Abstract Tin sulfides (SnS and SnS2), represent a safer and greener alternative to other metal sulfides such as copper sulfides, and MoS2 etc. Their behavior is usually associated to that of solid lubricants such as graphite. A mixture of tin sulfides, with the 65 wt% of SnS2, has been characterized by scanning electron microscopy and by thermal gravimetric analysis (TGA). In order to investigate the effect of tin sulfides upon two crucial friction material ingredients, two mixtures were prepared: the former was made by mixing tin sulfides with a natural flake graphite and the latter was made mixing tin sulfides with a straight novolak. They were analyzed by TGA and differential thermal analysis (DTA) in both nitrogen and air. Some interferences were detected between tin sulfides and graphite in air.
2017-09-04
Technical Paper
2017-24-0078
R. Vallinayagam, S. Vedharaj, Yanzhao An, Alaaeldin Dawood, Mohammad Izadi Najafabadi, Bart Somers, Junseok Chang, Mani Sarathy, Bengt Johansson
Abstract Light naphtha is the light distillate from crude oil and can be used in compression ignition (CI) engines; its low boiling point and octane rating (RON = 64.5) enable adequate premixing. This study investigates the combustion characteristics of light naphtha (LN) and its multicomponent surrogate under various start of injection (SOI) conditions. LN and a five-component surrogate for LN, comprised of 43% n-pentane, 12% n-heptane, 10% 2-methylhexane, 25% iso-pentane and 10% cyclo-pentane, has been tested in a single cylinder optical diesel engine. The transition in combustion homogeneity from CI combustion to homogenized charge compression ignition (HCCI) combustion was then compared between LN and its surrogate. The engine experimental results showed good agreement in combustion phasing, ignition delay, start of combustion, in-cylinder pressure and rate of heat release between LN and its surrogate.
2017-09-04
Technical Paper
2017-24-0082
Muhammad Umer Waqas, Nour Atef, Eshan Singh, Jean-Baptiste MASURIER, Mani Sarathy, Bengt Johansson
Abstract The blending of ethanol with PRF (Primary reference fuel) 84 was investigated and compared with FACE (Fuels for Advanced Combustion Engines) A gasoline surrogate which has a RON of 83.9. Previously, experiments were performed at four HCCI conditions but the chemical effect responsible for the non-linear blending behavior of ethanol with PRF 84 and FACE A was not understood. Hence, in this study the experimental measurements were simulated using zero-dimensional HCCI engine model with detailed chemistry in CHEMKIN PRO. Ethanol was used as an octane booster for the above two base fuels in volume concentration of 0%, 2%, 5% and 10%. The geometrical data and the intake valve closure conditions were used to match the simulated combustion phasing with the experiments. Low temperature heat release (LTHR) was detected by performing heat release analysis.
2017-09-04
Technical Paper
2017-24-0080
Ross Ryskamp, Gregory Thompson, Daniel Carder, John Nuszkowski
Abstract Reactivity controlled compression ignition (RCCI) is a form of dual-fuel combustion that exploits the reactivity difference between two fuels to control combustion phasing. This combustion approach limits the formation of oxides of nitrogen (NOX) and soot while retaining high thermal efficiency. The research presented herein was performed to determine the influences that high reactivity (diesel) fuel properties have on RCCI combustion characteristics, exhaust emissions, fuel efficiency, and the operable load range. A 4-cylinder, 1.9 liter, light-duty compression-ignition (CI) engine was converted to run on diesel fuel (high reactivity fuel) and compressed natural gas (CNG) (low reactivity fuel). The engine was operated at 2100 revolutions per minute (RPM), and at two different loads, 3.6 bar brake mean effective pressure (BMEP) and 6 bar BMEP.
2017-09-04
Technical Paper
2017-24-0083
Hassan Khatamnejad, Shahram Khalilarya, Samad Jafarmadar, Mostafa Mirsalim, Mufaddel Dahodwala
Abstract RCCI strategy gained popularity in automotive applications due to lower fuel consumption, less emissions formation and higher engine performance in compared with other diesel combustion strategies. This study presents results of an experimental and numerical investigation on RCCI combustion using natural gas as a low reactivity premixed fuel with advanced injection of diesel fuel as a high reactivity fuel in a CI engine. An advanced three dimensional CFD simulation coupled with chemical kinetic developed to examine the effects of diesel injection timing, diesel/natural gas ratio and diesel fuel included spray angle on combustion and emissions formation in various engine loads and speeds, in a heavy duty diesel engine.
2017-09-04
Technical Paper
2017-24-0086
Yanzhao An, S. Vedharaj, R. Vallinayagam, Alaaeldin Dawood, Jean-Baptiste MASURIER, Mohammad Izadi Najafabadi, Bart Somers, Junseok Chang, Bengt Johansson
Abstract The objective of this study was to investigate the effect of aromatic on combustion stratification and particulate emissions for PRF60. Experiments were performed in an optical CI engine at a speed of 1200 rpm for TPRF0 (100% v/v PRF60), TPRF20 (20% v/v toluene + 80% PRF60) and TPRF40 (40% v/v toluene + 60% PRF60). TPRF mixtures were prepared in such a way that the RON of all test blends was same (RON = 60). Single injection strategy with a fuel injection pressure of 800 bar was adopted for all test fuels. Start of injection (SOI) was changed from early to late fuel injection timings, representing various modes of combustion viz HCCI, PPC and CDC. High-speed video of the in-cylinder combustion process was captured and one-dimensional stratification analysis was performed from the intensity of images. Particle size, distribution and concentration were measured and linked with the in-cylinder combustion images.
2017-09-04
Technical Paper
2017-24-0087
Maxime Pochet, Ida Truedsson, Fabrice Foucher, Hervé Jeanmart, Francesco Contino
Abstract Ammonia and hydrogen can be produced from water, air and excess renewable electricity (Power-to-fuel) and are therefore a promising alternative in the transition from fossil fuel energy to cleaner energy sources. An Homogeneous-Charge Compression-Ignition (HCCI) engine is therefore being studied to use both fuels under a variable blending ratio for Combined Heat and Power (CHP) production. Due to the high auto-ignition resistance of ammonia, hydrogen is required to promote and stabilize the HCCI combustion. Therefore the research objective is to investigate the HCCI combustion of varying hydrogen-ammonia blending ratios in a 16:1 compression ratio engine. A specific focus is put on maximizing the ammonia proportion as well as minimizing the NOx emissions that could arise from the nitrogen contained in the ammonia.
2017-09-04
Technical Paper
2017-24-0089
S. Vedharaj, R. Vallinayagam, Yanzhao An, Alaaeldin Dawood, Mohammad Izadi Najafabadi, Bart Somers, Junseok Chang, Bengt Johansson
Abstract The literature study on PPC in optical engine reveals investigations on OH chemiluminescence and combustion stratification. So far, mostly PRF fuel is studied and it is worthwhile to examine the effect of fuel properties on PPC. Therefore, in this work, fuel having different octane rating and physical properties are selected and PPC is studied in an optical engine. The fuels considered in this study are diesel, heavy naphtha, light naphtha and their corresponding surrogates such as heptane, PRF50 and PRF65 respectively. Without EGR (Intake O2 = 21%), these fuels are tested at an engine speed of 1200 rpm, fuel injection pressure of 800 bar and pressure at TDC = 35 bar. SOI is changed from late to early fuel injection timings to study PPC and the shift in combustion regime from CI to PPC is explored for all fuels. An increased understanding on the effect of fuel octane number, physical properties and chemical composition on combustion and emission formation is obtained.
2017-09-04
Technical Paper
2017-24-0091
Hyun Woo Won, Alexandre Bouet, Joseph KERMANI, Florence Duffour
Abstract Reducing the CO2 footprint, limiting the pollutant emissions and rebalancing the ongoing shift demand toward middle-distillate fuels are major concerns for vehicle manufacturers and oil refiners. In this context, gasoline-like fuels have been recently identified as good candidates. Straight run naphtha, a refinery stream derived from the atmospheric crude oil distillation process, allows for a reduction of both NOx and particulate emissions when used in compression-ignition engines. CO2 benefits are also expected thanks to naphtha’s higher H/C ratio and energy content compared to diesel. In previous studies, wide ranges of Cetane Number (CN) naphtha fuels have been evaluated and CN 35 naphtha fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern, nozzle design and air-path technology, have been performed on a light-duty single cylinder compression-ignition engine.
Viewing 91 to 120 of 16604