Criteria

Text:
Display:

Results

Viewing 61 to 90 of 16434
2017-03-28
Technical Paper
2017-01-0756
Zhenkuo Wu, Christopher Rutland, Zhiyu Han
Abstract Natural gas is a promising alternative fuel for internal combustion engines due to its rich reserves and low price, as well as good physical and chemical properties. Its low carbon structure and high octane number are beneficial for CO2 reduction and knock mitigation, respectively. Diesel and natural gas dual fuel combustion is a viable pathway to utilize natural gas in diesel engines. To achieve high efficiency and low emission combustion in a practical diesel engine over a wide range of operating conditions, understanding the performance responses to engine system parameter variations is needed. The controllability of two combustion strategies, diesel pilot ignition (DPI) and single injection reactivity controlled compression ignition (RCCI), were evaluated using the multi-dimension CFD simulation in this paper.
2017-03-28
Technical Paper
2017-01-0758
Yaopeng Li, Ming Jia, Yachao Chang, Guangfu Xu
Abstract Multi-dimensional models coupled with a reduced chemical mechanism were used to investigate the effect of fuel on exergy destruction fraction and sources in a reactivity controlled compression ignition (RCCI) engine. The exergy destruction due to chemical reaction (Deschem) makes the largest contribution to the total exergy destruction. Different from the obvious low temperature heat release (LTHR) behavior in gasoline/diesel RCCI, methanol has a negative effect on the LTHR of diesel, so the exergy destruction accumulation from LTHR to high temperature heat release (HTHR) can be avoided in methanol/diesel RCCI, contributing to the reduction of Deschem. Moreover, the combustion temperature in methanol/diesel RCCI is higher compared to gasoline/diesel RCCI, which is also beneficial to the lower exergy destruction fraction. Therefore, the exergy destruction of methanol/diesel RCCI is lower than that of gasoline/diesel RCCI at the same combustion phasing.
2017-03-28
Technical Paper
2017-01-1027
Yang Wang, Lixia Wei, Guorui Jia, Mingfa Yao
Abstract On-board fuel reforming offers a prospective clean combustion mode for the engines. The flexible cylinder engine strategy (FCE) is a new kind of such mode. In this paper, the combustion of the primary reference fuel of PRF90 was theoretically investigated in a homogeneous charge compression ignition engine to validate the FCE mode, mainly focusing on the ignition delay time, the flame speed, and the emissions. The simulations were performed by using the CHEMKIN2.0 package to demonstrate the fuel reforming process in the flexible cylinder, the cooling effect on the reformed products, and the combustions of the mixture of the fresh fuel and the reformed products in the normal cylinders. It was found that the FCE mode decreased the ignition delay time of the fuel by about 35 crank angles at a typical engine condition.
2017-03-28
Technical Paper
2017-01-1012
Sunil Kumar Pathak, Vineet sood, Yograj Singh, Salim Abbasbhai Channiwala
Abstract In developing countries like India, large numbers of portable gensets are used as a power source due to the scarcity of grid power supply. The portable gensets, ranging from 0.5 kW to 5 kW are very popular in the residential areas, for example, small restaurants, and shopping complexes, etc. These gensets are using various fuels like gasoline, diesel, LPG, and kerosene in small internal combustion engines. Such engines are the significant source of air pollution, as these are running in the vicinity of populated areas and higher human exposure to these pollutants.Theses gensets are regulated by exhaust and noise emissions norms, set by statutory bodies like the ministry of environment and forest and central pollution control board of India.
2017-03-28
Technical Paper
2017-01-1081
Chongzhi Zhong, Tieqiang Fu, Chunbei Dai, Taiyu Zhang, Ke Wu, Wangwen Gu
Abstract In order to study the single cavity and double cavity canister work performance, the L/D, as well as the similarities and differences among the diameter of the adsorption mouth, purge mouth and air mouth have been studied. At the same time, the work performance of ORVR canister and common canister is also studied. The results demonstrate that the similar of L/D, efficient work ability and efficient adsorption rate of the double cavity canister is better than the single cavity canister. The bigger of L/D, the stronger work ability of the canister. However, the excessive increase of the L/D is not conducive to the canister desorption, instead resulting in the increase of RARCP. The adsorption mouth diameter of common canister is generally smaller or similar to the purge mouth, while for ORVR canister the adsorption mouth diameter is bigger than the purge mouth and similar to air mouth.
2017-03-28
Technical Paper
2017-01-1083
Chawin Chantharasenawong
Abstract This study focuses on achieving a lower overall lap time at SAE Formula Student competition through a modification to the standard intake system. The lower lap time is achieved by widening the range of engine RPM which produces torque higher than 90% of the maximum value and lowering the engine RPM corresponding to the maximum torque. An intake system with ‘variable runner length’ is introduced to the 2015 racecar of KMUTT team. The values of intake lengths are determined from the wave equation with the goal of producing over 90% of the maximum torque of the baseline configuration over a range of engine RPM. Computer simulations are performed to determine the pressure at engine entry at various runner lengths. Finally, a prototype variable runner length intake system with linear motor actuators is constructed and installed on the racecar. Chassis dynamometer tests are performed to determine the engine torque for 3,000 – 10,500 RPM at all interested runner lengths.
2017-03-28
Technical Paper
2017-01-1087
Pengfei Zang, Zhe Wang, Yu Fu, Chenle Sun
Abstract The Linear Internal Combustion Engine-Linear Generator Integrated System (LICELGIS) is different from conventional crank-based engine for reducing frictional losses by eliminating the crankshaft. Thus, the LICELGIS piston stroke is not constrained geometrically and the system compression ratio is variable. During steady-state operation, the LICELGIS converts the fuel chemical energy into electric power with piston assembly reciprocating motion, which can be used as a range-extender in hybrid electric vehicles. The LICELGIS scavenging process is prerequisite and key for the system steady-state operation, which has remarkable influence on mixture gas and, eventually, on engine combustion performance. In order to achieve high scavenging performance, a LICELGIS is investigated in this paper. The LICELGIS motion characteristics and scavenging process were analyzed.
2017-03-28
Technical Paper
2017-01-1078
Walid Ashraf, Sherif Khedr, Aya Diab, Hashim Elzaabalawy
Abstract A throttle valve is one of the main components of the intake system of a vehicle and is used to control the air flow rate into the combustion chamber at different engine speeds. Consequently, it has considerable effect on the engine power and performance especially at high engine speeds. The butterfly throttle valve is more common in commercial vehicles due to its simplicity. However, the butterfly throttle plate may affect the engine performance by incurring some pumping losses at high engine speeds even with the plate at wide open throttle (WOT) position. Hence it is proposed in this research work to replace and compare the performance of a spark ignition engine butterfly throttle valve to a newly designed barrel-shaped one with regards to the induced air mass flow rate. The main benefit of the proposed barrel-shaped throttle valve is the elimination of the flow restriction at WOT and high engine speeds.
2017-03-28
Technical Paper
2017-01-1079
Suresh Kumar Kandreegula, Sayak Mukherjee, Rahul Jain, Shivdayal Prasad, Kamal Rohilla
Abstract Flex Connectors are intended for mitigating the relative movement of exhaust system components along the axis of the system arising from the thermal expansion due to intermittent engine operation. Flex connectors must not be installed in locations, where they will be subjected to destructive vibration. Hence, the stiffness of the flex connector plays an important role, while designing or selecting the right design. It consists of a multi-ply bellows combined with an inside and an outside steel braid. The liner is included to reduce the temperature of the bellows and improve flow conditions. The braid is included for mechanical protection and to limit the possible extension of the joint. It has only axial translational motion.
2017-03-28
Technical Paper
2017-01-1076
Mohammad Moetakef, Abdelkrim Zouani, Esra Demren
Abstract In this presentation, two cases of CAE simulations of oil pump-induced tonal noises are presented. The first case involves oil pump-induced whine in an I4engine during coast down. The second case addresses oil pan moan during hot idle and the effect of oil pump pick-up tube positioning inside the oil pan of an I5 engine. The investigations include several design modifications to the pump and the pick-up tube to prevent the tonal noise. Test data are also included to demonstrate the accuracy of the CAE simulation.
2017-03-28
Technical Paper
2017-01-1077
Nicolas Arnault, Nicolas Batailley, Arnaud Maria, Laurent Bechu
Abstract PSA Group, SOLVAY and SOGEFI have teamed-up to produce the first Plastic Diesel Fuel Filter fully made of recycled polyamide 66, ready for mass-production. This has been achieved by using the brand new plastic compound developed by SOLVAY Engineering Plastics. This material is 100% recycled from airbag wastes, providing a premium material able to stand demanding applications requirements supplied through circular economy, which is quite unusual in automotive industry yet. SOGEFI has used this material through its existing plastic injection process, and tested the parts on extensive bench validation tests. It confirmed that this material is fully compatible with standard injection process, and that all the tests have been passed successfully. Finally, PSA Group has driven the choice of the tested parts: DV engine 1.6l Euro6b application, homologated the material grade and evaluated the whole validation process.
2017-03-28
Technical Paper
2017-01-1069
Igor Trevas, Adm José baeta, Charles Pimenta, Heder Fernandes, Matheus Carvalho, Raphael Montemor
Abstract Variable Valve Actuation system (VVA) is a technology developed for improving fuel economy, reducing emissions, and enhancing engine performance mainly by reducing pumping losses. Many automakers have used VVA in their engine projects with excellent results. Usually, VVA systems are built to control the valve events in four different ways: changing the amplitude of the valve lift, the valve opening angle, the valve closing angle or a combination of those modes. A special attention at the calibration activity is needed to reach the optimum performance of this system, beyond this, it was necessary to develop a different way to calibrate, much more focused on the development of the combustion and the gas exchange process requiring an intense use of a pressure indicating system. This work presents a comparison between different way of actuation in combustion analysis of a VVA system on a spark ignition engine.
2017-03-28
Technical Paper
2017-01-1175
Ran Bao, Victor Avila, James Baxter
Abstract Recovering as much braking energy as possible, and then fully reusing it, can significantly improve the vehicle powertrain efficiency, hence reducing the CO2 emissions and fuel consumption. A 48 V mild hybrid system recovers less braking kinetic energy than a HV (High Voltage) hybrid system due to the reduced peak power/current rating. However, the cost of the 48 V mild hybrid system is significantly less than the HV hybrid system which gives the 48 V mild hybrid system a much better cost-benefit ratio. The 48 V mild hybrid system can have several different system layouts (e- machines at different positions, or have numerous e-machines at different position combinations). The aim of this study is to investigate and explain how the system layout affects the powertrain system efficiency and CO2 benefit. Simulation models are used to predict the CO2 of three such configurations.
2017-03-28
Technical Paper
2017-01-1188
Daisuke Hayashi, Atsushi Ida, Shota Magome, Takahisa Suzuki, Satoshi Yamaguchi, Ryosuke Hori
Abstract The key challenge in designing a high power density fuel cell is to reduce oxygen transport loss due to liquid water. However, liquid water transport from catalyst layers to channels under operating conditions is not completely understood. Toyota developed a high resolution space and time liquid water visualization technique using synchrotron x-ray (Spring-8) radiography. In addition, a simulation method was created based on computational fluid dynamics (CFD) to identify the cell performance relationship to water distribution. The relationship among gas diffusion layer (GDL) parameters, water distribution, and fuel cell performance was clarified by combining the techniques Toyota developed.
2017-03-28
Technical Paper
2017-01-0232
Nizar Khemri, Hao Ying, Joseph Supina, Fazal Syed
Abstract Realistic vehicle fuel economy studies require real-world vehicle driving behavior data along with various factors affecting the fuel consumption. Such studies require data with various vehicles usages for prolonged periods of time. A project dedicated to collecting such data is an enormous and costly undertaking. Alternatively, we propose to utilize two publicly available vehicle travel survey data sets. One is Puget Sound Travel Survey collected using GPS devices in 484 vehicles between 2004 and 2006. Over 750,000 trips were recorded with a 10-second time resolution. The data were obtained to study travel behavior changes in response to time-and-location-variable road tolling. The other is Atlanta Regional Commission Travel Survey conducted for a comprehensive study of the demographic and travel behavior characteristics of residents within the study area.
2017-03-28
Technical Paper
2017-01-0192
Antti Lajunen
Abstract The energy used for cabin cooling and heating can drastically reduce the operating range of electric vehicles. The energy efficiency and performance of the cabin heating, ventilation and air conditioning (HVAC) system depend on the system configuration and ambient conditions. The presented research investigates the energy efficiency and performance of cabin thermal management in electric vehicles. A simulation model of cabin heating and cooling systems was developed in the AMESim software. Simulations were carried out in the standard test cycles and one real-world driving cycle to take into account different driving behaviors and environments. The cabin thermal management performance was analyzed in relation to ambient temperature, system efficiency and cabin thermal balance. The simulation results showed that the driving range can shorten more than 50% in extreme cold conditions.
2017-03-28
Technical Paper
2017-01-0683
Michael Fischer, Philipp Kreutziger, Yong Sun, Adam Kotrba
Abstract External Exhaust Gas Recirculation (EGR) has been used on diesel engines for decades and has also been used on gasoline engines in the past. It is recently reintroduced on gasoline engines to improve fuel economy at mid and high engine load conditions, where EGR can reduce throttling losses and fuel enrichment. Fuel enrichment causes fuel penalty and high soot particulates, as well as hydrocarbon (HC) emissions, all of which are limited by emissions regulations. Under stoichiometric conditions, gasoline engines can be operated at high EGR rates (> 20%), but more than diesel engines, its intake gas including external EGR needs extreme cooling (down to ~50°C) to gain the maximum fuel economy improvement. However, external EGR and its problems at low temperatures (fouling, corrosion & condensation) are well known.
2017-03-28
Technical Paper
2017-01-0894
Nishant Singh
Abstract Improving fuel economy has been a key focus across the automotive industry for several years if not decades. For heavy duty commercial vehicles, the benefits from minor gains in fuel economy can lead to significant savings for fleets as well as owners and operators. Additionally, the regulations require vehicles to meet certain GHG standards which closely translate to vehicle fuel economy. For current state of the art fuel economy technologies, incremental gains are so miniscule that measurements on the vehicle are inadequate to quantify the benefits. Engineers are challenged with high level of variability to make informed decisions. In such cases, highly controlled tests on Engine and Powertrain dynamometers are used, however, there is an associated variability even with these tests due to factors such as part to part differences, deterioration, fuel blends and quality, dyno control capabilities and so on.
2017-03-28
Technical Paper
2017-01-0804
Mohannad Al-Khodaier, Vijai Shankar Bhavani Shankar, Muhammad Waqas, Nimal Naser, Mani Sarathy, Bengt Johansson
Abstract Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes.
2017-03-28
Technical Paper
2017-01-1285
Tarun Mehra
Abstract Exploring and enhancement of biodiesel production from feedstock like non-edible vegetable oil is one of the powerful method to resolve inadequate amount of conventional raw materials and their high prices. The main aim of this study is to optimize the biodiesel production process parameters of a biodiesel obtained from non-edible feedstocks, namely Neem (Azadirachta indica) oil and Sesame (Sesamum indicum L.) oil, with response surface methodology using Doehlert’s experimental design. Based on the results, the optimum operating parameters for transesterification of the mixture A50S50 oil mixture at 51.045° C over a period of 45 minutes are as follows: methanol-to-oil ratio: 8.45, and catalyst concentration: 1.933 wt.%. These optimum operating parameters give the highest yield for the A50S50 biodiesel with a value of 95.24%.
2017-03-28
Technical Paper
2017-01-0171
Quansheng Zhang, Yan Meng, Christopher Greiner, Ciro Soto, William Schwartz, Mark Jennings
Abstract In this paper, the tradeoff relationship between the Air Conditioning (A/C) system performance and vehicle fuel economy for a hybrid electric vehicle during the SC03 drive cycle is presented. First, an A/C system model was integrated into Ford’s HEV simulation environment. Then, a system-level sensitivity study was performed on a stand-alone A/C system simulator, by formulating a static optimization problem which minimizes the total energy use of actuators, and maintains an identical cooling capacity. Afterwards, a vehicle-level sensitivity study was conducted with all controllers incorporated in sensitivity analysis software, under three types of formulations of cooling capacity constraints. Finally, the common observation from both studies, that the compressor speed dominates the cooling capacity and the EDF fan has a marginal influence, is explained using the thermodynamics of a vapor compression cycle.
2017-03-28
Technical Paper
2017-01-0156
Olaf Erik Herrmann, Matteo Biglia, Takashi YASUDA, Sebastian Visser
Abstract The coming Diesel powertrains will remain as key technology in Europe to achieve the stringent 2025 CO2 emission targets. Especially for applications which are unlikely to be powered by pure EV technology like Light Duty vehicles and C/D segment vehicles which require a long driving range this is the case. To cope with these low CO2 targets the amount of electrification e.g. in form of 48V Belt-driven integrated Starter Generator (BSG) systems will increase. On the other hand the efficiency of the Diesel engine will increase which will result in lower exhaust gas temperatures resulting in a challenge to keep the required NOx reduction system efficiencies under Real Drive Emissions (RDE) driving conditions. In order to comply with the RDE legislation down to -7 °C ambient an efficient thermal management is one potential approach.
2017-03-28
Technical Paper
2017-01-0609
Pan Song, Shugang Xie, Yuan Zhong, Bolin Gao
Abstract This paper presents a unified creep-speed controller specifically designed for the automated parking system of an automated manual transmission vehicle, whereby the engine management system, transmission control unit, and electronic stability control system can work cooperatively and harmoniously within the same control framework. First, a novel reference speed generator is designed and employs sinusoidal functions to produce the speed profile based on the maneuver-dependent distances computed by a path planner, such that the lag in vehicle response during start-up can be effectively reduced. Second, a well-tuned PID controller is adopted to determine the resultant longitudinal force in attempt to follow the reference speed and eliminate the distance error during the parking maneuvers.
2017-03-28
Technical Paper
2017-01-1089
Jose Grande, Julio Abraham Carrera, Manuel Dieguez Sr
Abstract Exhaust Gas Recirculation (EGR) has been in use for many years to control NOx emissions in commercial vehicle applications. Emissions limits are tighter with every new regulation while durability requirements continue to increase, so EGR system manufacturers must be able to provide high performance and robust designs even with high thermal loads. The commercial vehicle market is characterized by lower production rates than passenger car programs and the same engine must cope with multiple applications that have totally different engine calibrations. In some cases it is necessary to design two or more EGR systems for an engine platform, with a consequential impact on cost and development timeline. The optimal design of an EGR system needs to take into consideration several topics related with performance and durability: efficiency and pressure drop, fouling, boiling, thermal fatigue, vibration, pressure fatigue and corrosion among others.
2017-03-28
Technical Paper
2017-01-1085
Todd Brewer, Cagri Sever, Ruichen Jin, Michael Herr, Xingfu Chen, Reda Adimi
Abstract In a separate SAE paper (Cylinder Head Design Process to Improve High Cycle Fatigue Performance), cylinder head high cycle fatigue (HCF) analysis approach and damage calculation method were developed and presented. In this paper, the HCF damage calculation method is used for risk assessment related to customer drive cycles. Cylinder head HCF damage is generated by repeated stress alternation under different engine operation conditions. The cylinder head high cycle fatigue CAE process can be used as a transfer function to translate engine operating conditions to cylinder head damage/life. There are many inputs, noises, and design parameters that contribute to the cylinder head HCF damage CAE transfer function such as cylinder pressure, component temperature, valve seat press fit, and cylinder head manufacturing method. Material properties and the variation in material properties are also important considerations in the CAE transfer function.
2017-03-28
Technical Paper
2017-01-1086
Cagri Sever, Todd Brewer, Scott Eeley, Xingfu Chen, Ruichen Jin, Emad Khalil, Michael Herr
Abstract For aluminum automotive cylinder head designs, one of the concerning failure mechanisms is thermo-mechanical fatigue from changes in engine operating conditions. After an engine is assembled, it goes through many different operating conditions such as cold start, through warm up, peak power, and intermediate cycles. Strain alternation from the variation in engine operation conditions change may cause thermo-mechanical fatigue (TMF) failure in combustion chamber and exhaust port. Cylinder heads having an integrated exhaust manifold are especially exposed to this failure mode due to the length and complexity of the exhaust gas passage. First a thermo-mechanical fatigue model is developed to simulate a known dynamometer/bench thermal cycle and the corresponding thermo-mechanical fatigue damage is quantified. Additionally, strain state of the cylinder head and its relation to thermo-mechanical fatigue are discussed. The bench test was used to verify the TMF analysis approach.
2017-03-28
Technical Paper
2017-01-0160
Longjie Xiao, Tianming He, Gangfeng Tan, Bo Huang, Xianyao Ping
Abstract While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
2017-03-28
Technical Paper
2017-01-0121
Zhijia Yang, Jesus PradoGonjal, Matthew Phillips, Song Lan, Anthony Powell, Paz Vaqueiro, Min Gao, Richard Stobart, Rui Chen
Abstract Thermoelectric generator (TEG) has received more and more attention in its application in the harvesting of waste thermal energy in automotive engines. Even though the commercial Bismuth Telluride thermoelectric material only have 5% efficiency and 250°C hot side temperature limit, it is possible to generate peak 1kW electrical energy from a heavy-duty engine. If being equipped with 500W TEG, a passenger car has potential to save more than 2% fuel consumption and hence CO2 emission reduction. TEG has advantages of compact and motionless parts over other thermal harvest technologies such as Organic Rankine Cycle (ORC) and Turbo-Compound (TC). Intense research works are being carried on improving the thermal efficiency of the thermoelectric materials and increasing the hot side temperature limit. Future thermoelectric modules are expected to have 10% to 20% efficiency and over 500°C hot side temperature limit.
2017-03-28
Technical Paper
2017-01-0878
Julia Carrell, Tom Slatter, Uel Little, Roger Lewis
Abstract The interaction of three bio-lubricant base oil candidates with seventeen combinations of surface treatment was studied, comparing wear scar volumes and coefficient of friction results. Substrates were initially ground, then a combination of superfinished, Dymon-iC™ DLC, an impact technique of ultra-fine shot blasting method doped with Tin and Molybdenum Disulfide, a calcium based chemical dip containing calcium sulfate and nano fullerene, were used. DLC is well reported to reduce friction. Some reports suggest wear in coated contacts is independent of the type of lubricant used, whilst others report that bio-lubricants offer reduced friction and wear in combination with DLC. Shot blasting can also reduce wear and friction, due to the surface dimples acting as lubricant reservoirs, making hydrodynamic lubrication more likely.
2017-03-28
Journal Article
2017-01-0546
Sebastiano Breda, Alessandro D'Adamo, Stefano Fontanesi, Fabrizio D'Orrico, Adrian Irimescu, Simona Merola, Nicola Giovannoni
Abstract Conventional fossil fuels are more and more regulated in terms of both engine-out emissions and fuel consumption. Moreover, oil price and political instabilities in oil-producer countries are pushing towards the use of alternative fuels compatible with the existing units. N-Butanol is an attractive candidate as conventional gasoline replacement, given its ease of production from bio-mass and key physico-chemical properties similar to their gasoline counterpart. A comparison in terms of combustion behavior of gasoline and n-Butanol is here presented by means of experiments and 3D-CFD simulations. The fuels are tested on a single-cylinder direct-injection spark-ignition (DISI) unit with an optically accessible flat piston. The analysis is carried out at stoichiometric undiluted condition and lean-diluted mixture for both pure fuels.
Viewing 61 to 90 of 16434