Viewing 1 to 21 of 21
Ravi Rajamani
The environmental impact of hydrocarbon-burning aircraft is one of the main motivations for the move to electric propulsion in aerospace. Also, cars, buses, and trucks are incorporating electric or hybrid-electric propulsion systems, reducing the pressure on hydrocarbons and lowering the costs of electrical components. The economies of scale necessitated by the automotive industry will help contain costs in the aviation sector as well. The use of electric propulsion in airplanes is not a new phenomenon. However, it is only recently that it has taken off in a concrete manner with a viable commercial future. The Electric Flight Technology: Unfolding of a New Future reviews the history of this field, discusses the key underlying technologies, and describes how the future for these technologies will likely unfold, distinguishing between all-electric (AE) and hybrid-electric (HE) architectures. Written by Dr.
Michael Waller
Larger airframes drove the development of electrical systems, capable of quickly and reliably starting the new higher power engines. These soon gave rise to the need for engine-mounted electrical generators as the primary source of in-flight power for the electrical loads and onboard recharging of the aircraft battery system. Of all the backup power sources, batteries represent the most common means of storing energy for auxiliary or emergency power requirements. It is not unusual for a typical commercial airliner, such as a B-737 or A-320, to have dozens of batteries on board. Over time, multiple battery chemistries were put to the test and the industry is still working on the optimal option. The lithium-ion technology has been gaining acceptance, with some important aspects to be considered: the application type, basic safety requirements and the presence or absence of humans on the vehicle.
Jean Broge
Aviation propulsion development continues to rely upon fossil fuels for the vast majority of commercial and military applications. Until these fuels are depleted or abandoned, burning them will continue to jeopardize air quality and provoke increased regulation. With those challenges in mind, research and development of more efficient and electric propulsion systems will expand. Fuel-cell technology is but one example that addresses such emission and resource challenges, and others, including negligible acoustic emissions and the potential to leverage current infrastructure models. For now, these technologies are consigned to smaller aircraft applications, but are expected to mature toward use in larger aircraft. Additionally, measures such as electric/conventional hybrid configurations will ultimately increase efficiencies and knowledge of electric systems while minimizing industrial costs.
Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously describes energy harvesting using a hybrid concentrating photovoltaic (PV) system with simultaneous thermal generation for energy storage. Several designs have been proposed to build a system that takes advantage of the entire solar spectrum through direct electric generation using concentrated light onto photovoltaics while generating thermal energy using wavelengths of light not captured by the PV cell. This title addresses the current technologies and state-of-the-art designs, as well as the methodologies, underlying physics, and engineering implications.
Experimental and Simulation Tools for Thin-Film Solar Cells describes the methods used for the optical characterization and design of thin-film solar cells. A description of the cells under study (CdTe, CIGS, CZTS, Perovskite, and organic) is given, followed by coupling experimental and simulation studies in order to improve solar cell performances. A detailed discussion on specific optical tools (ellipsometry, photoluminescence and photoreflectance) is included, and a link between materials and measurements is made by studying the relevant physical principles. Finally, a numerical model is provided that can be used to design the structure of a thin-film solar cell.
Harry Zervos, Peter Harrop
The electric vehicle industry - land, water and air - is rapidly rising to become a market of over $533 billion by 2025. Some run entirely on harvested energy as with solar lake boats. Others recycle energy as with regenerative braking of cars, buses and military vehicles harvesting kinetic energy. Others use different forms of harvesting either to charge the traction batteries, or to drive autonomous device. In some cases, harvesting is making completely new forms of electric vehicle possible such as "glider" Autonomous Underwater Vehicles (AUVs) that can stay at sea for years, gaining electricity from both wave power and sunshine. Multiple forms of energy harvesting on one vehicle are becoming more common from cars to superyachts.
Edouard Freund, Paul Lucchese
Hydrogen, energy vector for the future? Or, on the contrary, limited to its current applications in the field of chemistry and refining for decades to come, possibly even until the end of the century? There is much controversy over this issue and two sides to the argument. Advocates of the hydrogen civilization consider that, following a technological revolution hydrogen will play a universal role alongside electricity as a substitute for fossil fuels, especially (but not only) in transport, leading to radical elimination of CO2 emissions. For the skeptics, and even outspoken opponents, hydrogen will remain restricted to its current applications due to the insoluble problems inherent to its generalized use, especially in transport. This book highlights the increasing and inevitable role of "energy" hydrogen – as opposed to chemical hydrogen – in the key sectors of transport and "clean" electricity production.
Daniel Ballerini
Changes in the world energy context, the increasing awareness of the environmental stakes and the development of research on the production of second and third generation biofuels revealed a clear need to write a new book which updates and complements all technical, financial and environmental aspects of Les Biocarburants – État des lieux, perspectives et enjeux du développement (Biofuels – Current status, outlook and development stakes) published in 2006. This new book provides a detailed state of the art of the first generation biofuel production technologies. It describes the new «second generation» pathways which use lignocellulosic biomass as raw material is starting to find industrial applications, thereby reducing the competition between the food resource and the use of agricultural materials for energy purposes. It also provides a technical update on the algaeto-energy pathway (third generation), and the production of methane and hydrogen by biochemical pathways.
David Cahen, David S. Ginley
How will we meet rising energy demands? What are our options? Are there viable long-term solutions for the future? Learn the fundamental physical, chemical and materials science at the heart of: • Renewable/non-renewable energy sources • Future transportation systems • Energy efficiency • Energy storage Whether you are a student taking an energy course or a newcomer to the field, this book will help you understand critical relationships between the environment, energy and sustainability. Leading experts provide comprehensive coverage of each topic, bringing together diverse subject matter by integrating theory with engaging insights. Each chapter includes helpful features to aid understanding, including a historical overview to provide context, suggested further reading and questions for discussion. Full color images complement the text and color-coded sections aid browsing.
Ahmed F. Zobaa, Ramesh Bansal
Effects of environmental, economic, social, political and technical factors have supported the rapid deployment of various sources of renewable energy-based power generation. The incorporation of these generation technologies have led to the development of a broad array of new methods and tools to integrate this new form of generation into the power system network. This book, arranged into six sections, highlights various renewable energy based generation technologies, and consists of a series of papers written by experts in their respective fields of specialization. The Handbook of Renewable Energy Technology will be of great practical benefit to professionals, scientists and researchers in the relevant industries, and will be of interest to those of the general public wanting to know more about renewable energy technologies.
This set includes: SAE International Journal of Aerospace March 2010 - Volume 2 Issue 1 SAE International Journal of Commercial Vehicles October 2009 - Volume 2, Issue 1 March 2010 - Volume 2, Issue 2 SAE International Journal of Engines October 2009 - Volume 2, Issue 1 March 2010 - Volume 2, Issue 2 SAE International Journal of Fuels and Lubricants October 2009 - Volume 2, Issue 1 March 2010 - Volume 2, Issue 2 SAE International Journal of Materials and Manufacturing October 2009 - Volume 2, Issue 1 March 2010 - Volume 2, Issue 2 SAE International Journal of Passenger Cars - Electronic and Electrical Systems October 2009 - Volume 2, Issue 1 SAE International Journal of Passenger Cars - Mechanical Systems October 2009 - Volume 2, Issue 1 March 2010 - Volume 2, Issue 2
Jim Gammon
This new edition, extensively updated, provides a complete explanation of 33 common procedures used by fuel handlers to assess and protect aviation fuel quality. New to this Edition! o Rewritten API gravity section now includes the latest information on metric density o Fuel sampling techniques section was improved to keep up with the changes in ASTM D4306 o Revised micro-separometer section o New and vitally important section on flushing new aviation fuel hoses o Updated filtration equipment section reflects changes in the industry regarding the API/IP/EI filtration standards o Completely rewritten section on microbial contamination detection reflects the changes in the oil company and airline industry standards, changes in test equipment, and aircraft maintenance practices o And much more!
Richard Gilbert, Anthony Perl
This book sets out the challenges that will soon threaten modern society's dependence on low-cost transport in light of the problems posed by oil supply and climate change. It proposes organizational and technical innovations that could ensure effective, secure movement of people and goods in ways that minimize environmental impacts and make the best use of renewable sources of energy. The authors conclude that transport in the first half of the 21st century will feature at least two revolutions. One will involve the use of electric drives rather than internal combustion engines. The other will involve powering these drives directly from the electric grid rather than from on-board fuel. The authors also address revolutions in marine transport and aviation and analyze the politics and business of transport and how these will undergo profound change in the decades ahead.
Christopher J. Fanchi, John R. Fanchi
This book, in its second edition, examines the energy sources that play a vital role in society today, as well as those that may be the primary energy sources of tomorrow. From our reliance on fossil fuels to the quest for energy independence, and the environmental issues that follow each decision, this book delves into the most prominent energy issues of our time. Armed with this information, the reader can think critically about the direction they want this world to take. Contents: Brief History of Energy Consumption Fossil Energy - Coal Fossil Energy - Oil and Gas Peak Oil Nuclear Energy Renewable Energy - Solar Energy Renewable Energy - Wind Energy Renewable Energy - Energy from Water Renewable Energy - Bioenergy and Synfuels Energy Carrier, Energy Storage and Hybrid Energy Systems Electricity Generation and Distribution Energy Economics Future Issues - Geopolitics of Energy Future Issues - Energy Forecasts
SR Westbrook, George E. Totten, RJ Shah
This well-referenced handbook is comprehensive, in-depth, and provides a detailed overview of ALL of the important ASTM and non-ASTM fuels and lubricants test procedures. Readers will get a thorough overview of the application-related properties being tested and an extensive discussion of the principles behind the tests and their relationship to the properties themselves. A must-have for anyone in the industry involved in the formulation, use, and specification of fuels and lubricants. The information is subdivided into four sections: Petroleum Refining Processes for Fuels and Lubricant Basestocks Fuels Hydrocarbons and Synthetic Lubricants Performance/Property Testing Procedures
Andrew Dicks, James Larminie
Fuel cell technology is developing at a rapid pace, thanks to the increasing awareness of the need for pollution-free power sources. Moreover, new developments in catalysts and improved reliability have made fuel cells viable candidates in a road range of applications, from small power stations, to cars, to laptop computers and mobile phones. Building on the success of the first edition, Fuel Cell Systems Explained presents a balanced introduction to this growing area. "In summary, an altogether satisfying book that puts within its covers the academic tools necessary for explaining fuel cell systems on a multidisciplinary basis." - Power Engineering Journal "An excellent book...well written and produced."- Journal of Power and Energy
Viewing 1 to 21 of 21