Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 43
2016-06-24
WIP Standard
J3123
Develop a test procedure to measure the simulated sag/creep of fuel tanks for gasoline hybrid vehicles where the tank pressure is controlled in a range from -150 to +380 mbar by a Fuel Tank Isolation Valve (FTIV) that represents 15 year and 150,000 mile lifetime.
2016-05-10
WIP Standard
J1140
This SAE Recommended Practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
2015-04-24
WIP Standard
J2744
This document presents the requirements for a build-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emission Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuate them out of, the system. This access may be used for the following evaluations: Evaporative System Certifications Canister Loading and Pumping End-of-line Testing System Integrity Service (e.g. OBD MIL on) Leak Location and Repair Verification In-Use Compliance Testing Canister Loading and Purging Inspection/Maintenance Testing System Integrity and Purge Check
2015-04-10
WIP Standard
J2663
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composit construction. The expected accuracy of the method is about +/- 10% of the sample permeation rate.
2015-04-10
WIP Standard
J1748
This SAE Recommended Practice applies to determining worst-case fuel, conditioning test specimens in worst-case fuel(s) prior to testing, individual tests for properties of polymers exposed to methanol-gasoline fuel mixtures. The determination of equilibrium, as well as typical calculations are also covered. Polymers are used in applications which require exposure to a variety of fluid environments. Tests to determine the effects of such exposure on material properties are well established. However, the determination of the effects on polymers exposed to fuels of variable alcohol and ether content poses new problems. This document seeks to address those concerns by detailing changes to standard tests that make them suitable for that purpose.
CURRENT
2014-02-05
Standard
J2973_201402
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
CURRENT
2013-05-28
Standard
J2027_201305
This SAE Standard includes performance requirements for protective covers for flexible, non-metallic fuel tubing. Ultimate performance of the protective cover may be dependent on the interaction of the fuel tubing and protective cover. Therefore, it is recommended that tubing and cover combinations be tested as an assembly, where appropriate, to qualify to this document.
CURRENT
2013-05-14
Standard
J1737_201305
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls as well as through "microleaks" at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which elements of a test fuel that permeate through the walls of a test specimen and migrate through the interfaces are transported by a controlled flow of dry nitrogen to a point where they are measured. That measurement point is a device, such as a canister containing activated charcoal or other means of collection or accumulation where the hydrocarbon losses are then measured by weight change or analyzed by some other suitable means.
CURRENT
2013-05-14
Standard
J1747_201305
This SAE Recommended Practice presents standardized test methods developed for use in testing with hydrocarbon fuels or their surrogates and those same fuels when blended with oxygenated fuel additives. Hydrocarbon fuels include Gasoline and Diesel fuel or their surrogates described in SAE J1681. Oxygenated additives include Ethanol, Methanol Methyl Tertiary Butyl Ether (MTBE) and Fatty Acid Methyl Esters (FAME or Biodiesel).
CURRENT
2012-11-01
Standard
J398_201211
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
CURRENT
2012-11-01
Standard
J2045_201211
This SAE Standard encompasses the recommended minimum requirements for non-metallic tubing and/or combinations of metallic tubing to non-metallic tubing assemblies manufactured as liquid- and/or vapor-carrying systems designed for use in gasoline, alcohol blends with gasoline, or diesel fuel systems. This SAE Standard is intended to cover tubing assemblies for any portion of a fuel system which operates above −40 °C (−40 °F) and below 115 °C (239 °F), and up to a maximum working gage pressure of 690 kPa (100 psig). The peak intermittent temperature is 115 °C (239 °F). For long-term continuous usage, the temperature shall not exceed 90 °C (194 °F). It should be noted that temperature extremes can affect assemblies in various manners and every effort must be made to determine the operating temperature to which a specific fuel line assembly will be exposed, and design accordingly.
CURRENT
2012-08-06
Standard
J1140_201208
This SAE Recommended Practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
CURRENT
2012-07-30
Standard
J2659_201207
This test method described in this document covers a procedure to speciate that is, to determine the amounts of each different fuel constituent that permeates across sheets, films or slabs of plastic materials. One side of the sheet is meant to be in contact with either a liquid test fuel or a saturated test fuel vapor, the other side is meant to be exposed to an environment free of fuel. The test fuel can either be a mixture of a small (usually smaller than ten) number of hydrocarbon, alcohol and ether constituents or it can be a sample of a real automotive fuel, e.g., one that may contain hundreds of different constituents. Furthermore, Appendix A contains guidelines to speciate evaporative emissions from finished fuel system components such as fuel lines, fuel filler pipes, fuel sender units, connectors and valves.
CURRENT
2010-06-16
Standard
J2663_201006
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composite construction. The expected accuracy of the method is about ±10% of the sample permeation rate. Hose permeation testing can be done two ways: Method A – Plug and Fill or Method B – using a fuel reservoir. Method A involves plugging one end of the hose, filling the sample to about 90% full with test fuel, plugging the other end, and then exposing the plugged sample to a desired test temperature, with the weight loss measured over time. Method B involves plugging one end of a hose, and then connecting the other end to a fuel reservoir. The hose sample and reservoir are then exposed to a desired test temperature with the weight loss measured over time. This procedure presents a recommended plug design that permits inserting the plugs prior to adding the test fluid.
CURRENT
2008-08-11
Standard
J2744_200808
This document presents the requirements for a built-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emissions Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuates them out of, the system. This access may be used for the following evaluations:
CURRENT
2007-09-27
Standard
J1748_200709
This SAE Recommended Practice applies to determining worst-case fuel or test fluid surrogate, conditioning test specimens in worst-case fuel(s)/surrogate(s) prior to testing, individual tests for properties of polymeric materials exposed to oxygenate fuel/surrogate mixtures with additives. The determination of equilibrium, as well as typical calculations are also covered.
HISTORICAL
2007-07-20
Standard
J1747_200707
This SAE Information Report is intended to convey the test methods developed for use in testing with methanol and gasoline blends. Corrosion testing of metals has a long and varied history. In spite of the problems inherent in extrapolating results of accelerated tests on standard specimens to actual field durability, engineers have been able, to a large extent, to rely on these results in making materials selection decisions. However, these tests have generally employed aqueous media and are not strictly applicable to the use of organic chemical media. With methanol-gasoline fuel blends and their high electrical conductivity relative to gasoline, the relevance of the historical database is lost. Therefore, to allow rapid build-up of a new database, several corrosion test procedures have been reviewed and amended where appropriate.
HISTORICAL
2007-04-23
Standard
J285_200704
This SAE recommended practice provided standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzels that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between "UNLEADED Fuel" and "All Other Types of Fuel." These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
HISTORICAL
2006-11-06
Standard
J2785_200611
This SAE Recommended Practice was developed to standardize fuel inlet closure colors and verbiage by fuel type primarily for passenger car and truck applications, but it can be applied to marine, industrial, lawn and garden, and other similar applications. See Section 4, Table 1 for a list of specified colors, and text by fuel type.
CURRENT
2006-10-13
Standard
J2665_200610
This test standard covers the procedure for measuring the permeation of fuel or fuel surrogates through test samples of elastomeric, plastic or composite materials, up to about 3 mm thick. The method involves filling a test cup with the test fluid (fuel or fuel surrogate), sealing test sample over the open end of the cup, and then placing the sealed container into an oven at the desired test temperature and measuring the weight loss over time. Permeation rates are calculated from the rate of weight loss and the exposed area of the test sample. Standard permeation test temperatures are 40 °C and 60 °C. Standard test fluids are Fuel C, Fuel CE10 and Fuel CM15. Other fluids, such as Fuel CMTBE15, and other volatile liquids may be tested according to this procedure as desired (SAE J1681). The method is not applicable for measuring permeation of higher boiling materials that will not completely evaporate from the exterior surface of the sample at the test temperature.
CURRENT
2005-10-25
Standard
J2587_200510
This practice describes recommended performance requirements of fuel tank closures used in conjunction with fuel level senders and fuel delivery systems. It provides guidelines that assure interchangeability and compatibility between fuel tanks and fuel pump/sender closure systems without specifying a specific closure system design. These systems may be used in rigid fuel tank systems made of plastic or metal. Complete details of specific designs shall be established by mutual agreement between customer and supplier. The dimensions and performance requirements are selected to optimize The closure system, durability and reliability with respect to Vehicle SHED measurements Fuel system / crash integrity LEV – II useful life Assembly and service ease and reliability Packaging of fuel tanks and their sending units Interchangeability of sender closures between various fuel tank designs
HISTORICAL
2005-08-04
Standard
J1114_200508
This SAE Recommended Practice was developed primarily for passenger car and truck applications but it may be used in marine, industrial, and similar applications.
HISTORICAL
2005-08-04
Standard
J829_200508
This SAE Standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
HISTORICAL
2005-03-24
Standard
J398_200503
This SAE Recommended Practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks 4536 kg (10,000 lb) maximum GVW. It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
HISTORICAL
2004-11-17
Standard
J1737_200411
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls as well as through 'microleaks' at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which liquids which are transported through walls and joints are collected by a controlled flow of nitrogen (dry) and adsorbed by activated charcoal.
HISTORICAL
2003-12-22
Standard
J2659_200312
This test method described in this document covers a procedure to speciate that is, to determine the amounts of each different fuel constituent that permeates across sheets, films or slabs of plastic materials. One side of the sheet is meant to be in contact with either a liquid test fuel or a saturated test fuel vapor, the other side is meant to be exposed to an environment free of fuel. The test fuel can either be a mixture of a small (usually smaller than ten) number of hydrocarbon, alcohol and ether constituents or it can be a sample of a real automotive fuel, e.g., one that may contain hundreds of different constituents. Furthermore, Appendix A contains guidelines to speciate evaporative emissions from finished fuel system components such as fuel lines, fuel filler pipes, fuel sender units, connectors and valves.
CURRENT
2002-03-26
Standard
J1664_200203
The scope of this SAE Information Report is the liquid fuel containment system for gasoline or flexible fuels (up to 85% methanol in gasoline), along with their associated vapors, as designed for use on passenger cars and light trucks. For purposes of this document, fuel containment addresses the fuel tank and components that are directly attached to the fuel tank. These components may include the filler neck, tank, fill vent tube, fuel cap, pump-sender, and rollover control valve closure seals, insofar as they act as closure or containment mechanisms. Emphasis will be on fuel containment and the required system closures. Furthermore, emphasis will be placed on design recommendations as they relate to performance. Mounting and shielding of the "system" components are only included to the extent they affect the containment aspects.
HISTORICAL
2000-06-16
Standard
J829_200006
This SAE Standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
HISTORICAL
2000-06-06
Standard
J1114_200006
This SAE Recommended Practice was developed primarily for passenger car and truck applications but it may be used in marine, industrial, and similar applications.
HISTORICAL
2000-04-04
Standard
J1140_200004
This SAE Recommended Practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
Viewing 1 to 30 of 43

Filter

  • Standard
    43