Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 6059
2016-06-15
Technical Paper
2016-01-1798
Quentin Buisson, Jean-Louis Guyader, Serge Puvilland, Xavier Carniel, Maximilien Soenen
Abstract The goal of the present study is to provide a simple method to compare structure borne noise sources in order to choose the most efficient one, considering the transmission of dynamic forces. It is well known that mechanical sources are not only dependent of the source itself but also of the receiving structure, in addition real sources cannot be reduced to a transverse force acting on the structure but more complicated effect like moment excitation must be taken into account. The advantage of the reception plate method is to characterize the source globally by the level of vibration of the reception plate whatever the type of excitation, the idea is basically to characterize mechanical sources as it is done for acoustical sources in reverberant rooms. A reception plate test bench has been developed to determine the power injected by mechanical sources. Two prototype plates have been designed in order to have different receiving mobilities.
2016-05-18
Journal Article
2016-01-9043
Timo van Overbrueggen, Marco Braun, Michael Klaas, Wolfgang Schroder
Abstract The interaction of biofuel sprays from an outward opening hollow cone injector and the flow field inside an internal combustion engine is analyzed by Mie-Scattering Imaging (MSI) and high-speed stereoscopic particle-image velocimetry (stereo-PIV). Two fuels (ethanol and methyl ethyl ketone (MEK)), four injection pressures (50, 100, 150, and 200 bar), three starting points of injection (60°, 277°, and 297° atdc), and two engine speeds (1,500 rpm and 2,000 rpm) define the parameter space of the experiments. The MSI measurements determine the vertical penetration length and the spray cone angle of the ethanol and MEK spray. Stereo-PIV is used to investigate the interaction of the flow field and the ethanol spray after the injection process for a start of injection at 60° atdc. These measurements are compared to stereo-PIV measurements without fuel injection performed in the same engine [19].
2016-04-05
Technical Paper
2016-01-0874
Giuseppe Quaremba, Luigi Allocca, Amedeo Amoresano, Vincenzo Niola, Alessandro Montanaro, Giuseppe Langella
Abstract Advanced numerical techniques, such as fuzzy logic and neural networks have been applied in this work to digital images acquired on a mono-component fuel spray (iso-octane), in order to define, in a stochastic way, the gas-liquid interface evolution. The image is a numerical matrix and so it is possible to characterize geometrical parameters and the time evolution of the jet by using deterministic, statistical stochastic and other several kinds of approach. The algorithm used works with the fuzzy logic concept to binarize the shades gray of the pixel, depending them, by using the schlieren technique, on the gas density. Starting from a primary fixed threshold, the applied technique, can select the ‘gas’ pixel from the ‘liquid’ pixel and so it is possible define the first most probably boundary lines of the spray.
2016-04-05
Technical Paper
2016-01-0871
Sanjoy Biswas, Manish Bakshi, G Shankar, Achintya Mukhopadhyay
Abstract An emissions, combustion noise and performance study were conducted to explore the effects of two different multiple injections strategies on emissions, combustion noise and performances without altering EGR %. The experiments were done on a six cylinder inline CRDI diesel production engine. The aim of this study is to improve performances (brake specific fuel consumption [BSFC], torque) and combustion noise (reduction) using multiple injection strategies without violating emission regulations. The other objective of this carried-out analysis is to examine the influence of different operating parameters (Speed and Load) and main injection timing combined, on same multiple injection strategies (Pilot- main – after {PMA}and Early - pilot- main –after {EPMA}) by means of analyzing emissions/soot, combustion noise and performances data.
2016-04-05
Journal Article
2016-01-0872
Layal Hakim, Guilhem Lacaze, Joseph Oefelein
Abstract Developing an improved understanding of transient mixing and combustion processes inherent in diesel injection is an important element in the design of advanced engines. This paper provides a detailed analysis of these processes using an idealized benchmark configuration designed to facilitate precise comparisons between different models and numerical methods. The computational domain is similar to the Engine Combustion Network (www.sandia.gov/ECN) Spray-A injector with n-dodecane as the fuel. Quantified idealizations are made in the treatment of boundary conditions to eliminate ambiguities and unknowns associated with the actual injector(s) used in the experiment. These ambiguities hinder comparisons aimed at understanding the accuracy of different models and the coupled effects of potential numerical errors.
2016-04-05
Journal Article
2016-01-0870
Kaushik Saha, Sibendu Som, Michele Battistoni, Yanheng Li, Eric Pomraning, P. K. Senecal
Abstract This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
2016-04-05
Technical Paper
2016-01-0869
Jai Gopal Gupta, Avinash Kumar Agarwal
Abstract Fuel injection pressure (FIP) is one of the most important factors affecting diesel engine performance and particulate emissions. Higher FIP improves the fuel atomization, which results in lower soot formation due to superior fuel-air mixing. The objective of this spray study was to investigate macroscopic and microscopic spray parameters in FIP range of 500-1500 bar, using a solenoid injector for biodiesel blends (KB20 and KB40) and baseline mineral diesel. For these test fuels, effect of ambient pressure on macroscopic spray characteristics such as spray penetration, spray area and cone angle were investigated in a constant volume spray chamber (CVSC). Microscopic spray characteristics such as velocity distribution of droplets and spray droplet size distribution were measured in the CVSC at atmospheric pressure using Phase Doppler Interferometry (PDI).
2016-04-05
Technical Paper
2016-01-0868
Nikhil Sharma, Avinash Kumar Agarwal
Abstract The development of advanced gasoline direct injection (GDI) injector requires in-depth investigations of macroscopic and microscopic spray characteristics. Over the years, GDI injectors have undergone exponential improvement to be able to deliver fuel at high injection pressure. High fuel injection pressure (FIP) leads to superior fuel atomization, and consequently superior fuel-air mixing. Present investigations aim to improve our fundamental knowledge of the furl-air mixture preparation mechanisms of different test fuels. Experiments were conducted to study spray breakup of GDI injector. This study focuses on the spray investigations using Phase Doppler Interferometry (PDI) for the measurement of various spray related studies such as determination of arithmetic mean diameter (AMD), sauter mean diameter (SMD) and spray droplet velocity distributions.
2016-04-05
Technical Paper
2016-01-0877
Preetham Churkunti, Jonathan M. S. Mattson, Christopher Depcik
Abstract Biodiesel is a potential alternative to Ultra Low Sulfur Diesel (ULSD); however, it often suffers from increased fuel consumption in comparison to ULSD when injection timings and/or pressures are similar. To decrease fuel consumption, increasing biodiesel injection pressure has been found to mitigate the issues associated with its relatively high viscosity and lower energy content. When doing so, the literature indicates decreased emissions, albeit with potentially greater nitrogen oxide (NOx) emissions in contrast to ULSD. In order to better understand the trade-off between fuel consumption and NOx emissions, this study explores the influence of fuel injection pressure on ULSD, Waste Cooking Oil (WCO) biodiesel, and their blends in a single-cylinder compression ignition (CI) engine. In particular, fuel injection pressures and timings for WCO biodiesel and blended fuels are adjusted to attempt to mimic the in-cylinder pressure profile of operation using ULSD.
2016-04-05
Technical Paper
2016-01-0858
Piotr Strek, Daniel Duke, Andrew Swantek, Alan Kastengren, Christopher F. Powell, David P. Schmidt
Abstract The salient features of modern gasoline direct injection include cavitation, flash boiling, and plume/plume interaction, depending on the operating conditions. These complex phenomena make the prediction of the spray behavior particularly difficult. The present investigation combines mass-based experimental diagnostics with an advanced, in-house modeling capability in order to provide a multi-faceted study of the Engine Combustion Network’s Spray G injector. First, x-ray tomography is used to distinguish the actual injector geometry from the nominal geometry used in past works. The actual geometry is used as the basis of multidimensional CFD simulations which are compared to x-ray radiography measurements for validation under cold conditions. The influence of nozzle diameter and corner radius are of particular interest. Next, the model is used to simulate flash-boiling conditions, in order to understand how the cold flow behavior corresponds to flashing performance.
2016-04-05
Technical Paper
2016-01-0859
Fatemeh Salehi, Matthew J. Cleary, Assaad R. Masri
Abstract This paper presents a detailed sensitivity analysis of the sparse-Lagrangian multiple mapping conditioning (MMC) model to different parameters in simulations of n-dodecane flame A which is adopted by the engine combustion network (ECN). The model is fully coupled with a large eddy simulation (LES) approach. A gas-jet model is used for the fuel injection. The MMC-LES model is first examined for a non-reacting case and the sensitivity of the results to variations in the inlet turbulence intensity are examined. It is found that the mixture fraction profiles agree well with the experimental data. The vapour penetration is overpredicted but there is significant improvement by increasing the turbulence intensity of the inlet jet from 10% to 15%. The model sensitivities to inlet turbulence intensity, mixing model parameters and chemical kinetics is then investigated for reacting cases. Simulations are performed at various levels of ambient oxygen (13% - 21%).
2016-04-05
Technical Paper
2016-01-0856
Meghan J. Borz, Yoontak Kim, Jacqueline O'Connor
Abstract Advanced injection schedules involving multiple injections have been utilized for reducing the peak cylinder pressure, phasing heat release rate, and reducing emissions in diesel engines. The timing and duration of the injections determine the injection schedule efficacy at achieving these effects. The goal of this work is to develop tools to track multiple injections to develop a better understanding of interaction mechanisms between subsequent injections. Both timing and duration effects are captured by using three different dwell times and seven injection durations. Experimental gas jet studies are conducted using schlieren. The jet-tip penetration rate, S, results do not reveal significant differences in jet-tip penetration with variations in the first-injection duration and dwell between injections.
2016-04-05
Journal Article
2016-01-0857
Muhammad Aqib Chishty, Michele Bolla, Evatt Hawkes, Yuanjiang Pei, Sanghoon Kook
Abstract The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions.
2016-04-05
Technical Paper
2016-01-0855
Xiucheng Zhu, Sanjeet Limbu, Khanh Cung, William De Ojeda, Seong-Young Lee
Abstract Dimethyl Ether (DME) is considered a clean alternative fuel to diesel due to its soot-free combustion characteristics and its capability to be produced from renewable energy sources rather than fossil fuels such as coal or petroleum. To mitigate the effect of strong wave dynamics on fuel supply lines caused due to the high compressibility of DME and to overcome its low lubricity, a hydraulically actuated electronic unit injector (HEUI) with pressure intensification was used. The study focuses on high pressure operation, up to 2000 bar, significantly higher than pressure ranges reported previously with DME. A one-dimensional HEUI injector model is built in MATLAB/SIMULINK graphical software environment, to predict the rate of injection (ROI) profile critical to spray and combustion characterization.
2016-04-05
Technical Paper
2016-01-0853
Francesco Catapano, Michela Costa, Guido Marseglia, Paolo Sementa, Ugo Sorge, Bianca Maria Vaglieco
Abstract Internal combustion engines performance greatly depends on the air-fuel mixture formation and combustion processes. In gasoline direct injection (GDI) engines, in particular, the impact of the liquid spray on the piston or cylinder walls is a key factor, especially if mixture formation occurs under the so-called wall-guided mode. Impact causes droplets rebound and/or deposition of a liquid film (wallfilm). After being rebounded, droplets undergo what is called secondary atomization. The wallfilm may remain of no negligible size, so that fuel vapor rich zones form around it leading to so-called pool-flames (flames placed in the piston pit), hence to unburned hydrocarbons (HC) and particulate matter (PM) formation. A basic study of the spray-wall interaction is here performed by directing a multi-hole GDI spray against a real shape engine piston, possibly heated, under standard air conditions.
2016-04-05
Technical Paper
2016-01-0852
Nwabueze Emekwuru
Abstract The results of the numerical characterization of the hydrodynamics of Soybean Oil Methyl Ester (SME) fuel spray using a spray model based on the moments of the droplet size distribution function are presented. A heat and mass transfer model based on the droplet surface-areaaveraged temperature is implemented in the spray model and the effects on the SME fuel spray tip penetration and droplet sizes at different ambient gas temperature (300 K to 450 K) and fuel temperature (300 K to 360 K) values are evaluated. The results indicate that the SME fuel spray tip penetration values are insensitive to variations to the fuel temperature values but increase with increasing ambient gas temperature values. The droplet size values increase with increasing SME fuel temperature. The fuel vapor mass fraction is predicted to be highest at the spray core, with the axial velocity values of the droplets increasing with increases in the SME fuel spray temperature.
2016-04-05
Journal Article
2016-01-0851
Alexander Nygaard, Mireia Altimira, Lisa Prahl Wittberg, Laszlo Fuchs
Abstract It has been observed that intermittent injection leads to improved spray characteristics in terms of mixing and gas entrainment. Although some experimental work has been carried out in the past, the disintegration mechanisms that govern the breakup of intermittent jets remain unknown. In this paper we have carried out a systematic numerical analysis of the breakup of pulsated jets under different injection conditions. More specifically, the duty cycle (share of active injection during one cycle) is varied, while the total cycle time is kept constant. The advection of the liquid phase is handled through the Volume of Fluid approach and, in order to provide an accurate, yet computationally acceptable, resolution of the turbulent structures, the implicit Large Eddy Simulation has been adopted. The results show that the primary disintegration results from a combination of stretching, collision and aerodynamic interaction effects.
2016-04-05
Technical Paper
2016-01-0867
Yanfei Li, Haichun Ding, Hengjie Guo, Xiao Ma, Daliang Jing, Jian-Xin Wang
Abstract The spray characteristics is the key to achieve the clean combustion in diesel engines and the in-cylinder conditions are one of the factors affecting the spray process. In this work, the diesel spray characteristics were studied over a range of injection pressures and ambient pressures in a constant volume chamber and a single-hole common rail diesel injector was used. The present work is to decouple the effects of ambient pressure and ambient density on near-field spray processes by using different ambient gas (N2, and CO2). The spray processes were captured by a Photron SA X2 camera with speed of 300,000 fps and resolution of 256 by 80 pixels. The spray processes were analyzed in terms of penetration length and spray tip velocity. Difference in penetration length and tip velocity were found at the same ambient density and/or ambient pressure when different ambient gases were used.
2016-04-05
Journal Article
2016-01-0864
Khanh Cung, Xiucheng Zhu, Ahmed Abdul Moiz, Seong-Young Lee, William De Ojeda
Abstract Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
2016-04-05
Technical Paper
2016-01-0865
R. Lockett, Mahesh Jeshani, Kassandra Makri, Richard Price
Abstract High-speed planar laser Mie scattering and Laser Induced Fluorescence (PLIF) were employed for the determination of Sauter Mean Diameter (SMD) distribution in non-evaporating diesel sprays. The effect of rail pressure, distillation profile, and consequent fuel viscosity on the drop size distribution developing during primary and secondary atomization was investigated. Samples of conventional crude-oil derived middle-distillate diesel and light distillate kerosene were delivered into an optically accessible mini-sac injector, using a customized high-pressure common rail diesel fuel injection system. Two optical channels were employed to capture images of elastic Mie and inelastic LIF scattering simultaneously on a high-speed video camera at 10 kHz. Results are presented for sprays obtained at maximum needle lift during the injection. These reveal that the emergent sprays exhibit axial asymmetry and vorticity.
2016-04-05
Technical Paper
2016-01-0863
Alessandro Montanaro, Luigi Allocca, Maurizio Lazzaro, Giovanni Meccariello
Abstract In spark ignition engines, the nozzle design, fuel pressure, injection timing, and interaction with the cylinder/piston walls govern the evolution of the fuel spray inside the cylinder before the start of combustion. The fuel droplets, hitting the surface, may rebound or stick forming a film on the wall, or evaporate under the heat exchange effect. The face wetting results in a strong impact on the mixture formation and emission, in particular, on particulate and unburned hydrocarbons. This paper aims to report the effects of the injection pressure and wall temperature on the macroscopic behavior, atomization, and vaporization of impinging sprays on the metal surface. A mono-component fuel, iso-octane, was adopted in the spray-wall studies inside an optically-accessible quiescent vessel by imaging procedures using a Z-shaped schlieren-Mie scattering set-up in combination with a high-speed C-Mos camera.
2016-04-05
Journal Article
2016-01-0861
Noud Maes, Nico Dam, Bart Somers, Tommaso Lucchini, Gianluca D'Errico, Gilles Hardy
Abstract The modeling of fuel sprays under well-characterized conditions relevant for heavy-duty Diesel engine applications, allows for detailed analyses of individual phenomena aimed at improving emission formation and fuel consumption. However, the complexity of a reacting fuel spray under heavy-duty conditions currently prohibits direct simulation. Using a systematic approach, we extrapolate available spray models to the desired conditions without inclusion of chemical reactions. For validation, experimental techniques are utilized to characterize inert sprays of n-dodecane in a high-pressure, high-temperature (900 K) constant volume vessel with full optical access. The liquid fuel spray is studied using high-speed diffused back-illumination for conditions with different densities (22.8 and 40 kg/m3) and injection pressures (150, 80 and 160 MPa), using a 0.205-mm orifice diameter nozzle.
2016-04-05
Technical Paper
2016-01-0860
Fredrik R. Westlye, Michele Battistoni, Scott A. Skeen, Julien Manin, Lyle M. Pickett, Anders Ivarsson
Abstract This work investigates the effects of cavitation on spray characteristics by comparing measurements of liquid and vapor penetration as well as ignition delay and lift-off length. A smoothed-inlet, converging nozzle (nominal KS1.5) was compared to a sharp-edged nozzle (nominal K0) in a constant-volume combustion vessel under thermodynamic conditions consistent with modern compression ignition engines. Within the near-nozzle region, the K0 nozzle displayed larger radial dispersion of the liquid as compared to the KS1.5 nozzle, and shorter axial liquid penetration. Moving downstream, the KS1.5 jet growth rate increased, eventually reaching a growth rate similar to the K0 nozzle while maintaining a smaller radial width. The increasing spreading angle in the far field creates a virtual origin, or mixing offset, several millimeters downstream for the KS1.5 nozzle.
2016-04-05
Technical Paper
2016-01-0698
Zheng Xu, Zhou Zhou, Tao Wu, Tong Li, Chuanhui Cheng, Haiting Yin
Abstract Engine downsizing has become a leading trend for fuel consumption reduction while maintaining the high specific power and torque output. Because of this, Turbo-charged Gasoline Direct Injection (TGDI) technology has been widely applied in passenger vehicles even though a number of technical challenges are presented during the engine development. This paper presents the investigation results of three key issues in the combustion development of a 2.0L TGDI engine at SAIC motor: fuel dilution, smoke emission and low speed stochastic pre-ignition(LSPI). The effect of the injection timing and injection strategy on fuel dilution and smoke emission, and LSPI are the focus of the experimental study.
2016-04-05
Technical Paper
2016-01-0761
Mohammad Izadi Najafabadi, Nico Dam, Bart Somers, Bengt Johansson
Abstract Partially Premixed Combustion (PPC) is a promising combustion concept for future IC engines. However, controllability of PPC is still a challenge and needs more investigation. The scope of the present study is to investigate the ignition sensitivity of PPC to the injection timing at different injection pressures. To better understand this, high-speed shadowgraphy is used to visualize fuel injection and evaporation at different Start of Injections (SOI). Spray penetration and injection targeting are derived from shadowgraphy movies. OH* chemiluminescence is used to comprehensively study the stratification level of combustion which is helpful for interpretation of ignition sensitivity behavior. Shadowgraphy results confirm that SOI strongly affects the spray penetration and evaporation of fuel. However, spray penetration and ignition sensitivity are barely affected by the injection pressure.
2016-04-05
Journal Article
2016-01-0753
Benjamin Wolk, Isaac Ekoto, William Northrop
Abstract Negative Valve Overlap (NVO) is a potential control strategy for enabling Low-Temperature Gasoline Combustion (LTGC) at low loads. While the thermal effects of NVO fueling on main combustion are well-understood, the chemical effects of NVO in-cylinder fuel reforming have not been extensively studied. The objective of this work is to examine the effects of fuel molecular structure on NVO fuel reforming using gas sampling and detailed speciation by gas chromatography. Engine gas samples were collected from a single-cylinder research engine at the end of the NVO period using a custom dump-valve apparatus. Six fuel components were studied at two injection timings: (1) iso-octane, (2) n-heptane, (3) ethanol, (4) 1-hexene, (5) cyclohexane, and (6) toluene. All fuel components were studied neat except for toluene - toluene was blended with 18.9% nheptane by liquid volume to increase the fuel reactivity.
2016-04-05
Technical Paper
2016-01-0752
Pranab Das, Mayur Selokar, P.M.V. Subbarao, J.P. Subrahmanyam
Abstract A single cylinder direct injection (DI) diesel engine is modified to run in HCCI-DI mode using a novel in-cylinder dual injection strategy. In this present investigation effect of 2nd injection timing, premixed equivalence ratio and exhaust gas recirculation (EGR) on combustion and emission behavior is studied. Based on the characteristics of combustion, performance and emission behavior, 2nd injection timing is optimized at a constant split ratio (80%) and engine speed (1500 rev/min). Premixed equivalence ratio was varied (up to 0.38) at the optimized 2nd injection timing condition. It is identified that 2nd injection timing and premixed equivalence ratio play an important role in controlling the occurrences of all combustion parameters of HCCI-DI combustion. EGR was introduced in the cylinder to understand its effect on various combustion parameters and emission behavior.
2016-04-05
Technical Paper
2016-01-0780
Sebastian Zirngibl, Georg Wachtmeister
Abstract Natural gas and especially biogas combustion can be seen as one of the key technologies towards climate-neutral energy supply. With its extensive availability, biogas is amongst the most important renewable energy sources in the present energy mix. Today, the use of gaseous fuels is widely established, for example in cogeneration units for combined heat and power generation. In contrast to conventional spark plug ignition, the combustion can also be initialized by a pilot injection. In order to further increase engine efficiency, this article describes the process for a targeted optimization of the pilot fuel injection. One of the crucial points for a more efficient dual fuel combustion process, is to optimize the amount of pilot injection in order to increase overall engine efficiency, and therefore decrease fuel consumption. In this connection, the injection system plays a key role.
2016-04-05
Journal Article
2016-01-0781
Usman Asad, Ming Zheng, Jimi Tjong
Abstract In this work, empirical investigations of the diesel-ethanol Premixed Pilot-Assisted Combustion (PPAC) are carried out on a high compression ratio (18.2:1) single-cylinder diesel engine. The tests focus on determining the minimum ethanol fraction for ultra-low NOx & soot emissions, effect of single-pilot vs. twin-pilot strategies on emissions and ignition controllability, reducing the EGR requirements, enabling clean combustion across the load range and achieving high efficiency full-load operation. The results show that both low NOx and almost zero soot emissions can be achieved but at the expense of higher unburned hydrocarbons. Compared to a single-pilot injection, a twin-pilot strategy reduces the soot emissions significantly and also lowers the NOx emissions, thereby reducing the requirements for EGR. The near-TDC pilot provides excellent control over the combustion phasing, further reducing the need of a higher EGR quantity for phasing control.
2016-04-05
Technical Paper
2016-01-0779
Radu Florea, Gary D. Neely, Zainal Abidin, Jason Miwa
Abstract For the US market, an abundant supply of natural gas (NG) coupled with recent green-house gas (GHG) regulations have spurred renewed interest in dual-fuel combustion regimes. This paper explores the potential of co-direct injection to improve the efficiency and reduce the methane emissions versus equivalent fumigated dual-fuel combustion systems. Using the Westport HPDI engine as the experimental test platform, the paper reports the results obtained using both diffusion controlled (HPDI) combustion strategy as well as a partially-premixed combustion strategy (DI2). The DI2 combustion strategy shows good promise, as it has been found to improve the engine efficiency by over two brake thermal efficiency (BTE) points (% fuel energy) compared to the diffusion controlled combustion strategy (HPDI) while at the same time reducing the engine-out methane emissions by 75% compared to an equivalent fumigated dual-fuel combustion system.
Viewing 1 to 30 of 6059