Criteria

Text:
Display:

Results

Viewing 271 to 300 of 16692
2017-03-28
Technical Paper
2017-01-0181
Benny Johnson William, Agathaman Selvaraj, Manjeet Singh Rammurthy, Manikandan Rajaraman, V. Srinivasa Chandra
Abstract The modern day automobile customers’ expectations are sky-high. The automotive manufacturers need to provide sophisticated, cost-effective comfort to stay in this competitive world. Air conditioning is one of the major features which provides a better comfort but also adds up to the increase in operating fuel cost of vehicle. According to the sources the efficiency of internal combustion engine is 30% and 70% of energy is wasted to atmosphere. The current Air conditioners in automobiles use Vapour compression system (VCS) which utilizes a portion of shaft power of the engine at its input; this in turn reduces the brake power output and increases the specific fuel consumption (SFC) of the engine. With the current depletion rate of fossil fuels, it is necessary to conserve the available resources and use it effectively which also contributes to maintain a good balance in greenhouse effect thus protecting the environment.
2017-03-28
Technical Paper
2017-01-0184
Miyoko Oiwake, Ozeki Yoshiichi, Sogo Obata, Hideaki Nagano, Itsuhei Kohri
Abstract In order to develop various parts and components for hybrid electric vehicles, understanding the effect of their structure and thermal performance on their fuel consumption and cruising distance is essential. However, this essential information is generally not available to suppliers of vehicle parts and components. In this report, following a previous study of electric vehicles, a simple method is proposed as the first step to estimate the algorithm of the energy transmission and then the cruising performance for hybrid electric vehicles. The proposed method estimates the cruising performance using only the published information given to suppliers, who, in general, are not supplied with more detailed information. Further, an actual case study demonstrating application of the proposed method is also discussed.
2017-03-28
Technical Paper
2017-01-0171
Quansheng Zhang, Yan Meng, Christopher Greiner, Ciro Soto, William Schwartz, Mark Jennings
Abstract In this paper, the tradeoff relationship between the Air Conditioning (A/C) system performance and vehicle fuel economy for a hybrid electric vehicle during the SC03 drive cycle is presented. First, an A/C system model was integrated into Ford’s HEV simulation environment. Then, a system-level sensitivity study was performed on a stand-alone A/C system simulator, by formulating a static optimization problem which minimizes the total energy use of actuators, and maintains an identical cooling capacity. Afterwards, a vehicle-level sensitivity study was conducted with all controllers incorporated in sensitivity analysis software, under three types of formulations of cooling capacity constraints. Finally, the common observation from both studies, that the compressor speed dominates the cooling capacity and the EDF fan has a marginal influence, is explained using the thermodynamics of a vapor compression cycle.
2017-03-28
Technical Paper
2017-01-0160
Longjie Xiao, Tianming He, Gangfeng Tan, Bo Huang, Xianyao Ping
Abstract While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
2017-03-28
Technical Paper
2017-01-0159
Peng Liu, Ge-Qun Shu, Hua Tian, Xuan Wang, Dongzhan Jing
Abstract The environmental issues combined with the rising of crude oil price have attracted more interest in waste heat recovery of marine engine. Currently, the thermal efficiency of marine diesels only reaches 48~51%, and the rest energy is rejected to the environment. Meanwhile, energy is required when generating electricity and cooling that are necessary for vessels. Hence, the cogeneration system is treated as the promising technology to conform the strict environment regulation while offering a high energy utilization ratio. In this paper, an electricity and cooling cogeneration system combined of Organic Rankine Cycle (ORC) and Absorption Refrigeration Cycle (ARC) is proposed to recover waste heat from marine engine. ORC is applied to recover exhaust waste heat to provide electricity while ARC is used to utilize condensation heat of ORC to produce additional cooling.
2017-03-28
Technical Paper
2017-01-0158
Masaaki Nakamura, Koichi Machida, Kiyohiro Shimokawa
Abstract A diesel engine is advantageous in its high thermal efficiency, however it still wastes about 50% of total input energy to exhaust and cooling losses. A feasibility study of thermoacoustic refrigerator was carried out as one of the means to recuperate waste heat. The thermoacoustic refrigerator prototyped for this study showed a capability to achieve cooling temperature lower than -20 degree C, which indicated that the system has a potential to be used in refrigerator trucks not only for cargo compartment cooling but also for cabin cooling.
2017-03-28
Technical Paper
2017-01-0156
Olaf Erik Herrmann, Matteo Biglia, Takashi YASUDA, Sebastian Visser
Abstract The coming Diesel powertrains will remain as key technology in Europe to achieve the stringent 2025 CO2 emission targets. Especially for applications which are unlikely to be powered by pure EV technology like Light Duty vehicles and C/D segment vehicles which require a long driving range this is the case. To cope with these low CO2 targets the amount of electrification e.g. in form of 48V Belt-driven integrated Starter Generator (BSG) systems will increase. On the other hand the efficiency of the Diesel engine will increase which will result in lower exhaust gas temperatures resulting in a challenge to keep the required NOx reduction system efficiencies under Real Drive Emissions (RDE) driving conditions. In order to comply with the RDE legislation down to -7 °C ambient an efficient thermal management is one potential approach.
2017-03-28
Technical Paper
2017-01-0155
Yongbing Xu, Gangfeng Tan, Xuexun Guo, Xianyao Ping
Abstract The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
2017-03-28
Technical Paper
2017-01-0154
Sudhi Uppuluri, Hemant R Khalane, Ajay Naiknaware
Abstract With the upcoming regulations for fuel economy and emissions, there is a significant interest among vehicle OEMs and fleet managers in developing computational methodologies to help understand the influence and interactions of various key parameters on Fuel Economy and carbon dioxide emissions. The analysis of the vehicle as a complete system enables designers to understand the local and global effects of various technologies that can be employed for fuel economy and emission improvement. In addition, there is a particular interest in not only quantifying the benefit over standard duty-cycles but also for real world driving conditions. The present study investigates impact of exhaust heat recovery system (EHRS) on a typical 1.2L naturally aspirated gasoline engine passenger car representative of the India market.
2017-03-28
Technical Paper
2017-01-0150
Ankit Kumar Shukla, Raj Dhami, Aashish Bhargava, Sanjay Tiwari
Abstract In the current landscape of commercial vehicle industry, fuel economy is one of the major parameter for fleet owner’s profitability as well as greenhouse gasses emission. Less fuel efficiency results in more fuel consumption; use of conventional fuel in engines also makes environment polluted. The rapid growth in fuel prices has led to the demand for technologies that can improve the fuel efficiency of the vehicle. Phase change material (PCMs) for Thermal energy storage system (TES) is one of the specific technologies that not only can conserve energy to a large extent but also can reduce emission as well as the dependency on convention fuel. There is a great variety of PCMs that can be used for the extensive range of temperatures, making them attractive in a number of applications in automobiles.
2017-03-28
Technical Paper
2017-01-0136
Apostolos Karvountzis-Kontakiotis, Apostolos Pesiridis, Hua Zhao, Fuhaid Alshammari, Benjamin Franchetti, Ioannis Pesmazoglou, Lorenzo Tocci
Abstract Modern heavy duty diesel engines can well extend the goal of 50% brake thermal efficiency by utilizing waste heat recovery (WHR) technologies. The effect of an ORC WHR system on engine brake specific fuel consumption (bsfc) is a compromise between the fuel penalty due to the higher exhaust backpressure and the additional power from the WHR system that is not attributed to fuel consumption. This work focuses on the fuel efficiency benefits of installing an ORC WHR system on a heavy duty diesel engine. A six cylinder, 7.25ℓ heavy duty diesel engine is employed to experimentally explore the effect of backpressure on fuel consumption. A zero-dimensional, detailed physical ORC model is utilized to predict ORC performance under design and off-design conditions.
2017-03-28
Journal Article
2017-01-0133
Bin Xu, Adamu Yebi, Simona Onori, Zoran Filipi, Xiaobing Liu, John Shutty, Paul Anschel, Mark Hoffman
Abstract This paper presents the transient power optimization of an organic Rankine cycle waste heat recovery (ORC-WHR) system operating on a heavy-duty diesel (HDD). The optimization process is carried on an experimentally validated, physics-based, high fidelity ORC-WHR model, which consists of parallel tail pipe and EGR evaporators, a high pressure working fluid pump, a turbine expander, etc. Three different ORC-WHR mixed vapor temperature (MVT) operational strategies are evaluated to optimize the ORC system net power: (i) constant MVT; (ii) constant superheat temperature; (iii) fuzzy logic superheat temperature based on waste power level. Transient engine conditions are considered in the optimization. Optimization results reveal that adaptation of the vapor temperature setpoint based on evaporation pressure strategy (ii) provides 1.1% mean net power (MNP) improvement relative to a fixed setpoint strategy (i).
2017-03-28
Technical Paper
2017-01-0582
Naoki Kurimoto, Naoki Watanabe, Shinya Hoshi, Satoru Sasaki, Masashi Matsumoto
Abstract A methodology for simulating effect of international variations in fuel compositions on spray combustion is proposed. The methodology is validated with spray combustion experiments with real fuels from three different countries. The compositions of those fuels were analyzed through GC×GC and H-NMR. It was found that ignition delay times, flame region and flame luminosity were significantly affected by the compositional variations. For the simulation, an evaporation surrogate consisting of twenty two species, covering basic molecular types and a wide range of carbon numbers, is developed. Each species in the evaporation surrogate is then virtually converted to a reaction surrogate consisting of n-hexadecane, methylcyclohexane and 1,2,4-trimethyl benzene so that combustion reactions can be calculated with a published kinetic model. The virtual species conversion (VSC) is made so as to take over combustion-related properties of each species of evaporation surrogates.
2017-03-28
Journal Article
2017-01-0581
Stephen C. Burke, Matthew Ratcliff, Robert McCormick, Robert Rhoads, Bret Windom
Abstract In some studies, a relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from vehicles equipped with spark ignition engines. The fundamental cause of the PM increase seen for moderate ethanol concentrations is not well understood. Ethanol features a greater heat of vaporization (HOV) than gasoline and also influences vaporization by altering the liquid and vapor composition throughout the distillation process. A droplet vaporization model was developed to explore ethanol’s effect on the evaporation of aromatic compounds known to be PM precursors. The evolving droplet composition is modeled as a distillation process, with non-ideal interactions between oxygenates and hydrocarbons accounted for using UNIFAC group contribution theory. Predicted composition and distillation curves were validated by experiments.
2017-03-28
Journal Article
2017-01-0583
Farraen Mohd Azmin, Phil Mortimer, Justin Seabrook
Abstract With the introduction in Europe of drive cycles such as RDE and WLTC, transient emissions prediction is more challenging than before for passenger car applications. Transient predictions are used in the calibration optimization process to determine the cumulative cycle emissions for the purpose of meeting objectives and constraints. Predicting emissions such as soot accurately is the most difficult area, because soot emissions rise very steeply during certain transients. The method described in this paper is an evolution of prediction using a steady state global model. A dynamic model can provide the instantaneous prediction of boost and EGR that a static model cannot. Meanwhile, a static model is more accurate for steady state engine emissions. Combining these two model types allows more accurate prediction of emissions against time. A global dynamic model combines a dynamic model of the engine air path with a static DoE (Design of Experiment) emission model.
2017-03-28
Journal Article
2017-01-0584
Haksu Kim, Jaewook Shin, Myoungho Sunwoo
Abstract With fuel efficiency becoming an increasingly critical aspect of internal combustion engine (ICE) vehicles, the necessity for research on efficient generation of electric energy has been growing. An energy management (EM) system controls the generation of electric energy using an alternator. This paper presents a strategy for the EM using a control mode switch (CMS) of the alternator for the (ICE) vehicles. This EM recovers the vehicle’s residual kinetic energy to improve the fuel efficiency. The residual kinetic energy occurs when a driver manipulates a vehicle to decelerate. The residual energy is commonly wasted as heat energy of the brake. In such circumstances, the wasted energy can be converted to electric energy by operating an alternator. This conversion can reduce additional fuel consumption. For extended application of the energy conversion, the future duration time of the residual power is exploited.
2017-03-28
Journal Article
2017-01-0587
Cetin Gurel, Elif Ozmen, Metin Yilmaz, Didem Aydin, Kerem Koprubasi
Abstract Emissions and fuel economy optimization of internal combustion engines is becoming more challenging as the stringency of worldwide emission regulations are constantly increasing. Aggressive transient characteristics of new emission test cycles result in transient operation where the majority of soot is produced for turbocharged diesel engines. Therefore soot optimization has become a central component of the engine calibration development process. Steady state approach for air-fuel ratio limitation calibration development is insufficient to capture the dynamic behavior of soot formation and torque build-up during transient engine operation. This paper presents a novel methodology which uses transient maneuvers to optimize the air-fuel ratio limitation calibration, focusing on the trade-off between vehicle performance and engine-out soot emissions. The proposed methodology features a procedure for determining candidate limitation curves with smoothness criteria considerations.
2017-03-28
Technical Paper
2017-01-0588
Adithya P Reddy Ranga, Gopichandra Surnilla, Joseph Thomas, Ethan Sanborn, Mark Linenberg
Abstract Dual fuel injection systems, like PFI+DI (port fuel injection + direct injection system) are being increasingly used in gasoline engine applications to increase the engine performance, fuel efficiency and reduce emissions. At a given engine operating condition, the air/fuel error is a function of the fraction of fuel injected by each of the fuel systems. If the fraction of fuel from each of the fuel system is changed at a given operating condition, the fuel system error will change as well making it challenging to learn the fuel system errors. This paper aims at describing the adaptive fueling control algorithm to estimate the fuel error contribution from each individual fuel system. Considering the fuel injection system slope errors to be the significant cause for air-fuel errors, a model structure was developed to calculate the fuel system adaptive correction factor as a function of changing fraction of fueling between the fuel systems.
2017-03-28
Technical Paper
2017-01-0665
Hassan vafamehr, Alasdair Cairns, Mohammadmohsen Moslemin Koupaie
Abstract The experimental work was concerned with improving understanding of the competing effects of the latent heat of vaporization and auto-ignition delay times of different ethanol blended fuels during heaving knocking combustion. The unique single cylinder SI engine employed included full bore overhead optical access capable of withstanding unusually high in-cylinder pressures. Heavy knock was deliberately induced under moderate loads using inlet air heating and a primary reference fuel blend of reduced octane rating. High-speed chemiluminescence imaging and simultaneous in-cylinder pressure data measurement were used to evaluate the combustion events. Under normal operation the engine was operated under port fuel injection with a stoichiometric air-fuel mixture. Multiple centered auto-ignition events were regularly observed, with knock intensities of up to ~40bar. Additional excess fuel of varied blend was then introduced directly into the end-gas in short transient bursts.
2017-03-28
Technical Paper
2017-01-0664
Mohd Asif, Karl Giles, Andrew Lewis, Sam Akehurst, Niall Turner
Abstract The causes of engine knock are well understood but it is important to be able to relate these causes to the effects of controllable engine parameters. This study attempts to quantify the effects of a portion of the available engine parameters on the knock behavior of a 60% downsized, DISI engine running at approximately 23 bar BMEP. The engines response to three levels of coolant flow rate, coolant temperature and exhaust back pressure were investigated independently. Within the tested ranges, very little change in the knock limited spark advance (KLSA) was observed. The effects of valve timing on scavenge flow and blow through (the flow of fresh air straight into the exhaust system during the valve overlap period) were investigated at two conditions; at fixed inlet/exhaust manifold pressures, and at fixed engine torque. For both conditions, a matrix of 8 intake/exhaust cam combinations was tested, resulting in a wide range of valve overlap conditions (from 37 to -53°CA).
2017-03-28
Journal Article
2017-01-0662
David Vuilleumier, Magnus Sjöberg
Abstract Spark-ignition (SI) engine efficiency is typically limited by fuel auto-ignition resistance, which is described in practice by the Research Octane Number (RON) and the Motor Octane Number (MON). The goal of this work is to assess whether fuel properties (i.e. RON, MON, and heat of vaporization) are sufficient to describe the antiknock behavior of varying gasoline formulations in modern engines. To this end, the auto-ignition resistance of three compositionally dissimilar gasoline-like fuels with identical RON values and varying or non-varying MON values were evaluated in a modern, prototype, 12:1 compression ratio, high-swirl (by nature of intake valve deactivation), directly injected spark ignition (DISI) engine at 1400 RPM. The three gasolines are an alkylate blend (RON=98, MON=97), a blend with high aromatic content (RON=98, MON=88), and a blend of 30% ethanol by volume with a gasoline BOB (RON=98, MON=87; see Table 2 for details).
2017-03-28
Technical Paper
2017-01-0661
Michael Pamminger, James Sevik, Riccardo Scarcelli, Thomas Wallner, Carrie Hall
Abstract Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5.
2017-03-28
Technical Paper
2017-01-0682
Yuedong Chao, Haifeng Lu, Zongjie Hu, Jun Deng, Zhijun Wu, Liguang Li, Yuan Shen, Shuang Yuan
Abstract In this paper comparisons were made between the fuel economy improvement between a High Pressure loop (HP) water-cooled Exhaust Gas Recirculation (EGR) system and a Low Pressure loop (LP) water-cooled EGR system. Experiments were implemented on a 1.3-Litre turbocharged PFI gasoline engine in two pars. One was EGR rate as single operating point to compare the different effect of HP- and LP-EGR. The other was mini map from 1500rpm to 3000rpm and BMEP from 2bar to 14bar because of the relative narrow available range of HP-EGR system. In consideration of practical application of EGR system, the coolant used in this experiment was kept almost the same temperature as in real vehicles (88±3°C) instead of underground water temperature, besides a model was built to calculate constant volume ratio (CVR). The results indicated that the effect of HP-EGR was weaker than that of LP-EGR under the same EGR rate, which could be seen from change of combustion parameters.
2017-03-28
Technical Paper
2017-01-0690
Maziar Khosravi, Helmut Ruhland, Thomas Lorenz, Carsten Weber
Abstract The performance of boosted gasoline engines is limited at high loads by knock, stochastic Low Speed Pre-Ignition, and Megaknock. An investigation has been carried out on the occurrence of abnormal combustion and megaknock in a 1.6 L GTDI engine with the aim to determine the causes of such phenomena. A classification of abnormal combustion events and causes is presented in order to facilitate a consistent terminology. The experiments specifically focus on the effects of exhaust residual gas on occurrence of megaknock in multi-cylinder engines. The results showed that while a misfire will not lead to megaknock, a very late combustion in one cycle, in one cylinder may lead to megaknock in the following cycle in the same or adjacent cylinder. Additionally, a recently developed multi-zone model was used to analyze the role of residual gas on auto-ignition.
2017-03-28
Journal Article
2017-01-0689
Gautam Kalghatgi, Ibrahim Algunaibet, Kai Morganti
Most studies on knock ignore the stochastic nature of knock and focus on the onset of knock which is determined by chemical kinetics. This paper focuses on knock intensity (KI) which is determined by the evolution of the pressure wave following knock onset in a hot spot and highlights the stochastic processes involved. KI is defined in this study as the maximum peak-to-peak pressure fluctuation that follows the onset of knock. It depends on ξ = (a/ua) where ua is the speed of the autoignition front and a is the speed of sound. When ua is small, KI can be related to the product of a parameter Z, which depends on Pko, the pressure at knock onset and the square of (∂x/∂T), which is the inverse of the gradient of temperature with distance in the hot spot. Both Z and (∂x/∂T) were calculated using measured KI and Pko for hundreds of individual knocking cycles for different fuels.
2017-03-28
Journal Article
2017-01-0687
Patrick Haenel, Henning Kleeberg, Rob de Bruijn, Dean Tomazic
Abstract Modern combustion engines must meet increasingly higher requirements concerning emission standards, fuel economy, performance characteristics and comfort. Especially fuel consumption and the related CO2 emissions were moved into public focus within the last years. One possibility to meet those requirements is downsizing. Engine downsizing is intended to achieve a reduction of fuel consumption through measures that allow reducing displacement while simultaneously keeping or increasing power and torque output. However, to reach that goal, downsized engines need high brake mean effective pressure levels which are well in excess of 20bar. When targeting these high output levels at low engine speeds, undesired combustion events with high cylinder peak pressures can occur that can severely damage the engine. These phenomena, typically called low speed pre-ignition (LSPI), set currently an undesired limit to downsizing.
2017-03-28
Technical Paper
2017-01-0686
Mohammed Jaasim Mubarak Ali, Francisco Hernandez Perez, S. Vedharaj, R. Vallinayagam, Robert Dibble, Hong Im
Abstract Pre-ignition in SI engine is a critical issue that needs addressing as it may lead to super knock event. It is widely accepted that pre-ignition event emanates from hot spot(s) that can be anywhere inside the combustion chamber. The location and timing of hotspot is expected to influence the knock intensity from a pre-ignition event. In this study, we study the effect of location and timing of hot spot inside the combustion chamber using numerical simulations. The simulation is performed using a three-dimensional computational fluid dynamics (CFD) code, CONVERGE™. We simulate 3-D engine geometry coupled with chemistry, turbulence and moving structures (valves, piston). G-equation model for flame tracking coupled with multi-zone model is utilized to capture auto-ignition (knock) and solve gas phase kinetics. A parametric study on the effect of hot spot timing and location inside the combustion chamber is performed.
2017-03-28
Technical Paper
2017-01-0683
Michael Fischer, Philipp Kreutziger, Yong Sun, Adam Kotrba
Abstract External Exhaust Gas Recirculation (EGR) has been used on diesel engines for decades and has also been used on gasoline engines in the past. It is recently reintroduced on gasoline engines to improve fuel economy at mid and high engine load conditions, where EGR can reduce throttling losses and fuel enrichment. Fuel enrichment causes fuel penalty and high soot particulates, as well as hydrocarbon (HC) emissions, all of which are limited by emissions regulations. Under stoichiometric conditions, gasoline engines can be operated at high EGR rates (> 20%), but more than diesel engines, its intake gas including external EGR needs extreme cooling (down to ~50°C) to gain the maximum fuel economy improvement. However, external EGR and its problems at low temperatures (fouling, corrosion & condensation) are well known.
2017-03-28
Technical Paper
2017-01-0655
Mohammadmohsen Moslemin Koupaie, Alasdair Cairns, Hassan vafamehr, Thompson Lanzanova
Abstract This work was concerned with study of the in-cylinder flow field and flame development in a spark ignition research engine equipped with Bowditch piston optical access. High-speed natural light (chemiluminescence) imaging and simultaneous in-cylinder pressure data measurement and analysis were used to understand the fundamentals of flame propagation for a variety of ethanol fuels blended with either gasoline or iso-octane. PIV was undertaken on the same engine in a motoring operation at a horizontal imaging plane close to TDC (10 mm below the fire face) throughout the compression stroke (30°,40°,90° and 180°bTDC) for a low load engine operating condition at 1500rpm/0.5 bar inlet plenum pressure. Up to 1500 cycles were considered to determine the ensemble average flow-field and turbulent kinetic energy. Finally, comparisons were made between the flame and flow experiments to understand the apparent interactions.
2017-03-28
Technical Paper
2017-01-0654
Haiqiao Wei, Dengquan Feng, Mingzhang pan, JiaYing PAN
Abstract Combustion characteristics of neat 2-methylfuran (MF), 10% and 20% volumetric fraction 2-methylfuran gasoline blends were experimentally investigated in a single cylinder spark ignition engine, and the results were benchmarked against that of the research on octane number 97 neat gasoline. The investigation focused on the performance of cyclic variation of MF and its blends, and the effects of spark ignition timing, compression ratio, and exhaust gas recirculation (EGR) were studied. Experiments were conducted at the engine speed of 1500 rpm, and loads between 7 and 11 bar indicated mean effective pressure (IMEP) with using stoichiometric air-fuel ratio mixture. Index of the coefficient of variation of IMEP (COVIMEP) was used to evaluate the combustion stability of the tested fuels. The results show that neat MF and MF gasoline blended fuels have superior combustion stability compared with gasoline.
Viewing 271 to 300 of 16692