Criteria

Text:
Display:

Results

Viewing 1 to 30 of 16433
2017-06-05
Technical Paper
2017-01-1801
Sivasankaran Sadasivam, Aditya Palsule, Ekambaram Loganathan, Nagasuresh Inavolu, Jaganmohan Rao M
Powertrain is the major source of noise and vibration in commercial vehicles and has significant contribution on both interior and exterior noise levels. Sound intensity mapping technique identifies and quantifies the spatial distribution of energy radiated by powertrain by means of measurements close to its surface. Based on the quantification, noise sources are ranked, through which Oil sump is identified as one of the major contributors for powertrain noise radiation. Accurate prediction of oil sump modal characteristics is more critical in determining the sound power radiation. This paper discusses about capability of numerical approach in predicting more realistically, oil sump modal characteristics with fluid-structure interaction and consequent verification with experimental modal test results. With this validated model, radiated sound power level of the oil sump has been predicted using acoustic finite element method.
2017-06-05
Journal Article
2017-01-1777
Thomas Wellmann, Kiran Govindswamy, Dean Tomazic
The automotive industry continues to develop new technologies aimed at reducing overall vehi-cle level fuel consumption. Powertrain and driveline related technologies will play a key role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Specifically, use of tech-nologies such as downsized engines, idle start-stop systems, aggressive torque converter lock-up schedules, wide-ratio spread transmissions, and electrified propulsion systems are vital to-wards meeting aggressive fuel economy targets. Judicious combinations of such powertrain and driveline technology packages in conjunction with measures such as the use of low rolling resistance tires and vehicle lightweighting will be required to meet future OEM fleet CO2 targets. Many of the technologies needed for meeting the fuel economy and CO2 targets come with unique NVH challenges. In order to ensure customer acceptance of new vehicles, it is impera-tive that these NVH challenges be understood and solved.
2017-05-18
Journal Article
2017-01-9375
Lukas Moeltner, Lucas Konstantinoff, Verena Schallhart
Abstract The increasingly stringent emission legislation worldwide and the demand for independence from fossil energy carriers represent major challenges for the future development of diesel engines, particularly for maintaining the diesel engine’s positive characteristics, such as its dynamic driving performance and fuel economy, while drastically reducing emissions. This survey investigates alternative fuel blends used in a state-of-the-art EURO 6 diesel engine with different shares of biomass to liquid, hydrotreated vegetable oils and fatty acid methyl ester, which present a possibility to meet these requirements. In particular, the reduction of particulate matter and, as a result, the possibility to reduce nitrogen oxides emissions holds remarkable potential for the application of synthetic fuels in diesel engines. The investigated fuel blends generally demonstrate good applicability when used in the test engine with standard settings.
2017-04-19
Technical Paper
2017-01-5000
Alexander Koder, Florian Zacherl, Hans-Peter Rabl, Wolfgang Mayer, Georg Gruber, Thomas Dotzer
Abstract An effective way to reduce greenhouse gas emissions (GHGs) is to use rurally produced straight jatropha oil as a substitute for diesel fuel. However, the different physical and chemical properties of straight vegetable oils (SVOs) require a customized setup of the combustion engine, particularly of the injection timing and quantity. Therefore, this study demonstrates the differences in the injection and combustion processes of jatropha oil compared to diesel fuel, particularly in terms of its compatibility with exhaust gas recirculation (EGR). A 2.2 l common-rail diesel engine with a two-stage turbocharging concept was used for testing. To examine the differences in injection rate shaping of diesel fuel and jatropha oil, the injector was tested with an injection rate analyzer using both the fuels. To investigate the combustion process, the engine was mounted at an engine test bench and equipped with a cylinder pressure indication system.
2017-04-11
Journal Article
2017-01-9178
Arash E. Risseh, Hans-Peter Nee, Olof Erlandsson, Klas Brinkfeldt, Arnaud Contet, Fabian Frobenius lng, Gerd Gaiser, Ali Saramat, Thomas Skare, Simon Nee, Jan Dellrud
The European Union’s 2020 target aims to be producing 20 % of its energy from renewable sources by 2020, to achieve a 20 % reduction in greenhouse gas emissions and a 20 % improvement in energy efficiency compared to 1990 levels. To reach these goals, the energy consumption has to decrease which results in reduction of the emissions. The transport sector is the second largest energy consumer in the EU, responsible for 25 % of the emissions of greenhouse gases caused by the low efficiency (<40 %) of combustion engines. Much work has been done to improve that efficiency but there is still a large amount of fuel energy that converts to heat and escapes to the ambient atmosphere through the exhaust system. Taking advantage of thermoelectricity, the heat can be recovered, improving the fuel economy.
2017-04-11
Journal Article
2017-01-9075
Rami Abousleiman, Osamah Rawashdeh, Romi Boimer
Abstract Growing concerns about the environment, energy dependency, and the unstable fuel prices have increased the sales of electric vehicles. Energy-efficient routing for electric vehicles requires novel algorithmic challenges because traditional routing algorithms are designed for fossil-fueled vehicles. Negative edge costs, battery power and capacity limits, vehicle parameters that are only available at query time, alongside the uncertainty make the task of electric vehicle routing a challenging problem. In this paper, we present a solution to the energy-efficient routing problem for electric vehicles using ant colony optimization. Simulation and real-world test results demonstrate savings in the energy consumption of electric vehicles when driven on the generated routes. Real-world test results revealed more than 9% improvements in the energy consumption of the electric vehicle when driven on the recommended route rather than the routes proposed by Google Maps and MapQuest.
2017-03-28
Technical Paper
2017-01-0262
Taewon Kim, Xi Luo, Mustafa Al-Sadoon, Ming-Chia Lai, Marcis Jansons, Doohyun Kim, Jason Martz, Angela Violi, Eric Gingrich
Abstract Three jet fuel surrogates were compared against their target fuels in a compression ignited optical engine under a range of start-of-injection temperatures and densities. The jet fuel surrogates are representative of petroleum-based Jet-A POSF-4658, natural gas-derived S-8 POSF-4734 and coal-derived Sasol IPK POSF-5642, and were prepared from a palette of n-dodecane, n-decane, decalin, toluene, iso-octane and iso-cetane. Optical chemiluminescence and liquid penetration length measurements as well as cylinder pressure-based combustion analyses were applied to examine fuel behavior during the injection and combustion process. HCHO* emissions obtained from broadband UV imaging were used as a marker for low temperature reactivity, while 309 nm narrow band filtered imaging was applied to identify the occurrence of OH*, autoignition and high temperature reactivity.
2017-03-28
Technical Paper
2017-01-1281
Rajesh Kumar, Olivier Laget, Guillaume Pilla, Guillaume Bourhis, Roland Dauphin, Loic de Francqueville, Jean-Pascal Solari
Abstract Reduction of CO2 emissions is becoming one of the great challenges for future gasoline engines. The aim of the current research program (OOD: Octane On Demand) is to use the octane number as a tuning parameter to simultaneously make the engine more efficient and reduce CO2 emissions. The idea is to prevent knock occurrence by adapting the fuel RON injected in the combustion chamber. Thus, the engine cycle efficiency is increased by keeping combustion phasing at its optimum. This is achieved by a dual fuel injection strategy, involving a low-RON base fuel (Naphtha or Low RON cost effective fuel) and a high-RON octane booster (ethanol). The ratio of fuel quantity on each injector is adapted at each engine cycle to fit the RON requirement as a function of engine operating conditions. A first part of the project, described in [18], was dedicated to the understanding of mixture preparation resulting from different dual-fuel injection strategies.
2017-03-28
Technical Paper
2017-01-1282
Ashish Jaiswal, Tarun Mehra, Monis Alam, Jatin Agarwal, Harshil Kathpalia
Abstract Dependency and increase in use of fossil fuels is leading to its depletion and raises serious environmental concerns. There are international obligations to reduce emissions and requirements to strengthen security of fuel supply which is pressuring the automobile industry to use cleaner and more sustainable fuels. Hydrogen fits these criteria as it is not just an abundant alternative but also a clean propellant and Hydrogen engines represent an economic alternative to fuel cells. In the present investigation, EGR has been used on hydrogen boosted SI engine running on gasoline-methanol and ethanol-gasoline blends to determine the additional advantages of the same compared to pure gasoline operation and gasoline-methanol and ethanol-gasoline blends without EGR.
2017-03-28
Technical Paper
2017-01-1096
Robin Temporelli, Philippe Micheau, Maxime Boisvert
Abstract Automated Manual Transmission (AMT) based on classic electrohydraulic clutch actuation gives high performances and comfort to a recreational vehicle. However, overall power consumption remains high due to the pump efficiency. In addition, the pump is often driven by the vehicle’s engine and thus is continuously working. To address this issue, a new electrified clutch based on electromechanical actuation has been designed and prototyped. In order to evaluate the effective fuel consumption reduction using this new clutch actuator, a low-cost and agile method is presented and used in this paper. Indeed, instead of integrating the clutch actuator in a real vehicle and performing expensive real emission test cycles on a road, this original method proposes to perform accurate semi-virtual emission test cycles. Moreover, the method allows to perform numerous test iterations in a short time.
2017-03-28
Technical Paper
2017-01-1283
Valentin Soloiu, Remi Gaubert, Martin Muinos, Jose Moncada, Thomas Beyerl, Gustavo Molina, Johnnie Williams
Abstract This study investigates the use of a natural gas derived fuel, synthetic Fischer-Tropsch (F-T) paraffinic kerosene, in both it’s neat form and blended with ultra-low sulfur diesel (ULSD#2), in a naturally aspirated indirect injected engine. A blend of a mass ratio with 20% of the F-T fuel and 80% ULSD#2 was studied for its combustion characteristics, emissions, and efficiency compared to conventional ULSD#2 at a constant speed of 2400 RPM and operating at IMEP range from 4.5 to 6.5 bar. The F-T blend produced ignition delays 17% shorter than ULSD#2 resulting in slightly lower peak apparent heat release rates (AHRR) along with decreased peak combustion temperatures, by up to 50°C. Nitrogen Oxide (NOx) emissions of the F-T blend decreased by 4.0% at 4.5 bar IMEP and at negligible amounts at 6.5 bar IMEP. The F-T blend decreased soot significantly at 5.4 bar IMEP by 40%. Efficiencies of the F-T blend were similar to ULSD#2.
2017-03-28
Technical Paper
2017-01-1287
Markus Sartory, Markus Justl, Patrick Salman, Alexander Trattner, Manfred Klell, Ewald Wahlmüller
Abstract Hydrogen as carbon-free energy carrier, produced from renewable sources like wind, solar or hydro power, is a promising option to overcome the impacts of the anthropogenic climate change. Recently, great advances regarding the early market introduction of FCVs have been achieved. As the availability of hydrogen refueling stations is highly limited, a modular, scalable and highly efficient hydrogen supply infrastructure concept is presented in this paper. The focus lies on cost-effectiveness and flexibility for the utilization in different applications and for growing markets. Based on the analysis of different use cases, the requirements for the newly developed concept are elaborated. The modular system design, utilizing a standardized high pressure PEM electrolysis module, allows a scalable hydrogen production of up to several hundred kilograms per day.
2017-03-28
Technical Paper
2017-01-1288
Noriko Shisa, Shinsuke Ishihara, Yougui Huang, Mikio Asai, Katsuhiko Ariga
Abstract Despite the fact that methanol is toxic to human health and causes serious damage to automobile engines and fuel system components, methanol-containing gasoline is becoming popular in some areas. Methanol demonstrates similar chemical properties to ethanol (which is already established as an additive to gasoline), so that it is difficult to identify methanol-containing gasoline without performing proper chemical analysis. In this study, we report a low-cost, portable, and easy-to-operate sensor that selectively changes color in response to methanol contained in gasoline. The colorimetric sensor will be useful for automobile users to avoid methanol-containing gasoline upon refueling.
2017-03-28
Technical Paper
2017-01-1292
Saiful Bari, Idris Saad
Abstract Diesel engine can be run with biodiesel which has the potential to supplement the receding supply of crude oil. As biodiesel possess similar physiochemical properties to diesel, most diesel engines can run with biodiesel with minimum modifications. However, the viscosity of biodiesel is higher, and the calorific value is lower than diesel. Therefore, when biodiesel is used in diesel engines, it is usually blended with diesel at different proportions. Use of 100% biodiesel in diesel engines shows inferior performance of having lower power and torque. Improving in-cylinder airflow characteristic to break down higher viscous biodiesel and to improve air-fuel mixing are the aims of this research. Therefore, guide vanes in the intake runner were used in this research to improve the performance of diesel engine run with biodiesel.
2017-03-28
Technical Paper
2017-01-1233
Mohamed A. Elshaer, Allan Gale, Chingchi Chen
Abstract Vehicle safety is of paramount importance when it comes to plugging the vehicle into the electric utility grid. The impact of high voltage ground fault has been neglected or, if not, addressed by guidelines extracted from general practices, written in international standards. The agile accretion in Electric Vehicle (EV) development deems an exhaustive study on safety risks pertaining to fault occurrence. While vehicle electrification offers a vital solution to oil scarcity, it is essential that the fast development of the number of electric vehicles on the road does not compromise safety. Meanwhile, the link between technology and demands of society must be governed by vehicle safety. In this paper, a comprehensive study on high voltage (HV) fault conditions occurring in an EV will be conducted. In the next decade, EVs are expected to be prevalent worldwide. Ground fault characteristics are significantly dependent on the earthing system.
2017-03-28
Technical Paper
2017-01-1232
Tsubasa Yamazakii, Hidekazu Uchiyama, Kazuaki Nakazawa, Tsubasa Isomura, Hisashi Ogata
Abstract Solar car races are held worldwide, aiming to promote vehicles that help reduce environmental loads on the roads. In order to gain superiority in solar car racing, it is essential to develop a high efficiency brushless direct drive motor that optimizes the energy use to the fullest and allows high speed driving when needed. To achieve these goals, two development approaches of solar car motors are proposed: the high efficiency motor which improves electrical characteristics and significantly reduces energy loss; and the variable field magnet motor that offers instant speed boost for a temporary period of time for overtaking opponents. We have developed a high efficiency motor through the application of an amorphous core and laminated magnets. Instead of the standard method of the W-EDM (Wire-Electric Discharge Machining) for amorphous cores, we utilized water jet cutting, through which we succeeded in achieving insulation between laminated cores.
2017-03-28
Technical Paper
2017-01-1145
Eric De Hesselle, Mark Grozde, Raymond Adamski, Thomas Rolewicz, Mark Erazo
Abstract Hybrid electric vehicles are continuously challenged to meet cross attribute performance while minimizing energy usage and component cost in a very competitive automotive market. As electrified vehicles become more mainstream in the marketplace, hybrid customers are expecting more attribute refinement in combination with the enhanced fuel economy benefits. Minimizing fuel consumption, which tends to drive hybrid powertrain engines to operate under lugging type calibrations, traditionally challenge noise, vibration, and harshness (NVH) metrics. Balancing the design space to satisfy the cost metrics, energy efficiency, noise and vibration & drivability under the hybrid engine lugging conditions can be optimized through the use of multiple CAE tools. This paper describes how achieving NVH metrics can put undesirable boundaries on Powertrain Operation which could affect other performance attributes.
2017-03-28
Technical Paper
2017-01-1148
Toumadher Barhoumi, Hyunjun Kim, Dongsuk Kum
Abstract Finding optimal split hybrid configurations through exhaustive search is almost intractable, mainly due to the huge design space, e.g. 252 compound split configurations using two planetary gear sets (PG). Thus, a systematic exhaustive design methodology is required to find optimal configurations. While most of the prior studies proposed methodologies that assess the performance within the physical design space, i.e. based on the powertrain configurations, this paper proposes a compound lever-based comprehensive design methodology. The (virtual) compound lever is an attractive design tool defined by two design variables, i.e. α and β, that omits the redundancy existing within the physical design space, thus, reduces the computational load. The proposed method explores the entire (virtual) compound lever design space to find optimal compound split configurations with outstanding fuel economy and acceleration performance.
2017-03-28
Technical Paper
2017-01-1700
Rebekah L. Houser, Willett Kempton, Rodney McGee, Fouad Kiamilev, Nick Waite
Abstract Electric vehicles (EVs) hold the potential to greatly shape the way the electric power grid functions. As a load, EVs can be managed to prevent overloads on the electric power system. EVs with bidirectional power flow (V2G) can provide a wide range of services, including load balancing, and can be used to increase integration of renewable resources into electric power markets. Realizing the potential of EVs requires more advanced communication than the technology that is in wide use. Common charging standards do not include a means for an EV to send key vehicle characteristics such as maximum charge rate or battery capacity to a charging station and thus to the grid.
2017-03-28
Technical Paper
2017-01-1701
Sagar Mody, Thomas Steffen
Abstract The goal of grid friendly charging is to avoid putting additional load on the electricity grid when it is heavily loaded already, and to reduce the cost of charging to the consumer. In a smart metering system, Day Ahead tariff (DA) prices are announced in advance for the next day. This information can be used for a simple optimization control, to select to charge at cheapest times. However, the balance of supply and demand is not fully known in advance and the Real-Time Prices (RTP) are therefore likely to be different at times. There is always a risk of a sudden price change, hence adding a stochastic element to the optimization in turn requiring dynamic control to achieve optimal time selection. A stochastic dynamic program (SDP) controller which takes this problem into account has been made and proven by simulation in a previous paper.
2017-03-28
Technical Paper
2017-01-1702
Piyush Aggarwal, Bo Chen, Jason Harper
Abstract The increased market share of electric vehicles and renewable energy resources have raised concerns about their impact on the current electrical distribution grid. To achieve sustainable and stable power distribution, a lot of effort has been made to implement smart grids. This paper addresses Demand Response (DR) load control in a smart grid using Internet of Things (IoT) technology. A smart grid is a networked electrical grid which includes a variety of components and sub-systems, including renewable energy resources, controllable loads, smart meters, and automation devices. An IoT approach is a good fit for the control and energy management of smart grids. Although there are various commercial systems available for smart grid control, the systems based on open sources are limited. In this study, we adopt an open source development platform named Node-RED to integrate DR capabilities in a smart grid for DR load control. The DR system employs the OpenADR standard.
2017-03-28
Technical Paper
2017-01-1699
Luting Wang, Bo Chen
Abstract Vehicle-to-Grid (V2G) service has a potential to improve the reliability and stability of the electrical grid due to the ability of providing bi-directional power flow from/to the grid. However, frequent charging/discharging may impact the battery lifetime. This paper presents the analysis of battery degradation in three scenarios. In the first scenario, different battery capacities are considered. In the second scenario, the battery degradation with various depth of discharge (DOD) are studied. In the third scenario, the capacity loss due to different charging regime are compared. The charging/discharging of plug-in electric vehicles (PEVs) are simulated in a single-phase microgrid system integrated with a photovoltaics (PV) farm, an energy storage system (ESS), and ten electric vehicle service equipment (EVSE).
2017-03-28
Technical Paper
2017-01-0774
Ehsan Faghani, Pooyan Kheirkhah, Christopher W.J. Mabson, Gordon McTaggart-Cowan, Patrick Kirchen, Steve Rogak
Abstract High-pressure direct-injection (HPDI) in heavy duty engines allows a natural gas (NG) engine to maintain diesel-like performance while deriving most of its power from NG. A small diesel pilot injection (5-10% of the fuel energy) is used to ignite the direct injected gas jet. The NG burns in a predominantly non-premixed combustion mode which can produce particulate matter (PM). Here we study the effect of injection strategies on emissions from a HPDI engine in two parts. Part-I will investigates the effect of late post injection (LPI) and Part II will study the effect of slightly premixed combustion (SPC) on emission and engine performance. PM reductions and tradeoffs involved with gas late post-injections (LPI) was investigated in a single-cylinder version of a 6-cylinder,15 liter HPDI engine. The post injection contains 10-25% of total fuel mass, and occurs after the main combustion event.
2017-03-28
Technical Paper
2017-01-0778
Vishnu Vijayakumar, P. Sakthivel, Bhuvenesh Tyagi, Amardeep Singh, Reji Mathai, Shyam Singh, Ajay Kumar Sehgal
Abstract In the light of major research work carried out on the detrimental health impacts of ultrafine particles (<50 nm), Euro VI emission standards incorporate a limit on particle number, of which ultrafine particles is the dominant contributor. As Compressed Natural Gas (CNG) is a cheaper and cleaner fuel when compared to diesel, there has been a steady increase in the number of CNG vehicles on road especially in the heavy duty segment. Off late, there has been much focus on the nature of particle emissions emanating from CNG engines as these particles mainly fall under the ultrafine particle size range. The combustion of lubricant is considered to be the dominant source of particle emissions from CNG engines. Particle emission due to lubricant is affected by the oil transport mechanisms into the combustion chamber which in turn vary with engine operating conditions as well as with the physico chemical properties of the lubricant.
2017-03-28
Technical Paper
2017-01-0876
Senthil Kumar Masimalai, Jai Kumar Mayakrishnan
Abstract Different methods to improve the performance of a WCO (waste cooking oil of sunflower) based mono cylinder compression ignition (CI) engine were investigated. Initially WCO was converted into its emulsion by emulsification process and tested as fuel. In the second phase, the engine intake system was modified to admit excess oxygen along with air to test the engine with WCO and WCO emulsion as fuels under oxygen enriched environment. In the third phase, the engine was modified to work in the dual fuel mode with hydrogen being used as the inducted fuel and either WCO or WCO emulsion used as the pilot fuel. All the tests were carried out at 100% and 40% of the maximum load (3.7 kW power output) at the rated speed of 1500 rpm. Engine data with neat diesel and neat WCO were used for comparison. WCO emulsion indicated considerable improvement in performance. The smoke and NOx values were noted to be less than neat WCO.
2017-03-28
Technical Paper
2017-01-0890
Yoichiro Nakamura, Masahisa Horikoshi, Yasunori TAKEI, Takahiro Onishi, Yasuhiro Murakami, Chip Hewette
Abstract Heavy duty vehicles take a large role in providing global logistics. It is required to have both high durability and reduced CO2 from the viewpoint of global environment conservation. Therefore lubricating oils for transmission and axle/differential gear box are required to have excellent protection and longer drain intervals. However, it is also necessary that the gear oil maintain suitable friction performance for the synchronizers of the transmission. Even with such good performance, both transmission and axle/differential gear box lubricants must balance cost and performance, in particular in the Asian market. The development of gear oil additives for high reliability gear oil must consider the available base oils in various regions as the additive is a global product. In many cases general long drain gear oils for heavy duty vehicles use the group III or IV base oils, but it is desirable to use the group I/II base oils in terms of cost and availability.
2017-03-28
Technical Paper
2017-01-0886
Liyan Feng, Ximing DI, Wuqiang LONG, Yao Wu, Chao Liu, Hang Lv
Abstract The combustion of cylinder lubricating oil (called as cylinder oil for short) is one of the major sources of PM emissions of low-speed 2-stroke marine diesel engines. For pre-mixed combustion low-speed 2-stroke marine gas engines, the auto-ignition of cylinder oil might result in knock or more hazard abnormal combustion - pre-ignition. Evaporation is a key sub-process of the auto-ignition process of cylinder oil droplets. The evaporation behavior has a profound impact on the auto-ignition and combustion processes of cylinder oil droplets, and a great influence on engine combustion performance and emission characteristics. This paper applied an oil suspending apparatus to investigate the evaporation behavior of cylinder oil droplets and base oil droplets. The effects of ambient temperatures on the evaporation process were measured and analyzed. The results indicate that the evaporation of cylinder oil includes heating, evaporating, pyrolysis, and polymerization.
2017-03-28
Technical Paper
2017-01-0885
Bhuvenesh Tyagi, Vishnu Vijayakumar, Shyam Singh, Ajay Kumar Sehgal, R Suresh
Abstract Majority of light and heavy duty commercial vehicles on road in India use API-CF grade lubricants. Soot accumulation in lubricating oil can result in engine wear and lubricant’s viscosity increase thereby affecting its pumping ability and drain interval. Due to faster lubricant degradation and with emergence of newer engine technologies, there is increasing demand of improving performance of lubricants particularly with respect to soot dispersancy. This paper describes the various engine hardware modifications and optimizations carried out on a commercial BS II, 4-cylinder turbocharged diesel engine in order to develop a flexible engine test procedure for evaluating the lubricant’s dispersancy/anti wear characteristics up to 6% soot levels.
2017-03-28
Technical Paper
2017-01-0888
Prashant Kumar, Reji Mathai, Sanjeev KUMAR, Ashish Kachhawa, Ajay Kumar Sehgal, Snigdhamayee Praharaj
Abstract The growing transportation sector worldwide has opened up a way forward not only for the scientists & researchers but also for the OEMs to find out the options for fuel efficient automotive vehicles with reduced emissions during their usage. The demand of automotive vehicles has been doubled in last few years and in turn the market for lubricants and transmission fluids are flourishing. Several new formulations of lubricants are getting popularized with major suppliers to achieve the end user expectations in terms of fuel economy benefits, engine life and emissions. The market trend is continuously moving towards the improvement in lubricant formulation to the lower viscosity ranges and in this direction several companies are into development of multi-grade low viscosity range of engine oils (lubricants) which is said to be providing the benefits in terms of fuel economy.
2017-03-28
Technical Paper
2017-01-0887
Dairene Uy, George Pranis, Anthony Morelli, Arup Gangopadhyay, Alexander Michlberger, Nicholas Secue, Mike Kinzel, Tina Adams, Kevin Streck, Michael Lance, Andrew Wereszczak
Abstract Deposit formation within turbocharger compressor housings can lead to compressor efficiency degradation. This loss of turbo efficiency may degrade fuel economy and increase CO2 and NOx emissions. To understand the role that engine oil composition and formulation play in deposit formation, five different lubricants were run in a fired engine test while monitoring turbocharger compressor efficiency over time. Base stock group, additive package, and viscosity modifier treat rate were varied in the lubricants tested. After each test was completed the turbocharger compressor cover and back plate deposits were characterized. A laboratory oil mist coking rig has also been constructed, which generated deposits having the same characteristics as those from the engine tests. By analyzing results from both lab and engine tests, correlations between deposit characteristics and their effect on compressor efficiency were observed.
Viewing 1 to 30 of 16433