Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3845
2017-06-17
Journal Article
2017-01-9550
David Neihguk, M. L. Munjal, Arvind Ram, Abhinav Prasad
Abstract A production muffler of a 2.2 liter compression ignition engine is analyzed using plane wave (Transfer Matrix) method. The objective is to show the usefulness of plane wave models to analyze the acoustic performance (Transmission Loss, TL) of a compact hybrid muffler (made up of reactive and dissipative elements). The muffler consists of three chambers, two of which are acoustically short in the axial direction. The chambers are separated by an impervious baffle on the upstream side and a perforated plate on the downstream side. The first chamber is a Concentric Tube Resonator (CTR). The second chamber consists of an extended inlet and a flow reversal 180-degree curved outlet duct. The acoustic cavity in the third chamber is coupled with the second chamber through the acoustic impedances of the end plate and the perforated plate.
2017-03-28
Technical Paper
2017-01-0988
Michael Cunningham, Mi-Young Kim, Venkata Lakkireddy, William Partridge
Abstract Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
2017-03-28
Technical Paper
2017-01-1078
Walid Ashraf, Sherif Khedr, Aya Diab, Hashim Elzaabalawy
Abstract A throttle valve is one of the main components of the intake system of a vehicle and is used to control the air flow rate into the combustion chamber at different engine speeds. Consequently, it has considerable effect on the engine power and performance especially at high engine speeds. The butterfly throttle valve is more common in commercial vehicles due to its simplicity. However, the butterfly throttle plate may affect the engine performance by incurring some pumping losses at high engine speeds even with the plate at wide open throttle (WOT) position. Hence it is proposed in this research work to replace and compare the performance of a spark ignition engine butterfly throttle valve to a newly designed barrel-shaped one with regards to the induced air mass flow rate. The main benefit of the proposed barrel-shaped throttle valve is the elimination of the flow restriction at WOT and high engine speeds.
2017-03-28
Technical Paper
2017-01-0472
Gyoko Oh
Abstract To prevent corrosion of the inlet part with aqueous ammonia injection, high chromium corrosion-resistant materials have been applied for welded joints of mufflers. Bending fatigue strength of welded joint samples of flange pipes was defined through fatigue experiments, modeling that high fluctuating stresses exist in the inlet and outlet flange pipes of a muffler caused by the vibration of a moving vehicle. Factors that caused fatigue to failure such as welding bead shape and metallographic structure were identified through local stress measurements, FEM stress simulations, microscopic observations, and SEM-EDS composition analyses. By comparing with sample A having a smaller flank angle and sample B having a larger flank angle, the results suggested that the difference of bending fatigue strengths at 200,000 cycles was 24% when based on nominal stress, and the difference was 10% when based on measured maximum stress.
2017-03-28
Technical Paper
2017-01-1087
Pengfei Zang, Zhe Wang, Yu Fu, Chenle Sun
Abstract The Linear Internal Combustion Engine-Linear Generator Integrated System (LICELGIS) is different from conventional crank-based engine for reducing frictional losses by eliminating the crankshaft. Thus, the LICELGIS piston stroke is not constrained geometrically and the system compression ratio is variable. During steady-state operation, the LICELGIS converts the fuel chemical energy into electric power with piston assembly reciprocating motion, which can be used as a range-extender in hybrid electric vehicles. The LICELGIS scavenging process is prerequisite and key for the system steady-state operation, which has remarkable influence on mixture gas and, eventually, on engine combustion performance. In order to achieve high scavenging performance, a LICELGIS is investigated in this paper. The LICELGIS motion characteristics and scavenging process were analyzed.
2017-03-28
Technical Paper
2017-01-1077
Nicolas Arnault, Nicolas Batailley, Arnaud Maria, Laurent Bechu
Abstract PSA Group, SOLVAY and SOGEFI have teamed-up to produce the first Plastic Diesel Fuel Filter fully made of recycled polyamide 66, ready for mass-production. This has been achieved by using the brand new plastic compound developed by SOLVAY Engineering Plastics. This material is 100% recycled from airbag wastes, providing a premium material able to stand demanding applications requirements supplied through circular economy, which is quite unusual in automotive industry yet. SOGEFI has used this material through its existing plastic injection process, and tested the parts on extensive bench validation tests. It confirmed that this material is fully compatible with standard injection process, and that all the tests have been passed successfully. Finally, PSA Group has driven the choice of the tested parts: DV engine 1.6l Euro6b application, homologated the material grade and evaluated the whole validation process.
2017-03-28
Technical Paper
2017-01-1085
Todd Brewer, Cagri Sever, Ruichen Jin, Michael Herr, Xingfu Chen, Reda Adimi
Abstract In a separate SAE paper (Cylinder Head Design Process to Improve High Cycle Fatigue Performance), cylinder head high cycle fatigue (HCF) analysis approach and damage calculation method were developed and presented. In this paper, the HCF damage calculation method is used for risk assessment related to customer drive cycles. Cylinder head HCF damage is generated by repeated stress alternation under different engine operation conditions. The cylinder head high cycle fatigue CAE process can be used as a transfer function to translate engine operating conditions to cylinder head damage/life. There are many inputs, noises, and design parameters that contribute to the cylinder head HCF damage CAE transfer function such as cylinder pressure, component temperature, valve seat press fit, and cylinder head manufacturing method. Material properties and the variation in material properties are also important considerations in the CAE transfer function.
2017-03-28
Technical Paper
2017-01-1076
Mohammad Moetakef, Abdelkrim Zouani, Esra Demren
Abstract In this presentation, two cases of CAE simulations of oil pump-induced tonal noises are presented. The first case involves oil pump-induced whine in an I4engine during coast down. The second case addresses oil pan moan during hot idle and the effect of oil pump pick-up tube positioning inside the oil pan of an I5 engine. The investigations include several design modifications to the pump and the pick-up tube to prevent the tonal noise. Test data are also included to demonstrate the accuracy of the CAE simulation.
2017-03-28
Technical Paper
2017-01-1088
Katherine Randall, Cody Bradford, Jeremy Ross, Jeremy Church, Nolan Dickey, Adam Christian, Matthew Dunn
Abstract High frequency variations in crankcase pressure have been observed in Inline-four cylinder (I4) engines and an understanding of the causes, frequency and magnitude of these variations is helpful in the design and effective operation of various engine systems. This paper shows through a review and explanation of the physics related to engine operation followed by comparison to measured vehicle data, the relationship between crankcase volume throughout the engine cycle and the observed pressure fluctuations. It is demonstrated that for a known or proposed engine design, through knowledge of the key engine design parameters, the frequency and amplitude of the cyclic variation in crankcase pressure can be predicted and thus utilized in the design of other engine systems.
2017-03-28
Technical Paper
2017-01-1086
Cagri Sever, Todd Brewer, Scott Eeley, Xingfu Chen, Ruichen Jin, Emad Khalil, Michael Herr
Abstract For aluminum automotive cylinder head designs, one of the concerning failure mechanisms is thermo-mechanical fatigue from changes in engine operating conditions. After an engine is assembled, it goes through many different operating conditions such as cold start, through warm up, peak power, and intermediate cycles. Strain alternation from the variation in engine operation conditions change may cause thermo-mechanical fatigue (TMF) failure in combustion chamber and exhaust port. Cylinder heads having an integrated exhaust manifold are especially exposed to this failure mode due to the length and complexity of the exhaust gas passage. First a thermo-mechanical fatigue model is developed to simulate a known dynamometer/bench thermal cycle and the corresponding thermo-mechanical fatigue damage is quantified. Additionally, strain state of the cylinder head and its relation to thermo-mechanical fatigue are discussed. The bench test was used to verify the TMF analysis approach.
2017-03-28
Technical Paper
2017-01-1079
Suresh Kumar Kandreegula, Sayak Mukherjee, Rahul Jain, Shivdayal Prasad, Kamal Rohilla
Abstract Flex Connectors are intended for mitigating the relative movement of exhaust system components along the axis of the system arising from the thermal expansion due to intermittent engine operation. Flex connectors must not be installed in locations, where they will be subjected to destructive vibration. Hence, the stiffness of the flex connector plays an important role, while designing or selecting the right design. It consists of a multi-ply bellows combined with an inside and an outside steel braid. The liner is included to reduce the temperature of the bellows and improve flow conditions. The braid is included for mechanical protection and to limit the possible extension of the joint. It has only axial translational motion.
2017-03-28
Technical Paper
2017-01-1081
Chongzhi Zhong, Tieqiang Fu, Chunbei Dai, Taiyu Zhang, Ke Wu, Wangwen Gu
Abstract In order to study the single cavity and double cavity canister work performance, the L/D, as well as the similarities and differences among the diameter of the adsorption mouth, purge mouth and air mouth have been studied. At the same time, the work performance of ORVR canister and common canister is also studied. The results demonstrate that the similar of L/D, efficient work ability and efficient adsorption rate of the double cavity canister is better than the single cavity canister. The bigger of L/D, the stronger work ability of the canister. However, the excessive increase of the L/D is not conducive to the canister desorption, instead resulting in the increase of RARCP. The adsorption mouth diameter of common canister is generally smaller or similar to the purge mouth, while for ORVR canister the adsorption mouth diameter is bigger than the purge mouth and similar to air mouth.
2017-03-28
Technical Paper
2017-01-1083
Chawin Chantharasenawong
Abstract This study focuses on achieving a lower overall lap time at SAE Formula Student competition through a modification to the standard intake system. The lower lap time is achieved by widening the range of engine RPM which produces torque higher than 90% of the maximum value and lowering the engine RPM corresponding to the maximum torque. An intake system with ‘variable runner length’ is introduced to the 2015 racecar of KMUTT team. The values of intake lengths are determined from the wave equation with the goal of producing over 90% of the maximum torque of the baseline configuration over a range of engine RPM. Computer simulations are performed to determine the pressure at engine entry at various runner lengths. Finally, a prototype variable runner length intake system with linear motor actuators is constructed and installed on the racecar. Chassis dynamometer tests are performed to determine the engine torque for 3,000 – 10,500 RPM at all interested runner lengths.
2017-03-28
Technical Paper
2017-01-1065
Douglas R. Martin, Benjamin Rocci
Abstract Exhaust temperature models are widely used in the automotive industry to estimate catalyst and exhaust gas temperatures and to protect the catalyst and other vehicle hardware against over-temperature conditions. Modeled exhaust temperatures rely on air, fuel, and spark measurements to make their estimate. Errors in any of these measurements can have a large impact on the accuracy of the model. Furthermore, air-fuel imbalances, air leaks, engine coolant temperature (ECT) or air charge temperature (ACT) inaccuracies, or any unforeseen source of heat entering the exhaust may have a large impact on the accuracy of the modeled estimate. Modern universal exhaust gas oxygen (UEGO) sensors have heaters with controllers to precisely regulate the oxygen sensing element temperature. These controllers are duty cycle based and supply more or less current to the heating element depending on the temperature of the surrounding exhaust gas.
2017-03-28
Technical Paper
2017-01-0943
Cory S. Hendrickson, Devesh Upadhyay, Michiel Van Nieuwstadt
Over the past decade urea-based selective catalytic reduction (SCR) has become a leading aftertreatment solution to meet increasingly stringent Nitrogen oxide (NOx) emissions requirements in diesel powertrains. A common trend seen in modern SCR systems is the use of "split-brick" configurations where two SCR catalysts are placed in thermally distinct regions of the aftertreatment. One catalyst is close-coupled to the engine for fast light-off and another catalyst is positioned under-floor to improve performance at high space velocities. Typically, a single injector is located upstream of the first catalyst to provide the reductant necessary for efficient NOx reduction. This paper explores the potential benefit, in terms of improved NOx reduction and control of NH3 slip, of having independently actuated injectors in front of each catalyst.
2017-03-28
Technical Paper
2017-01-0944
Ryuji Ando, Takashi Hihara, Yasuyuki Banno, Makoto Nagata, Tomoaki Ishitsuka, Nobuyuki Matsubayashi, Toshihisa Tomie
Cu-SSZ-13 is widely used as a material for Cu-SCR catalyst. The Cu-SCR catalyst shows high NOx performance and has high thermal durability but it deteriorates in NOx performance when it suffers Sulfur poisoning. Authors investigated the detailed mechanism how the catalyst is poisoned by Sulfur, and also studied the optimum de-Sulfation conditions. As to the Sulfur adsorption site in the Cu-zeolite, we performed DFT calculation to know the site candidate and we performed precise characterization. As characterization techniques of Sulfur poisoning of the catalyst, we mainly used EUPS (Extreme Ultraviolet Photoelectron Spectroscopy) and DRIFTS. By those techniques, we found out that Sulfur adsorbs on ion-exchanged Cu site and Al site in the Zeolite structure. Especially the Cu site is an active site of the catalyst and thus the Cu-SCR catalyst deteriorated by the Sulfur poisoning.
2017-03-28
Technical Paper
2017-01-1000
Jong Lee, Yu Zhang, Tom Tzanetakis, Michael Traver, Melanie Moses-DeBusk, John Storey, William Partridge, Michael Lance
With higher volatility and longer ignition delay characteristics than typical diesel fuel, low cetane naphtha fuel has been shown to promote partially premixed combustion and produce lower soot for improved fuel economy. In this study, emission performance of low cetane, low octane naphtha (CN 35, RON 60) as a drop-in fuel was examined on a MY13 Cummins ISX15 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using the production hardware and development calibrations, both the engine-out and tailpipe emissions of naphtha and ultra-low sulfur diesel (ULSD) fuels were examined during the EPA’s heavy-duty emission testing cycles. Without any modification to the calibrations, the tailpipe emissions were comparable when using naphtha or ULSD on the heavy duty Federal Test Procedure (FTP) and ramped modal cycle (RMC) test cycles.
2017-03-28
Technical Paper
2017-01-0964
Jakob Heide, Mikael Karlsson, Mireia Altimira
Selective Catalytic Reduction (SCR) of NOx through injection of Urea-Water-Solution (UWS) into the hot exhaust gas stream is an effective and extensively used strategy in internal combustion engines. Even though actual SCR systems have 95-96% de-NOx efficiency over test cycles, real driving emissions of NOx are much higher, hence proving that there is room for improvement. The efficiency of the NOx conversion is highly dependent on the size of UWS droplets and their spatial distribution. These factors are, in turn, mainly determined by the spray characteristics and its interaction with the exhaust gas flow. The main purpose of this study is to numerically investigate the sensitivity to the modelling framework of the evaporation and mixing of the spray upstream of the catalyst. The dynamics of discrete droplets is handled through the Lagrangian Particle Tracking framework, with models that account for droplet breakup and coalescence, turbulence effects, and water evaporation.
2017-03-28
Technical Paper
2017-01-0965
Lorenzo Nocivelli, Gianluca Montenegro, Angelo Onorati, Francesco Curto, Panayotis Dimopoulos Eggenschwiler, Yujun Liao, Alexander Vogel
The application of liquid aqueous Urea Solution (AUS) as reductant in SCR exhaust after-treatment systems is now a commonly accepted industry standard. Unfortunately less acceptable are the associated difficulties caused by incomplete decomposition of the liquid resulting in solid deposits accumulation in the downstream exhaust pipe dosing components and the SCR itself. The correct prediction of the spray pattern and therefore the spray impact on the walls is a key feature for the system optimization. A mechanical patternator, designed on the basis of CFD performance assessment involving a Lagrangian representation of the dispersed liquid fully coupled with a 3D Eulerian description of the carrier phase, has been built and used to measure the spray mass distribution.
2017-03-28
Technical Paper
2017-01-1709
Zhigang Wei, Sarat Das, Ryan Barr, Greg Rohrs, Robert Rebandt, Xiao Wu, HongTae Kang
Abstract Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
2017-03-28
Technical Paper
2017-01-1333
Sasikumar P, C. Sujatha, Chinnaraj K.
Abstract In commercial vehicles, exhaust system is normally mounted on frame side members (FSM) using hanger brackets. These exhaust system hanger brackets are tested either as part of full vehicle durability testing or as a subsystem in a rig testing. During initial phases of product development cycle, the hanger brackets are validated for their durability in rig level testing using time domain signals acquired from mule vehicle. These signals are then used in uni-axial, bi-axial or tri-axial rig facilities based on their severity and the availability of test rigs. This paper depicts the simulation method employed to replicate the bi-directional rig testing through modal transient analysis. Finite Element Method (FEM) is applied for numerical analysis of exhaust system assembly using MSC/Nastran software with the inclusion of rubber isolator modeling, meshing guidelines etc. Finite Element Analysis (FEA) results are in good agreement with rig level test results.
2017-03-28
Technical Paper
2017-01-0530
Ted Holmberg, Andreas Cronhjort, Ola Stenlaas
Abstract In one dimensional engine simulation software, flow losses over complex geometries such as valves and ports are described using flow coefficients. It is generally assumed that the pressure ratio over the valve has a negligible influence on the flow coefficient. However during the exhaust valve opening the pressure difference between cylinder and port is large which questions the accuracy of this assumption. In this work the influence of pressure ratio on the exhaust valve flow coefficient has been investigated experimentally in a steady-flow test bench. Two cylinder heads, designated A and B, from a Heavy-Duty engine with different valve shapes and valve seat angles have been investigated. The tests were performed with both exhaust valves open and with only one of the two exhaust valves open. The pressure ratio over the exhaust port was varied from 1.1:1 to 5:1. For case A1 with a single exhaust valve open, the flow coefficient decreased significantly with pressure ratio.
2017-03-28
Technical Paper
2017-01-0558
Lei Cui, Tianyou Wang, Kai Sun, Zhen Lu, Zhizhao Che, Yanzhe Sun
Abstract The scavenging process in two-stroke marine engines not only transports burnt gas out of the cylinder but also provides fresh air for the next cycle, thereby significantly affecting the engine performance. In order to enhance fuel-air mixing, the scavenging process usually generates swirling flow in uniflow-type scavenging engines. The scavenging stability directly determines the scavenging efficiency and even influences fuel-air mixing, combustion, and emission of the engine. In the present study, a computational fluid dynamics (CFD) analysis of the scavenging process in a steady-state scavenging flow test is conducted. A precession phenomenon is found in the high swirl model, and Proper Orthogonal Decomposition (POD) method is used to analyze the reason and the multi-scale characteristics of the precession phenomenon.
2017-03-28
Technical Paper
2017-01-0931
Michiel Van Nieuwstadt, Joseph Ulrey
Abstract While not commonly in production today, Gasoline Particulate Filters (GPFs) are likely to see widespread deployment to meet stringent EU6.2 and China particulate number (PN) standards. In many ways the operating conditions for GPFs are orthogonal to those of their diesel counterparts, and this leads to different and interesting requirements for the control strategy. We will present some generic system architectures for exhaust systems containing a GPF and will lay out an architecture for the GPF control strategy components which include: regeneration assist feature, soot estimation algorithm, GPF protection. The regeneration assist feature uses spark retard to increase exhaust temperature. The soot estimation algorithm describes how we can estimate soot from an open loop model or from a normalized pressure metric. The GPF protection feature controls oxygen flow to limit the soot burn rate.
2017-03-28
Technical Paper
2017-01-1089
Jose Grande, Julio Abraham Carrera, Manuel Dieguez Sr
Abstract Exhaust Gas Recirculation (EGR) has been in use for many years to control NOx emissions in commercial vehicle applications. Emissions limits are tighter with every new regulation while durability requirements continue to increase, so EGR system manufacturers must be able to provide high performance and robust designs even with high thermal loads. The commercial vehicle market is characterized by lower production rates than passenger car programs and the same engine must cope with multiple applications that have totally different engine calibrations. In some cases it is necessary to design two or more EGR systems for an engine platform, with a consequential impact on cost and development timeline. The optimal design of an EGR system needs to take into consideration several topics related with performance and durability: efficiency and pressure drop, fouling, boiling, thermal fatigue, vibration, pressure fatigue and corrosion among others.
2017-03-28
Technical Paper
2017-01-1311
Suman Mishra, Nagesh Gummadi, Lloyd Bozzi, Neil Vaughn, Rob Higley
Abstract Air rush noise is exhaust gas driven flow-induced noise in the frequency range of 500-6500 Hz. It is essential to understand the flow physics of exhaust gases within the mufflers in order to identify any counter measures that can attenuate this error state. This study is aimed at predicting the flow physics and air rush noise of exhaust mufflers in the aforementioned frequency range at a typical exhaust flow rate and temperature. The study is performed on two different muffler designs which show a significant air rush noise level difference when tested on the vehicle. The transient computational study was performed using DES with 2nd order spatial discretization and 2nd order implicit scheme for temporal discretization in StarCCM+. To compare with test data, a special flow test stand is designed so that all high and low frequency contents emanating from the engine are attenuated before the flow enters the test part.
2017-03-28
Technical Paper
2017-01-1354
Timothy Morse, Michael Cundy, Harri Kytomaa
Abstract One potential fire ignition source in a motor vehicle is the hot surfaces on the engine exhaust system. These hot surfaces can come into contact with combustible and flammable liquids (such as engine oil, transmission fluid, brake fluid, gasoline, or Diesel fuel) due to a fluid leak, or during a vehicle collision. If the surface temperature is higher than the hot surface ignition temperature of the combustible or flammable liquid in a given geometry, a fire can potentially ignite and propagate. In addition to automotive fluids, another potential fuel in post-collision vehicle fires is grass, leaves, or other vegetation. Studies of hot surface ignition of dried vegetation have found that ignition depends on the type of vegetation, surface temperature, duration of contact, and ambient conditions such as temperature and wind speed. Ignition can occur at surface temperatures as low as 300 °C, if the vegetation is in contact with the surface for 10 minutes or longer.
2017-03-28
Technical Paper
2017-01-1721
Ho Teng, Ruigang Miao, Liming Cao, Xuwei Luo, Tingjun Hu, Min Wu
Abstract In order to improve low speed torques, turbocharged gasoline direct injection (TGDI) engines often employ scavenging with a help of variable valve timing (VVT) controlled by the cam phasers. Scavenging improves the compressor performance at low flows and boosts low-speed-end torques of the engines. Characteristics of the engine combustion in the scavenging zone were studied with a highly-boosted 1.5L TGDI engine experimentally. It was found that the scavenging zone was associated with the highest blowby rates on the engine map. The blowby recirculation was with heavy oil loading, causing considerable hydrocarbon fouling on the intake ports as well as on the stem and the back of the intake valves after the engine was operated in this zone for a certain period of time. The low-speed pre-ignition (LSPI) events observed in the engine tests fell mainly in the scavenging zone.
2017-03-28
Journal Article
2017-01-0930
Christine K. Lambert, Timothy Chanko, Mark Jagner, Jon Hangas, Xin Liu, James Pakko, Carl Justin Kamp
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging is low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
2017-03-28
Journal Article
2017-01-0950
Alexander Sappok, Paul Ragaller, Andrew Herman, Leslie Bromberg, Vitaly Prikhodko, James Parks, John Storey
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Viewing 1 to 30 of 3845