Criteria

Display:

Results

Viewing 241 to 270 of 22426
Technical Paper
2014-04-01
C. Scott Sluder, John M.E. Storey, Michael J. Lance
Abstract Fouling in EGR coolers occurs because of the presence of soot and condensable species (such as hydrocarbons) in the gas stream. Fouling leads to one of two possible outcomes: stabilization of effectiveness and plugging of the gas passages within the cooler. Deposit formation in the cooler under high-temperature conditions results in a fractal deposit that has a characteristic thermal conductivity of ∼0.033 W/m*K and a density of 0.0224 g/cm3. Effectiveness becomes much less sensitive to changes in thermal resistance as fouling proceeds, creating the appearance of “stabilization” even in the presence of ongoing, albeit slow, deposit growth. Plugging occurs when the deposit thermal resistance is several times lower because of the presence of large amounts of condensed species. The deposition mechanism in this case appears to be soot deposition into a liquid film, which results in increased packing efficiency and decreased void space in the deposit relative to high-temperature deposits.
Technical Paper
2014-04-01
Helmut Brunner, Mario Hirz
Abstract Increasing urbanization, the growing degree of motorization and traffic performance in urban areas and environmental aspects like greenhouse gas emissions (GHG) are the motivation for a detailed analysis of personal individual mobility in urban areas, which is presented in this study. In the first step, the publication examines a study of market potential of new small and lightweight vehicle concepts. A mobility inquiry conducted in a mid-sized European city enables an estimation of the potential user groups for alternative vehicle concepts for individual urban traffic. In a second step, the CO2 reduction potential of urban car concepts is simulated for a generic vehicle fleet. This fleet consists of conventional vehicles of various classes (subcompact, compact, mid-sized …) as well as new lightweight urban car concepts. A novel vehicle concept for urban transportation will be presented as well. A comparison with the simulation results of a conventional vehicle fleet shows the potential regarding CO2-reduction and a reduction of parking space by application of future-oriented vehicle concepts.
Technical Paper
2014-04-01
Prashant Khapane, Uday Ganeshwade
Abstract Vehicle water wading capability refers to vehicle functional part integrity (e.g. engine under-tray, bumper cover, plastic sill cover etc.) when travelling through water. Wade testing involves vehicles being driven through different depths of water at various speeds. The test is repeated and under-body functional parts are inspected afterwards for damage. Lack of CAE capability for wading equates to late detection of failure modes which inevitably leads to expensive design change, and potentially affects program timing. It is thus of paramount importance to have a CAE capability in this area to give design loads to start with. Computational fluid dynamics (CFD) software is used to model a vehicle travelling through water at various speeds. A non-classical CFD approach was deemed necessary to model this. To validate the method, experimental testing with a simplified block was done and then verified with CFD modelling. The simple rectangular block at two different speeds and three immersion depths in water was utilized for the purpose.
Technical Paper
2014-04-01
Haichun Yao, Baigang Sun, Huayu Tian, Qinghe Luo, Hongyang Tang
Abstract NOx are the only harmful emissions of hydrogen internal combustion engine. EGR is one of the effective methods to reduce NOx. The traditional EGR is not suitable for hydrogen internal combustion engine. Therefore, the study of influence of hot EGR on hydrogen internal combustion engine is important. A 2.0L hydrogen internal combustion engine with hot EGR system model is employed to optimize the diameter and position of hot EGR based on a simulation analysis. The result shows that both of the combustion temperature and NOx increase as EGR increases due to the rise of intake temperature for low load condition, for heavy load, with the increase of EGR rate, NOx emissions decreases slightly before the mixture equivalence ratio comes to 1and then dropped significantly after the mixture equivalence ratio greater than 1. Unburned hydrogen in TWC has the effect of reducing NOx after catalysts decrease largely. Hydrogen engine combustion characteristics with hot EGR was analyzed, it suggests that EGR hasn't any benefit on combustion and NOx emission under low load condition; however, a significant amount reduce of NOx can be achieved under a rich condition (equivalence ratio greater than 1) by adjusting the EGR rate for high load condition with sacrificing power output slightly.
Technical Paper
2014-04-01
Mufaddel Dahodwala, Satyum Joshi, Erik W. Koehler, Michael Franke
Abstract The advantages of applying Compressed Natural Gas (CNG) as a fuel for internal combustion engines are well known. In addition to a significant operating cost savings due to a lower fuel price relative to diesel, there is an opportunity to reduce the engine's emissions. With CNG combustion, some emissions, such as Particulate Matter (PM) and Carbon Dioxide (CO2), are inherently reduced relative to diesel fueled engines due to the nature of the combustion and the molecular makeup of the fuel. However, it is important to consider the impact on all emissions, including Total Hydrocarbons (THC) and Carbon Monoxide (CO), which can increase with the use of CNG. Nitrogen Oxides (NOx) emission is often reported to decrease with the use of CNG, but the ability to realize this benefit is significantly impacted by the control strategy and calibration applied. FEV has investigated the emissions and performance impact of operating a heavy-duty diesel engine with CNG in a dual fuel mode. The CNG was introduced via injectors mounted to an inlet pipe located upstream of the intake manifold.
Technical Paper
2014-04-01
Tadanori Yanai, Xiaoye Han, Meiping Wang, Graham T. Reader, Ming Zheng, Jimi Tjong
Abstract The study investigated the characteristics of the combustion, the emissions and the thermal efficiency of a direct injection diesel engine fuelled with neat n-butanol. Engine tests were conducted on a single cylinder four-stroke direct injection diesel engine. The engine ran at 6.5 bar IMEP and 1500 rpm engine speed. The intake pressure was boosted to 1.0 bar (gauge), and the injection pressure was controlled at 60 or 90 MPa. The injection timing and the exhaust gas recirculation (EGR) rate were adjusted to investigate the engine performance. The effect of the engine load on the engine performance was also investigated. The test results showed that the n-butanol fuel had significantly longer ignition delay than that of diesel fuel. n-Butanol generally led to a rapid heat release pattern in a short period, which resulted in an excessively high pressure rise rate. The pressure rise rate could be moderated by retarding the injection timing and lowering the injection pressure. The applicable window of the injection timing for the n-butanol fuel was much narrower than that of the conventional diesel fuel because of the constraints of misfiring and excessive pressure rise rate.
Technical Paper
2014-04-01
Yuwei Zhao, Ying Wang, Shenghua Liu
Abstract Premixed charge compression ignition (PCCI) combustion has been shown to be a promising combustion technique to improve the combustion process and simultaneously reduce both Nitrogen oxides (NOx) and particulate matter (PM) emissions. The combination of port dimethyl ether (DME) induction and in-cylinder diesel direct-injection compression ignition (DICI) combustion was studied in a YTR 2105 engine. The main purposes of this paper were to investigate the effects of DME introduction on the combustion and emission characteristics of a diesel engine. Results obtained revealed that PCCI combustion process was composed of the homogeneous charge compression ignition (HCCI) combustion and conventional diffusion combustion. As the DME quantity was increased, the start of combustion (SOC) was advanced. The peak values of in-cylinder pressure and mass averaged temperature increased as well as the maximum heat release rate of DME HCCI combustion. But the maximum heat release rate of diesel diffusion combustion decreased.
Technical Paper
2014-04-01
Ireneusz Pielecha, Przemyslaw Borowski, Wojciech Cieslik
Abstract The current paper is a continuation of research on fuel atomization presented in SAE 2012-01-1662. The influence of varied position of the injector inside the combustion chamber on combustion, toxic compounds formation and exhaust emission were investigated. The simulation research (injection and combustion with NO formation) was supported with the model using the FIRE 2010 software by AVL. Modelling studies of toxic compounds formation were compared with the results of measurements on single-cylinder AVL 5804 engine. There thermodynamic evaluation indicators and exhaust emission were made.
Technical Paper
2014-04-01
Venkatesh Gopalakrishnan, Alberto Vassallo, Richard C. Peterson, Joaquin De la Morena
Abstract Future diesel combustion systems may operate with significantly higher levels of boost and EGR than used with present systems. The potential benefits of higher boost and EGR were studied experimentally in a single-cylinder diesel engine with capability to adjust these parameters independently. The objective was to study the intake and exhaust conditions with a more optimum combustion phasing to minimize fuel consumption while maintaining proper constraints on emissions and combustion noise. The engine was tested at four part-load operating points using a Design of Experiments (DOE) approach. Two of the operating points correspond to low-speed and low-load conditions relevant for the New European Driving Cycle (NEDC). The other two points focus on medium load conditions representative of the World-wide harmonized Light-duty Test Procedures (WLTP). For the NEDC relevant conditions, improved fuel consumption was not achievable due to combustion noise constraints and the requirement for a very high turbocharger efficiency improvement of more than 20%.
Technical Paper
2014-04-01
Kar Mun Pang, Mehdi Jangi, Xue-Song Bai, Jesper Schramm
Abstract In this reported work, 2-dimsensional computational fluid dynamics studies of n-heptane combustion and soot formation processes in the Sandia constant-volume vessel are carried out. The key interest here is to elucidate how the chemical kinetics affects the combustion and soot formation events. Numerical computation is performed using OpenFOAM and chemistry coordinate mapping (CCM) approach is used to expedite the calculation. Three n-heptane kinetic mechanisms with different chemistry sizes and comprehensiveness in oxidation pathways and soot precursor formation are adopted. The three examined chemical models use acetylene (C2H2), benzene ring (A1) and pyrene (A4) as soot precursor. They are henceforth addressed as nhepC2H2, nhepA1 and nhepA4, respectively for brevity. Here, a multistep soot model is coupled with the spray combustion solver to simulate the soot formation/oxidation processes. Comparison of the results shows that the simulated ignition delay times and liftoff lengths have good agreements with the experimental measurements across wide range of operating conditions when the nhepC2H2 model is implemented.
Technical Paper
2014-04-01
Scott Skeen, Julien Manin, Lyle Pickett, Kristine Dalen, Anders Ivarsson
Abstract Quantitative measurements of the total radiative heat transfer from high-pressure diesel spray flames under a range of conditions will enable engine modelers to more accurately understand and predict the effects of advanced combustion strategies on thermal loads and efficiencies. Moreover, the coupling of radiation heat transfer to soot formation processes and its impact on the temperature field and gaseous combustion pollutants is also of great interest. For example, it has been shown that reduced soot formation in diesel engines can result in higher flame temperatures (due to less radiative cooling) leading to greater NOx emissions. Whereas much of the previous work in research engines has evaluated radiation based on two- or three-color detection with limited spatial resolution, this work uses an imaging spectrometer in conjunction with a constant volume pre-burn vessel to quantify soot temperatures, optical thickness, and total radiation with spatial and spectral (360-700 nm) resolution along the flame axis.
Technical Paper
2014-04-01
Wei Jing, William Roberts, Tiegang Fang
Abstract The measurement of the two-color line of sight soot and KL factor for NO.2 diesel and jet-A fuels was conducted in an optical constant volume combustion chamber by using a high speed camera under 1000 K ambient temperature and varied oxygen concentration conditions. The ambient conditions were set as follows: four oxygen cases including 10%, 15%, 18% and 21% at 1000 K ambient temperature. KL factor and soot temperature were determined based on the two-color pyrometry technique using two band-pass filters with wavelengths of 650 nm and 550 nm. The results show that low soot temperature is observed in the upstream inner flame along the centerline, which is surrounded by high soot temperature regions, and a high KL factor is found in the same region with a low soot temperature. The results under different times suggest that soot temperature is higher for high O2 conditions during the entire flame development; meanwhile, both integrated KL factor and soot area decrease with the increase of O2 concentration.
Technical Paper
2014-04-01
Johan Genberg, Petter Tornehed, Oivind Andersson, Kristina Stenstrom
Abstract PM in diesel exhaust has been given much attention due to its adverse effect on both climate and health. As the PM emission levels are tightened, the portion of particles originating from the lubrication oil is likely to increase. In this study, exhausts from a biodiesel-fueled Euro 5 engine were examined to determine how much of the carbonaceous particles that originated from the fuel and the lubrication oil, respectively. A combination of three methods was used to determine the PM origin: chain length analysis of the hydrocarbons, determination of organic and elemental carbon (OC and EC), and the concentration of 14C found in the exhausts. It was found that the standard method for measuring hydrocarbons in PM on a filter (chain length analysis) only accounted for 63 % of the OC, meaning that it did not account for all non-soot carbon in the exhausts. Comparing the chain length method to the 14C-based method showed that the non-extractable organic carbon originated both from the oil and fuel.
Technical Paper
2014-04-01
Yiqun Huang, John Colvin, Asanga Wijesinghe, Meng Wang, Deyang Hou, Zuhua Fang
Abstract Dual loop EGR systems (having both a high pressure loop EGR and a low pressure loop EGR) have been successfully applied to multiple light-duty diesel engines to meet Tier 2 Bin 5 and Euro 5/6 emissions regulations [1, 2], including the 2009 model year VW Jetta 2.0TDI. Hyundai and Toyota also published their studies with dual loop EGR systems [3, 4]. More interest exists on the low pressure loop EGR effects on medium to heavy duty applications [5]. Since the duty cycles of light duty diesel and heavy duty diesel applications are very different, how to apply the dual loop EGR systems to heavy duty applications and understanding their limitations are less documented and published. As a specific type of heavy duty application, this paper studied the dual loop EGR effects on the retrofit applications of heavy duty diesel for delivery and drayage applications. The reduction of NOx emissions and the impact on fuel economy and controls are discussed. The dual loop EGR systems were fully developed and demonstrated over the full engine speed and load range including transient conditions with a nearly 50% NOx reduction over light to medium loads for drayage truck applications relative to the 2004 emissions level.
Technical Paper
2014-04-01
Thomas Wallner, Andrew Ickes, Jeff Wasil, James Sevik, Scott Miers
Abstract This study evaluates iso-butanol as a pathway to introduce higher levels of alternative fuels for recreational marine engine applications compared to ethanol. Butanol, a 4-carbon alcohol, has an energy density closer to gasoline than ethanol. Isobutanol at 16 vol% blend level in gasoline (iB16) exhibits energy content as well as oxygen content identical to E10. Tests with these two blends, as well as indolene as a reference fuel, were conducted on a Mercury 90 HP, 4-stroke outboard engine featuring computer controlled sequential multi-port Electronic Fuel Injection (EFI). The test matrix included full load curves as well as the 5-mode steady-state marine engine test cycle. Analysis of the full load tests suggests that equal full load performance is achieved across the engine speed band regardless of fuel at a 15-20°C increase in exhaust gas temperatures for the alcohol blends compared to indolene. This increase as well as the observed 2.5-3% point improvement in brake thermal efficiency of both alcohol blends compared to the reference fuel are caused by changes in air/fuel ratio; an effect ultimately attributable to the open loop engine control strategy.
Technical Paper
2014-04-01
Joohan Kim, Gyujin Kim, Hoon Lee, Kyoungdoug Min
Abstract Direct-injection spark-ignition (DISI) engines are regarded as a promising technology for the reduction of fuel consumption and improvement of engine thermal efficiency. However, due to direct injection, the shortened fuel-air mixing duration leads to a spatial gradient of the equivalence ratio, and these locally rich regions cause the formation of particulate matter. In the current study, numerical investigations on pollutant formation in a DISI engine were performed using combined flamelet models for premixed and diffusion flames. The G-equation model for partially premixed combustion was improved by incorporating the laminar flamelet library. Gasoline fuel was represented as a ternary mixture of gasoline surrogate and its laminar flame speeds were obtained under a wide range of engine operating conditions. For the flame propagation in a partially premixed condition, the presumed shape of the probability density function approach was adopted, whereas the burned gas compositions were determined from the steady laminar flamelet library.
Technical Paper
2014-04-01
Donald Selmanaj, Harald Waschl, Michael Schinnerl, Sergio Savaresi, Luigi del Re
Abstract Especially in view of more and more stringent emission legislation in passenger cars it is required to reduce the amount of pollutants. In the case of Diesel engines mainly NOx and PM are emitted during engine operation. The main influence factors for these pollutants are the in-cylinder oxygen concentration and the injected fuel amount. Typically the engine control task can be divided into two separate main parts, the fuel and the air system. Commonly air system control, consisting of a turbocharger and exhaust gas recirculation control, is used to provide the required amount of oxygen and address the emission targets, whereas the fuel is used to provide the desired torque. Especially in transient maneuvers the different time scales of both systems can lead to emission peaks which are not desired. Against this background in this work instead of the common way to address the air system, the fuel system is considered to reduce emission peaks during transients. The idea is to start from a base calibration and adapt the injection parameters, like start and amount of pilot and main injection, to reduce transient emission peaks.
Technical Paper
2014-04-01
Jean-Claude Habumuremyi
Since 2004, INERGY is working on the development of SCR (Selective Catalytic Reduction) system Components and controls to enable the reduction of NOx (Nitrogen Oxides) in the exhaust gas using an aqueous urea solution. This paper is focused on the pump control strategy. In this paper, we modelled an INERGY SCR pump system (gear pump, DC motor, line and injector) used. Then we considered PID (Proportional-Integral-Derivative) controllers since they are common in the automotive industry. We developed 4 controllers to achieve the necessary system function which include: line filling, pressure build-up, pressure hold-up, and purge. Windup introduced by saturation of the motor command and transition between the controllers were taken into account during development. We tested different anti-windup approaches on this model. We derived lessons regarding the overshoot, the rise time and the performance of the different anti-windup techniques. Then we showed the results of anti-windup methods applied on INERGY 1st and 2nd generation SCR systems
Technical Paper
2014-04-01
Raouf Mobasheri, Seyed Alireza Khabbaz
Abstract Exhaust Gas Recirculation (EGR) is an effective pre-treatment technique, which has been widely used to decrease the amount of the oxides of nitrogen (NOx) emission from diesel engines. However, the use of high EGR rates leads to the reduction in oxygen availability in the burning regions of the combustion chamber which impairs the soot oxidation process. Consequently, higher soot generated by EGR leads to long-term usage problems inside the engines such as higher carbon deposits, lubricating oil degradation and enhanced engine wear. In this study, CFD modeling has been carried out to analyze the effects of high EGR rates in conjunction with optimum multiple injection strategies. A heavy-duty DI Diesel engine has been modeled to study the engine performance and emissions with various EGR rates (from 0% to 40%). The selected operating points have been achieved with the same injection profile including a main and post injection for all considered cases. The results showed the effectiveness of multiple injections at controlling soot emission under high EGR conditions.
Technical Paper
2014-04-01
May Yen, John Abraham
Abstract In this work, computations of reacting diesel jets, including soot and NO, are carried out for a wide range of conditions by employing a RANS model in which an unsteady flamelet progress variable (UFPV) sub-model is employed to represent turbulence/chemistry interactions. Soot kinetics is represented using a chemical mechanism that models the growth of soot precursors starting from a single aromatic ring by hydrogen abstraction and carbon (acetylene) addition and NO is modeled using the kinetics from a sub-mechanism of GRI-Mech 3.0. Tracer particles are used to track the residence time of the injected mass in the jet. For the soot and NO computations, this residence time is used to track the progression of the soot and NO reactions in time. The conditions selected reflect changes in injection pressure, chamber temperature, oxygen concentration, and density, and orifice diameter. As reported in prior work, the UFPV model predicts the ignition delay and flame lift-off height within about 25% of reported measurements.
Technical Paper
2014-04-01
Ayman Moawad, Aymeric Rousseau
Abstract Manufacturers have been considering various technology options to improve vehicle fuel economy. One of the most cost effective technology is related to advanced transmissions. To evaluate the benefits of transmission technologies and control to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the many types of transmissions: Automatic transmissions, Manual Transmission as well as Dual Clutch Transmissions including the most commonly used number of gears in each of the technologies (5-speeds, 6-speeds, and 8-speeds). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each advanced transmission across vehicle classes.
Technical Paper
2014-04-01
Matteo De Cesare, Federico Stola, Cosimo Senni, Alfredo Di Monte, Stefano Sgatti
Abstract The Selective Catalytic Reduction (SCR) system, installed on the exhaust line, is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for Euro 6 compliancy for light and medium duty trucks and bigger passenger cars. Moreover, new more stringent emission regulations and homologation cycles are being proposed for Euro 6c stage and they are scheduled to be applied by the end of 2017. In this context, the interest for SCR technology and its application on light-duty trucks is growing, with a special focus on its potential benefit in term of fuel consumption reduction, thanks to combustion optimization. Nevertheless, the need to warm up the exhaust gas line, to meet the required NOx conversion efficiency, remains an issue for such kind of applications. In this work, the activity performed on different Euro 5-compliant light-duty vehicles, equipped with SCR, to fulfill Euro 6 emission level with fuel saving respect to current production level, is described.
Technical Paper
2014-04-01
Huayu Tian, Baigang Sun, Haichun Yao, Hongyang Tang, Qinghe Luo
Abstract Nowadays, the world is facing severe energy crisis and environment problems. Development of hydrogen fuel vehicles is one of the best ways to solve these problems. Due to the difficulties of infrastructures, such as the hydrogen transport and storage, hydrogen fuel vehicles have not been widely used yet. As a result, Hydrogen-gasoline dual-fuel vehicle is a solution as a compromise. In this paper, three way catalytic converter (TWC) was used to reduce emissions of hydrogen-gasoline dual-fuel vehicles. On wide open throttle and load characteristics, the conversion efficiency of TWC in gasoline engine was measured. Then the TWC was connected to a hydrogen internal combustion engine. After switching the hydrogen and gasoline working mode, emission data was measured. Experiment results show that the efficiency of a traditional TWC can be maintained above 85%., while it works in a hydrogen-gasoline dual-fuel alternative working mode.
Technical Paper
2014-04-01
Gangfeng Tan, Ming Chen, Haobo Xu, Bing Luo, Jiameng Wang
Abstract Vacuum cleaning vehicle is the necessary equipment for the Municipal Sanitation Department to keep the road surface clean and the dust subsidence system is the heart unit for the proper function of the cleaning vehicle. The reasonable design of this system could increase the load capacity of the vehicle and be convenient for the garbage collecting and dumping. Meanwhile, the engine power could be relatively reduced and the influence on the environment duo to the dusty air in the outlet could be also effectively improved. In the study, the gravity dedusting principle is used firstly for structure design to reduce the flow rate of dust particles inside the lower part of the dust subsidence system. The ruleless collision loss among dust particles is reduced and thereby the fan power is saved. By means of a reasonable separated chamber design and the use of inertia baffle, the sort management for dust particles is developed and the work stress of the export filter is released observably.
Technical Paper
2014-04-01
Aaron Hula, Jeffrey Alson, Amy Bunker, Kevin Bolon
Abstract This paper examines the pace at which manufacturers have added certain powertrain technology into new vehicles from model year 1975 to the present. Based on data from the EPA's Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends database [1], the analysis will focus on several key technologies that have either reached a high level of penetration in light duty vehicles, or whose use in the new vehicle fleet has been growing in recent years. The findings indicate that individual manufacturers have, at times, implemented new technology across major portions of their new vehicle offerings in only a few model years. This is an important clarification to prior EPA analysis that indicated much longer adoption times for the industry as a whole. This new analysis suggests a technology penetration paradigm where individual manufacturers have a much shorter technology penetration cycle than the overall industry, due to “sequencing” by individual manufacturers.
Collection
2014-04-01
This technical paper collection includes papers on PM measurement methods, soot generation, alternative methods of PM mass determination, in-cylinder contol of emissions, the effects of EGR, biodiesel fuels, duel fuel systems, soot emissions modeling, PM emissions from gasoline engines, including GDI, ethanol effects, and modeling.
Collection
2014-04-01
This technical paper collection covers topics such as: new materials for lean NOx traps (LNT) and Selective Catalytic Reduction (SCR); system integration and durability; advances in NOx catalyst substrates, novel reductants and mixing designs.
Collection
2014-04-01
This technical paper collection covers emissions measuring techniques and testing regimes including new analysis techniques and the novel application of existing techniques, the comparison of existing and proposed testing regimes with real world experience, including modeling.
Collection
2014-04-01
This technical paper collection covers DOC, HC Trap, DPF, GPF, LNT, TWC, SCR, SCRF, ammonia oxidation catalysts, hybrid or combined catalysts, urea-water solution spray dynamics, and mixture non-uniformity. Modeling aspects range from fundamental, 3D models of individual components to system level simulation, optimization, variation, degradation, and control.
Collection
2014-04-01
This technical paper collection explores advances in the creation of sustainable energy sources and their usage in the transportation sector. Topics can include research and in-production technology used to produce renewable energy sources and materials.
Viewing 241 to 270 of 22426

Filter

  • Article
    1059
  • Book
    77
  • Collection
    38
  • Magazine
    498
  • Technical Paper
    20143
  • Standard
    611