Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 268
2017-11-05
Technical Paper
2017-32-0049
Kohei Hirano, Yuki Chihara
The new titanium fuel tank has been developed to reduce weight of the fuel tank of production motocrossers. While the titanium permits deep drawing to shape a tank by presswork, the processing of titanium material is difficult, hence no past application of the material for a motorcycle fuel tank. This project was aimed at development of new techniques for mass production of titanium fuel tanks, and succeeded in mass production of titanium fuel tanks having an adequate durability to apply to a motocrosser that can receive a strong impact while driving. As a result, approximately 40% of weight reduction from the plastic fuel tank having the same fuel capacity was realized.
2017-10-08
Technical Paper
2017-01-2407
Michael Bardon, Greg Pucher, David Gardiner, Javier Ariztegui, Roger Cracknell, Heather Hamje, Leonardo Pellegrini, David Rickeard
Abstract Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this, but a practical concern is the flammability of the headspace vapours in the vehicle fuel tank. Gasoline is much more volatile than diesel so, at most ambient temperatures, the headspace vapours in the tank are too rich to burn. A gasoline/diesel mixture in a fuel tank therefore can result in a flammable headspace, particularly at cold ambient temperatures. A mathematical model is presented that predicts the flammability of the headspace vapours in a tank containing mixtures of gasoline and diesel fuel. Fourteen hydrocarbons and ethanol represent the volatile components. Heavier components are treated as non-volatile diluents in the liquid phase.
2017-05-18
Journal Article
2017-01-9678
G Agawane, Varun Jadon, Venkatesham Balide, R Banerjee
Abstract Liquid sloshing noise from an automotive fuel tank is becoming increasingly important during frequent accelerating/decelerating driving conditions. It is becoming more apparent due to significant decrease in other noise sources in a vehicle, particularly in hybrid vehicles. As a step toward understanding the dynamics of liquid sloshing and noise generation mechanism, an experimental study was performed in a partially filled rectangular tank. A systematic study was performed to understand the effects of critical parameters like fill level and acceleration/deceleration magnitude. Response parameters like dynamic pressure, dynamic force, dynamic acceleration and sound pressure levels along with high speed video images were recorded. The proposed experimental setup was able to demonstrate major events leading to sloshing noise generation. These events in the sloshing mechanism have been analysed from the dynamic sensor data and correlated with high speed video images.
2017-03-28
Technical Paper
2017-01-0124
V N Bhasker, Abhinav Agarwal, Abhishek Sharma, Avisek Das, Nirajkumar Mishra
Abstract Vehicle heat management has become a serious concern due to escalating under-hood and exhaust temperatures. Compact vehicle packaging caused by downsizing has further magnified this concern. In an automobile, fuel is stored in a metallic or plastic fuel tank. In addition to fuel storage, temperature inside fuel tank has to be maintained at a certain limit in order to control high fuel evaporation rate and prevent deterioration of parts. The fuel tank surface temperature is governed by heat rejection from the engine, exhaust system and heat radiated from the road. Generally, mechanical shielding has been found to be an efficient defense to the heat management problem. However ‘what to shield’, ‘where to place the shield’ and ‘how to shield’ are the major challenges. This paper describes a methodology followed to reduce temperature on fuel tank surface by varying material, geometry and layout of heat shields.
2017-03-28
Technical Paper
2017-01-0447
Zhe Li, Mike Dong, Dennis Harrigan, Michael Gardner
In gasoline Powertrain systems, the evaporative emission control (EVAP) system canister purge valve (CPV) can be actuated by pulse-width modulated (PWM) signals. The CPV is an electronically actuated solenoid. The PWM controlled CPV, when actuated, creates pressure pulsations in the system. This pulsation is sent back to the rest of the EVAP system. Given the right conditions, the fill limit vent valve (FLVV) inside the fuel tank can be excited. The FLVV internal components can be excited and produce noise. This noise can be objectionable to the occupants. Additional components within the EVAP system may also be excited in a similar way. This paper presents a bench test method using parts from vehicle’s EVAP system and other key fuel system components.
2017-03-28
Technical Paper
2017-01-1020
Finn Tseng, Imad Makki, Pankaj Kumar, Robert Jentz, Aed Dudar
Abstract Engine-Off Natural Vacuum (EONV) principles based leak detection monitors are designed to determine the presence of a small leak in the fuel tank system. It was introduced to address the ever more stringent emission requirement (currently at 0.02”) for gasoline engine equipped vehicles as proposed by the Environmental Protection Agency (EPA) and California Air Resources Board (CARB) in the United States [2, 3]. Other environmental protection agencies including the ones in EU and China will be adopting similar regulations in the near future. Due to its sensitivity to known noise factors such as the ambient temperature, barometric pressure, drive pattern and parking angle, it has been historically a lower performing monitor that is susceptible to warranty cost or even voluntary recalls. The proposed new model based monitor utilizes production pressure signal and newly instrumented temperature sensors [15].
2017-03-28
Technical Paper
2017-01-1317
Luis Felipe Blas Martinez, Rodolfo Palma, Francisco Gomez, Dhaval Vaishnav, Francisco Canales
Abstract Liquid sloshing is an important issue in ground transportation, aerospace and automotive applications. Effects of sloshing in a moving liquid container can cause various issues related to vehicle stability, safety, component fatigue, audible noise and, liquid level measurement. The sloshing phenomenon is a highly nonlinear oscillatory movement of the free-surface of liquid inside a container under the effect of continuous or momentarily excitation forces. These excitation forces can result from sudden acceleration, braking, sharp turning or pitching motions. The sloshing waves generated by the excitation forces can impact on the tank surface and cause additional vibrations. For the loads with the frequencies between 2 to 200 Hz, the structural fatigue failure is a major concern for automotive applications.
2017-01-10
Technical Paper
2017-26-0263
Vikas Palve, Prashant Bhavsar, Shyamsundar Kumbhar, Gyanendra Roy
Abstract This paper describes an investigation of the suitability of FE analysis using the virtual fluid mass (VFM) in fuel tank validation. It produces a mass matrix which represents the fluid coupled to a boundary consisting of structural elements and other effects, such as free surfaces, planes of symmetry and infinite fluids. The incompressible fluid produces a mass matrix defined with full coupling between accelerations and pressures on the flexible structural interfaces. This capability is used to model fuel tank with fuel filled inside. Hence, using the VFM method modal analysis is performed keeping the fuel tank 90% filled and results are compared with physical testing. The VFM method is much more reliable and accurate than the NSM or density adjusted method. The modal frequencies obtained in VFM technique are in proximity with the physical testing results.
2016-09-20
Technical Paper
2016-01-2050
Martin Espinosa Sanchez, Mario Pérez Millás
Abstract The effect of air pockets in capillaries in terms of pressure variations is investigated experimentally. Pressure sensors in aircraft are often installed separate to the pipes and connected with capillaries to minimise ignition sources within fuel tanks. Trapped air within these capillaries might distort the measurement. These effects are characterised in this paper. Extensive tests with different capillary configurations, trapped air volumes and pressure transients are studied. The data obtained shows that the main effect of trapped air during pressure transients is a delay in the pressure response against its excitation, causing local pressure oscillations around its source value until the pressure is equal in both places again. These oscillations can turn into high pressure peaks under critical conditions. Greater amounts of air can cause greater delays and viceversa.
2016-04-05
Technical Paper
2016-01-0286
Changsheng Wang, Haijiang Liu, Tao Zhang, Zhiyong Zhu, Liang Liu
Abstract With the increasing development in automotive industry, finite element (FE) analysis with model bias prediction has been used more and more widely in the fields of chassis design, body weight reduction optimization and some components development, which reduced the development cycles and enhanced analysis accuracy significantly. However, in the simulation process of plastic fuel tank system, there is few study of model validation or verification, which results that non-risky design decisions cannot be enhanced due to too much consuming time. In this study, to correct the discrepancy and uncertainty of the simulated finite element model, Bayesian inference-based method is employed, to quantify model uncertainty and evaluate the simulated results based on collected data from real mechanical tests of plastic fuel tanks and FE simulations under the same boundary conditions.
2015-09-29
Technical Paper
2015-01-2832
Keith Friedman, John Hutchinson, Khahn Bui, Matthew Stephens, Alyssa Schmidt
Abstract The incidence of fire in heavy trucks has been shown to be about ten times higher under crash conditions than occurs in passenger vehicles. Fuel tank protection testing defined in SAE standard J703 was originally issued in 1954 and presently echoes federal regulations codified in 49 CFR 393. These tests do not reflect dynamic impact conditions representative of those that can be expected by heavy trucks on the road today. Advanced virtual testing of current and alternative fuel tank designs and locations under example impact conditions is reported. Virtual testing methods can model vehicle to vehicle and vehicle to fixed object impacts. These results can then be utilized to evaluate and refine fuel tank protection system design approaches.
2015-09-22
Technical Paper
2015-36-0140
Antonio Ruiz, Danilo Silva, Thiago Rossetti, Nathan Boa, Filipe Geremias, Marcos Passo
Abstract The Fuel Supply Module, FSM, is responsible to deliver fuel to engine in all application range in correct system pressure. It is usually installed inside the fuel tank. The pressure regulator is a component used in vehicles to regulate the engine fuel line pressure. This component is usually placed inside the tank, in the FSM. In some cases it is assembled at the fuel supply module flange due to layout restrictions. One application was released for 380kPa, without any problems. Once the system pressure was increased to 420kPa, it was observed noise problems in vehicle at high temperatures. It was investigated the root cause for the abnormal noise and observed the pressure regulator natural frequency matching with the flange housing natural frequency at specific conditions. The objective of this paper is to describe a methodology to identify and solve a noise problem using the design elements influence based on its behavior.
2015-09-22
Technical Paper
2015-36-0297
Filipe Fabian Buscariolo, Felipe Magazoni, Leonardo José Della Volpe, Flavio Maruyama, Julio Cesar Lelis Alves
Abstract Vehicle fuel filling may not occur the fastest way, mainly due to the filler neck geometry and low fuel flow from the pump. When the fuel tank in empty, the previous interferences are increased, once the inner pressure increases, complicating even more the fuel filling activity. Another problem that occurs due to poor filler neck design is fuel pump nozzle shut off, once the fuel flow can’t overcome the tank inner pressure causing fuel to return, turning off the pump or even leakage. The recent advances in CFD Codes and computational power allowed multiphase simulations to be performed in production level by the industries worldwide. This paper takes advantage of these advances and proposes a methodology for fuel filling simulation using multiphase CFD simulation in order to evaluate a filler neck design, by measuring the total filling time.
2015-09-15
Technical Paper
2015-01-2593
Jonathan L. Geisheimer, Michael Wabs, Carlos Carvalho
Abstract Time Domain Reflectometery (TDR) is a Radio Frequency (RF) technology that has been used for many years to find cable breaks and measure fluid levels in industrial processes. The technology uses picosecond length pulses and the associated reflections off the fluid surface in a time of flight measurement to determine fluid height. TDR signals have additional information that can be processed and utilized for Integrated Vehicle Health Management (IVHM) applications. For example, when water collects in the fuel tank, TDR is capable of identifying and measuring the amount of water. This can allow the water sumps to be drained on condition instead of on a schedule. In addition, electromagnetic properties of the fluid can be determined, such as the dielectric constant, which can be used to identify mis-fueling situations, contaminants in the fluid, and potentially other fluid health properties.
2015-04-14
Technical Paper
2015-01-0672
Douglas Marriott, Takeshi Ohtomo, Tohru Wako
Abstract Predicting sloshing noise as early as possible during the design process has become an increasingly desired simulation for fuel tank suppliers as the demand for quieter vehicles increase. Simulating early on in the design process enables suppliers to build products directly to customer specifications, at a lower cost and shorter timeframe. The procedure to accurately and efficiently analyze complete sloshing noise behavior has to date not been fully established. Current methods rely on indirect noise deduction based on specific positions from Fluid-Structure Interaction (FSI) analyses or uncoupled fluid analysis with separate structural and acoustic analyses. In this paper, we introduce a technique to analyze the fully coupled sloshing noise generated in the fuel tank of an automobile. The technique takes advantage of combining an explicit coupled Lagrangian and Eulerian solver with an acoustics solver.
2015-04-14
Journal Article
2015-01-0521
Yong-Yuan Ku, Ta-Wei Tang, Ko Wei Lin, Steven Chan
With the development of world economy, the shortage in the supply of oil energy as well as the greenhouse effect have become a public concern around the world. The application of biodiesel on vehicle transportation has become the focus of development in many countries. Biodiesel, Fatty Acid Methyl Esters (FAME), is made during the process of transesterification of the animal and vegetable oils. Compared with fossil diesel, biodiesel has some characteristics, such as organic acid, higher water saturation, and oxygen content. From the results of the literatures [1] to [5], it showed that biodiesel would cause the inflation of some plastic and flexible products and the corrosion of metal materials. Metal fuel tanks have the characteristics of high flammability, high impact resistance, and good workability and are often used in commercial vehicles. The corrosion of metal materials is a natural chemical change and it can be influenced by the environment.
2015-01-14
Technical Paper
2015-26-0240
Avinash Dhole, Chetan Raval, Rishi Shrivastava
Abstract In commercial vehicles which generally have large capacity fuel tank, sloshing of fuel and its effect on the tank structure is very important aspect during fuel tank design. Dynamic pressures exerted by the fuel on baffles, end plates and tank shell during sloshing can lead to structural failures and fuel leakage problems. Fluid structure interaction simulation of automotive fuel tank sloshing and its correlation with physical test is demonstrated in this study. During physical sloshing test of 350 L fuel tank, cracks were observed on center baffle and spot weld failures developed on fuel tank shell. Same sloshing test was simulated for one sloshing cycle using fluid structure interaction approach in LS Dyna explicit FE solver. Water was used instead of fuel. Mesh free Smoothed Particle Hydrodynamics (SPH) method is used to represent water as it requires less computational time as compared to Eulerian or ALE method.
2015-01-14
Technical Paper
2015-26-0015
N Anandaraj
Abstract Fuel level sensor is a device to indicate the level of the fuel in fuel tank fitted in an automobile. This will have features to communicate the fuel level to the dashboard of the vehicle and is of significant attention to the driver during vehicle usage. The advanced instrumentation provides a lot of information on the dashboard display such as information about fuel level, computing mileage, miles to go or miles to empty, fuel economy, average mileage, etc. Presently, the float arm type with Thick Film Resistor(TFR) and Reed switch type fuel level sensors are being used. To have accurate information for computing, the present sensors are not supporting due to its limitations like nonlinearity, fluctuating output due to slosh, output variations in steps and not continuous. The measurement accuracy of the fuel level sensor needs to be focused to rely on the information available on the dashboard instrument.
2014-09-30
Technical Paper
2014-36-0122
Felipe L. Moretti, Márcio E. Silveira, Paulo C. M. F. Lamin, Jorge N. Brito, Bruno C. Pockszevnicki
Abstract The research of the sloshing (defined as being the oscillations of the free surface of a fluid inside of a container) has many applications in the automotive, naval and aerospace industry. In the automotive industry, the sloshing behavior in fuel tanks is part of an overall NVH research to design cars that run smoother and quieter. Sloshing in fuel tanks typically occurs during the acceleration or braking of the vehicle, where the inertia make the fluid to move abruptly inside of the tank, generating undesirable noises to the passengers. The sloshing research allows knowing the fuel motion inside the tank, becoming possible to reduce the level of noise generated from the interaction of the fluid with the tank, by an optimized project of the tank geometric, fuel bomb localization, and the introduction of baffles.
2014-09-30
Technical Paper
2014-36-0128
Rafael Hilario Fonseca Mazzorana, Olício da Silva Junior, Roberson Assis de Oliveira
Abstract The proper technology selection, depending on the application environment, will be discussed and exemplified in this paper through the analysis of the fuel level sensor technology selection applied to the Latin America environment. Commercial vehicles have a very particular requirement when it comes to fuel tanks configuration, depending on usage (autonomy), road conditions, weight distribution and application. The most common layout is the dual tank configuration where two tanks are connected to each other by means of communication vessels. After the selection of the fuel tank layout, the challenge is to correctly select the level sensor system, which provides useful information to the vehicle driver. If this measurement is not correctly performed, a significant logistic issue is raised, as usually, a commercial vehicle with full load carries up to 1200 liters of diesel (it will depend on the desired range).
2014-09-30
Technical Paper
2014-01-2365
Vinod Kumar Mannaru, Sunil M Makhe, Lori Stephens, Dinesh Kumar, Shivaprasad Goud
Abstract Vapor management system is critical to manage fuel tank capacity, evaporative emissions and pressure control for hybrid applications. Due to stringent emission norms and other regulations there has been lot of advancements in design and application of vapor control valves that are used in automotive fuel tanks. Continuous exposure of these valves to fuel vapor or fuel in some instances led to swelling of assemblies and poses serious threat to product functionality and maintaining required tolerances. Swelling of plastics in fuel is ideally a case of multi physics, which involves modeling of complex mass transfer phenomena. In this study a simple thermal analogous approach has been used to model swelling behavior by characterizing the basic plastic-fuel soaking through coefficient of hygroscopic swelling. Extensive testing has been performed with multiple plastic-fuel combinations with different shapes at different temperatures.
2014-09-30
Technical Paper
2014-01-2384
Prashant Shinde, Pratik Gore
Abstract This paper is an attempt to address one of the causes of catastrophic failures attributed to incidents of fire and smoke in commercial vehicles during last few years in China and India which have resulted in a considerable number of casualties. Some of the accidents encountered happened because of a crash with fire originating from the fuel tank. This was attributed to fuel leakage and excessive heat produced due to friction of debris with the fuel tank which happened within a few seconds of the crash. A Fuel-Tank Safety ECU for preventing such fire-mishaps shall be designed for spotting this failure and activating prevention methods in order. This ECU shall process the data coming from temperature-sensor and fuel-pressure sensor placed on the fuel tank of the vehicle. This real-time data shall be compared with the previously computed values and then the delta-differentiated value shall be used to conclude the likelihood of a fire-occurrence.
2014-09-01
Journal Article
2014-01-9001
Kai Chen
The synthetic paraffinic kerosine (SPK) produced via HEFAs is of great interest for civil aviation industry as it exhibits an excellent thermal oxidative stability with significantly lower particulate matter emission. However, due to its aromatic free characteristics, the widespread use of SPK is limited by its compatibility with non-metal materials such as fuel tank elastomers. In this research the compatibility of SPK and its blends with widely used aircraft fuel tank elastomers were systematically studied. Experimental results demonstrated the volume swellability of all selected materials showed a linear relationship with volume percentage of No.3 jet fuel in SPK blend. The increase of volume percentage of No.3 jet fuel in the SPK blend increased volume swellability for all materials except fluorosilicone gasket.
2014-04-01
Technical Paper
2014-01-0888
V. Jadon, G. Agawane, A. Baghel, Venkatesham Balide, R. Banerjee, A. Getta, H. Viswanathan, A. Awasthi
Abstract With significant decrease in the background noise in present day automobiles, liquid slosh noise from an automotive fuel tank is considered as a major irritant during acceleration and deceleration. All major international OEMs and their suppliers try to reduce sloshing noise by various design modifications in the fuel tank. However, most major activities reported in open literature are primarily based on performing various CAE and experimental studies in isolation. However, noise generation and its propagation is a multiphysics phenomenon, where fluid mechanics due to liquid sloshing affects structural behaviour of the fuel tank and its mountings which in turn affects noise generation and propagation. In the present study a multiphysics approach to noise generation has been used to predict liquid sloshing noise from a rectangular tank.
2014-04-01
Technical Paper
2014-01-0921
Barry (Baizhong) Lin, Mike Gundle, Mike Rowley, Alan Aloe, Frederick Zweng, Eric Blackburn, Chandra Thandhayuthapani, Chandra Thonta, Edward Law, Kah Wah Long, Mike Temkin, Zachary Calkins
Abstract Fuel Tank Straps very often get different durability fatigue test results from different types of durability testing such as shaker table vibration, road test simulator (RTS) vehicle testing and proving ground vehicle durability testing. One test produces good durability results and other may indicate some durability risk. A special study was conducted to address this inconsistency. It was found that fuel level in the tank plays a big role in fuel tank strap durability. Higher fuel levels in a tank produce higher loads in straps and lower fatigue life. This paper will use a CAE fuel tank strap model and acquired proving ground strap load data to study fuel level influence in fuel tank strap durability. The fuel level study includes a full tank of fuel, 3 quarters tank of fuel, a half tank of fuel and one quarter tank of fuel.
2014-04-01
Journal Article
2014-01-1632
Dhaval Vaishnav, Mike Dong, Mayur Shah, Francisco Gomez, Mohammad Usman
When a vehicle with a partially filled fuel tank undergoes sudden acceleration, braking, turning or pitching motion, fuel sloshing is experienced. It is important to establish a CAE methodology to accurately predict slosh phenomenon. Fuel slosh can lead to many failure modes such as noise, erroneous fuel indication, irregular fuel supply at low fuel level and durability issues caused by high impact forces on tank surface and internal parts. This paper summarizes activities carried out by the fuel system team at Ford Motor Company to develop and validate such CAE methodology. In particular two methods are discussed here. The first method is Volume Of Fluid (VOF) based incompressible multiphase Eulerian transient CAE method. The CFD solvers used here are Star CD and Star CCM+. The second method incorporates Fluid-Structure interaction (FSI) using Arbitrary Lagrangian-Eulerian (ALE) formulation.
2013-11-27
Technical Paper
2013-01-2868
Tarun K. Chitkara, Zubairkhan Kittur, Rajiv Soman
Sloshing refers to the highly nonlinear movement of any liquid inside an object where the dynamic forces of the liquid can interact with the object to alter the overall system dynamics significantly. The purpose of this paper is to design and simulate the 3-D geometry of a fuel tank using the volume of fluid (VOF) method considering multi-phase fluid flow approach predicting fuel slosh movement at a specific capacity within a definite fixed volume. The splash of gasoline inside the partially filled fuel tank when subjected to sudden deceleration can be modeled, analyzed and effectively controlled by reducing pressure intensities inside the tank walls using a coupled fluid structure interaction at a common interface within the fuel tank through commercial CFD codes [1].
2013-10-07
Technical Paper
2013-36-0276
Milene A. Luciano, Vanessa F. C. Lins
In the last decade, industries have been concerned about the processes production sustainability and with the use of alternative energies forms, in order to minimize the amount of waste generated in the process, and to suit market requirements. With this view, one alternative for automotive industry is the use of organometallic coated automotive fuel tanks. These tanks are not permeable to hydrocarbons, they do not need to be painted after stamping and are 100% recyclable. The replacement of fossil fuels with biofuels is also a way to minimize the emission of carbon dioxide in the atmosphere, reducing global warming. In this work, corrosion resistance of organometallic coated and tin coated automotive tanks, in contact with hydrated ethyl alcohol, gasoline, and diesel and soybean biodiesel was evaluated and compared, using Electrochemical Impedance Spectroscopy technique.
2013-10-07
Technical Paper
2013-36-0543
Eduardo Santos, Tiago Soares, Diana Vieira, Anthony Pimentel
In the past few years the automotive industry has shown an increasing concern on safety issues and predicting the right behavior of vehicle structures under crash situations has been a great preoccupation. CAE has a major role in crash validations, especially when predicting the rupture of fuel tanks, since avoiding any leaks has a great importance on the occupant's safety. Crash simulation of fuel tanks is a standard when developing this kind of product. However, with the increasing demand on more accurate models, new necessities appear. Accounting for the changes that the fabrication process makes on material properties is beginning to be a reality, especially with metal forming that brings local thinning and residual stresses to the fuel tank. In an attempt to build a more accurate model and to study the effect of local changes of material properties on the output of a crash analysis, this paper combines stamping and crash simulations.
2013-09-17
Journal Article
2013-01-2256
Hyomi Jeong
We applied ultrasonic propagation imaging (UPI) system for rapid and reliable quality control of fuel tanks for a space launcher. The fuel tank is an aluminum-lined CFRP propellant tank. The UPI system uses Q-switched laser (QL) to generate ultrasonic wave on the test specimen, and laser mirror scanner (LMS) to control the laser impinging point that scans the area of interest with high speed. Each ultrasonic wave generated by laser impinging was received by a piezoelectric sensor with coordinate information of the scanned area. After ultrasonic propagation image processing, results with impact damage and manufacturing defect information of the fuel tank were presented.
Viewing 1 to 30 of 268

Filter