Display:

Results

Viewing 211 to 240 of 576
2016-04-05
Technical Paper
2016-01-0943
Paul Ragaller, Alexander Sappok, Leslie Bromberg, Natarajan Gunasekaran, Jason Warkins, Ryan Wilhelm
Abstract Efficient aftertreatment management requires accurate sensing of both particulate filter soot and ash levels for optimized feedback control. Currently a combination of pressure drop measurements and predictive models are used to indirectly estimate the loading state of the filter. Accurate determination of filter soot loading levels is challenging under certain operating conditions, particularly following partial regeneration events and at low flow rate (idle) conditions. This work applied radio frequency (RF)-based sensors to provide a direct measure of the particulate filter soot levels in situ. Direct measurements of the filter loading state enable advanced feedback controls to optimize the combined engine and aftertreatment system for improved DPF management. This study instrumented several cordierite and aluminum titanate diesel particulate filters with RF sensors.
2016-04-05
Technical Paper
2016-01-0937
James E. Parks, John M. E. Storey, Vitaly Y. Prikhodko, Melanie M. Debusk, Samuel A. Lewis
Abstract New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal.
2016-04-05
Technical Paper
2016-01-0927
David Culbertson, Magdi Khair, James Pradun, Henning Gero Petry, Anne Ungermann
Abstract Modifications have been made to the calibration and control of Diesel engines to increase the temperature of the exhaust especially in cold weather and part load operation. The main purpose for this advanced calibration is to enable the reduction of emissions by improving catalytic activity. An alternative method for increasing exhaust temperature is providing electric heat. Test results show the feasibility of applying various amounts of electric heat and the related increases in exhaust temperature as well as speed of heating. Simulation modeling extends the application of electric heat to a complete engine map and explores the potential impact on engine performance and emission reduction benefits.
2016-04-05
Technical Paper
2016-01-0929
Devin Aryan, Kenneth Price, Thomas Pauly
Abstract There is growing interest in application of SCR on DPF (SDPF) for light and heavy duty applications, particularly to provide improvements in cold start emissions, as well as improvements in system cost and packaging [1, 2, 3]. The first of systems containing SDPF are just coming to market, with additional introductions expected, particularly for light duty and non-road applications [4]. To provide real world testing for a new SDPF product design prior to availability of OEM SDPF applications, an SDPF and one SCR catalyst were substituted in place of the original two SCR catalysts and a catalyzed diesel particulate filter (CDPF) on a Ford F250 HD pickup. To ensure that the on-road emissions would be comparable to the production system replaced, and to make sure that the control system would be able to operate without detecting some difference in behavior and seeing this as a fault, initial chassis dynamometer work was done before putting the vehicle on the road.
2016-04-05
Technical Paper
2016-01-0978
Nolan Wright, Dustin Osborne, Nathan Music
Abstract Exhaust emissions of non-methane hydrocarbon (NMHC) and methane were measured from a Tier 3 dual-fuel demonstration locomotive running diesel-natural gas blend. Measurements were performed with the typical flame ionization detector (FID) method in accordance with EPA CFR Title 40 Part 1065 and with an alternative Fourier-Transform Infrared (FTIR) Spectroscopy method. Measurements were performed with and without oxidation catalyst exhaust aftertreatment. FTIR may have potential for improved accuracy over the FID when NMHC is dominated by light hydrocarbons. In the dual fuel tests, the FTIR measurement was 1-4% higher than the FID measurement of. NMHC results between the two methods differed considerably, in some cases reporting concentrations as much as four times those of the FID. However, in comparing these data it is important to note that the FTIR method has several advantages over the FID method, so the differences do not necessarily represent error in the FTIR.
2016-04-05
Technical Paper
2016-01-0980
Jerzy Merkisz, Jacek Pielecha, Piotr Bielaczyc, Joseph Woodburn
Abstract This paper presents a study of passenger cars in terms of emissions measurements in tests conducted under real driving conditions (RDE - Real Driving Emissions) by means of PEMS (Portable Emission Measurement System) equipment. A special feature of the RDE tests presented in this paper is that they were performed under Polish conditions and the specified parameters may differ from those in most other European Union countries. Emission correction coefficients have been defined, based on the test results, equal to the increase (or decrease) of driving emissions during the laboratory (‘chassis dyno’) test or during normal usage in relation to the EU emission standards (emission class) of the vehicle.
2016-04-05
Technical Paper
2016-01-0975
Xander Seykens, Erik van den Tillaart, Velizara Lilova, Shigeru Nakatani
Abstract Since the introduction of Euro IV legislation [1, 2], Selective Catalytic Reduction (SCR) technology using liquid urea injection is (one of) the primary methods for NOx reduction in many applications. Ammonia (NH3) is the reagent and key element for the SCR system and its control calibration to meet all operational requirements. TNO and Horiba are highly motivated to facilitate a correct interpretation and use of emissions measurement data. Different hypotheses were defined to investigate the impact of temperatures and flow rates on urea decomposition. These parameters are known to strongly affect the urea decomposition process, and thus, the formation of NH3. During a test campaign, different SCR catalyst feed gas conditions (mass flow, temperature, species and dosing quantities) were applied. Three Horiba FTIR gas analyzers were installed to simultaneously sample either all upstream or all downstream of the SCR brick. Both steady-state and dynamic responses were evaluated.
2016-04-05
Technical Paper
2016-01-0954
Jason Jacques, Thomas Pauly, Michael Zammit, Homayoun Ahari, Michael Smith
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III Emissions Standards for Light Duty Diesel passenger vehicles (LDD). As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, robustness and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR) catalyst. The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) typically provided as urea, adequate operating temperatures, and optimum Nitrogen Dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is mostly influenced by Precious Group Metals (PGM) containing catalysts located upstream of the SCR catalyst. Different versions of zeolite based SCR technologies are available on the market today and these vary in their active metal type (iron, copper, vanadium), and/or zeolite type.
2016-04-05
Technical Paper
2016-01-0952
Gordon J. Bartley, Zachary Tonzetich, Ryan Hartley
Abstract A recent collaborative research project between Southwest Research Institute® (SwRI®) and the University of Texas at San Antonio (UTSA) has demonstrated that a ruthenium (Ru) catalyst is capable of converting oxides of nitrogen (NOX) emissions to nitrogen (N2) with high activity and selectivity. Testing was performed on coated cordierite ceramic cores using SwRI’s Universal Synthetic Gas Reactor® (USGR®). Various gas mixtures were employed, from model gas mixes to full exhaust simulant gas mixes. Activity was measured as a function of temperature, and gaseous inhibitors and promoters were identified. Different Ru supports were tested to identify ones with lowest temperature activity. A Ru catalyst can be used in the exhaust gas recirculation (EGR) leg of a Dedicated-EGR (D-EGR) engine [1,2], where it uses carbon monoxide (CO) and hydrogen (H2) present in the rich gas environment to reduce NOX to N2 with 100% efficiency and close to 100% selectivity to N2.
2016-04-05
Technical Paper
2016-01-0953
Homayoun Ahari, Michael Smith, Michael Zammit, Brad Walker
In order to meet LEV III, EURO 6C and Beijing 6 emission levels, Original Equipment Manufacturers (OEMs) can potentially implement unique aftertreatment systems solutions which meet the varying legislated requirements. The availability of various washcoat substrates and PGM loading and ratio options, make selection of an optimum catalyst system challenging, time consuming and costly. Design for Six Sigma (DFSS) methodologies have been used in industry since the 1990s. One of the earliest applications was at Motorola where the methodology was applied to the design and production of a paging device which Consumer Reports called “virtually defect-proof”.[1] Since then, the methodology has evolved to not only encapsulate complicated “Variation Optimization” but also “Design Optimization” where multiple factors are in play. In this study, attempts are made to adapt the DFSS concept and methodology to identify and optimize a catalyst for diesel applications.
2016-04-05
Technical Paper
2016-01-0994
Chetankumar Patel, Nikhil Sharma, Nachiketa Tiwari, Avinash Kumar Agarwal
Abstract Biodiesel made from Jatropha oil by transesterification process has viscosity and other important physical properties comparable to mineral diesel hence it can be used as an alternate fuel in conventional diesel engines. It is important to investigate the spray characteristics of biodiesel because emissions from the engines are dependent on fuel atomization process and resulting fuel-air mixing. This study focuses on the Jatropha biodiesel spray investigations using Phase Doppler Interferometry (PDI) for measurement of various microscopic spray parameters such as Sauter mean diameter (SMD) and spray droplet size and velocity distributions. The spray and engine experiments were carried out for Jatropha biodiesel (JB100) and their 20% blends (JB20) with mineral diesel as baseline. Fuel injection pressure during the spray experiments was maintained at 200 bars for all tests, quite similar to small horse power agricultural engines, and the fuel injection quantity was varied.
2016-04-05
Technical Paper
2016-01-0993
Yoshinori Otsuki, Kenji Takeda, Hiroshi Nakamura
Abstract Recently, it was reported that the atmospheric pollution levels of nitrogen dioxide (NO2) and particulate matter (PM) are not decreasing despite the introduction of stricter vehicle emission regulations. The difference between conditions of the test cycles defined by the vehicle emission regulations and the real driving can contribute to the differences between expected and actual pollution levels. This has led to the introduction of in-use vehicle emission monitoring and regulations by means of a portable emission measurement system (PEMS). An optimized on-board PM analyzer was developed in this study. The on-board PM analyzer is a combination of a partial flow dilution system (PFDS) particulate sampler and a diffusion charger sensor (DCS) for real-time PM signals. The measuring technology and basic performance of the analyzer will be explained. Acceleration of the vehicle can cause uncertainty of flow measurement in the PM sampler.
2016-04-05
Technical Paper
2016-01-0986
John Pisano, Thomas D. Durbin, Kurt Bumiller, Gervase Mackay, Alak Chanda, Keith Mackay, Winston Potts, John Collins
Abstract The measurement of SO2 levels in vehicle exhaust can provide important information in understanding the relative contribution of sulfur and sulfate from fuel vs. oil source to PM. For this study, a differential optical absorption spectrometer (DOAS) that can measure SO2 down to 20 ppbV in real-time was built and evaluated. The DOAS consisted of an extractive sampling train, a cylindrical sampling cell with a single-path design to minimize cell volume, a spectrometer, and a deuterium lamp light source with a UVC range of ∼200-230 nanometer (nm). Laboratory tests showed detection limits were approximately in the range of 12 to 15 ppbV and showed good linearity over SO2 concentration ranges of 20 to 953 ppbV. Interference tests showed some interference by NO and by NH3, at levels of 300 ppmV and 16.6 ppmV, respectively.
2016-04-05
Technical Paper
2016-01-0989
Scott Eakle, Svitlana Kroll, Alice Yau, John Gomez, Cary Henry
Abstract Ideally, complete thermal decomposition of urea should produce only two products in active Selective Catalytic Reduction (SCR) systems: ammonia and carbon dioxide. In reality, urea thermal decomposition reaction includes the formation of isocyanic acid as an intermediate product. Being highly reactive, isocyanic acid can initiate the formation of larger molecular weight compounds such as cyanuric acid, biuret, melamine, ammeline, ammelide, and dicyandimide [1,2,3,4]. These compounds can be responsible for the formation of deposits on the walls of the decomposition reactor in urea SCR systems. Composition of these deposits varies with temperature exposure, and under certain conditions, can create oligomers such as melam, melem, and melon [5, 6] that are difficult to remove from exhaust systems. Deposits can affect the efficiency of the urea decomposition, and if large enough, can inhibit the exhaust flow.
2016-04-05
Technical Paper
2016-01-0983
Travis C. Malouf, John J. Moskwa
Abstract This paper presents details of the development of, and experimental results from, an internal combustion engine dynamic cylinder heat transfer control device for use on single-cylinder research engines. This device replicates the varying temperature profile and heat transfer distribution circumferentially around a cylinder in a multicylinder engine. This circumferential temperature distribution varies around a cylinder because of the location of, or lack of coolant passages around the cylinders, and varies from cylinder to cylinder as a result of the flow of the coolant through these passages as it accumulates thermal energy and increases in temperature. This temperature distribution is important because it directly affects the NO emissions from each cylinder, as will be seen in the experimental results.
2016-04-05
Technical Paper
2016-01-0981
Susan Collet
Abstract Light Duty Vehicle corporate average fuel economy (CAFE), fuel economy label, and greenhouse gas (GHG) requirements are related but are very different. The fundamentals to obtain the data are the same, but to derive the required values, the final formulas have different components. These formulas, how to obtain the values which comprise the formulas, and how to use the test output to obtain the final result necessary to determine compliance with the standards are in regulations, but are not easily located. The information is contained in many documents; such as various sections in the Code of Federal Regulations, U.S. Environmental Protection Agency (EPA) Guidance documents, SAE International papers, American Society of Testing and Materials standards, and law suit judgments. This paper compiles the fundamentals of vehicle CAFE, fuel economy label, and GHG information. The intent is to provide a reference to the foundation of these requirements.
2016-04-05
Technical Paper
2016-01-1007
Benjamin Ellies, Charles Schenk, Paul Dekraker
Abstract As part of its technology assessment for the upcoming midterm evaluation (MTE) of the 2022-2025 Light-Duty Vehicle Greenhouse Gas (LD GHG) emissions standards, EPA has been benchmarking engines and transmissions to generate inputs for use in its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) model, a physics-based, forward-looking, full vehicle computer simulation tool. One of the most efficient engines today, a 2.0L Mazda SkyActiv engine, is of particular interest due to its high geometric compression ratio and use of an Atkinson cycle. EPA benchmarked the 2.0L SkyActiv at its National Vehicle and Fuel Emissions laboratory. EPA then incorporated ALPHA into an engine dynamometer control system so that vehicle chassis testing could be simulated with a hardware-in-the-loop (HIL) approach.
2016-04-05
Technical Paper
2016-01-1009
Xin Wang, Yunshan Ge, Chuanzhen Zhang, Jia Liu, Zihang Peng, Huiming Gong
Abstract Along with the booming expansion of private car preservation, many Chinese cities are now struggling with hazy weather and ground-level ozone contamination. Although central government has stepped up efforts to purify skies above China, counter-strategies to curb ground-level ozone is comparatively weak. By using maximum incremental reactivity (MIR) method, this paper estimated the ozone forming potential for twenty-five Euro-3 to Euro-5 passenger cars burning conventional gasoline, methanol-gasoline, ethanol-gasoline, neat methanol and compressed natural gas (CNG). The results showed that, for all the fuel tested, VOC/NOx ratios and SR values decreased with the upgrading of emission standard. Except for Euro-3 M100 and Euro-4 M85, SR values for alternative fuel were to different degrees smaller than those for gasoline. When the emission standard was shifted from Euro-4 to Euro-5, OFP values estimated for gasoline vehicle decreased.
2016-04-05
Technical Paper
2016-01-1006
Cary Henry, Svitlana Kroll, Vinay Premnath, Ian Smith, Peter Morgan, Imad Khalek
Abstract In this study, the criteria pollutant emissions from a light duty vehicle equipped with Dedicated EGR® technology were compared with emissions from an identical production GDI vehicle without externally cooled EGR. In addition to the comparison of criteria pollutant mass emissions, an analysis of the gaseous and particulate chemistry was conducted to understand how the change in combustion system affects the optimal aftertreatment control system. Hydrocarbon emissions from the vehicle were analyzed usin g a variety of methods to quantify over 200 compounds ranging in HC chain length from C1 to C12. The particulate emissions were also characterized to quantify particulate mass and number. Gaseous and particulate emissions were sampled and analyzed from both vehicles operating on the FTP-75, HWFET, US06, and WLTP drive cycles at the engine outlet location.
2016-04-05
Technical Paper
2016-01-1004
Somendra Pratap Singh, Shikhar Asthana, Shubham Singhal, Naveen Kumar
Abstract The energy crisis coupled with depleting fuel reserves and rising emission levels has encouraged research in the fields of performance enhancement, emission reduction technologies and engineering designs. The present paper aims primarily to offset the problem of high emissions and low efficiencies in low cost CI engines used as temporary power solutions on a large scale. The investigation relates to the low cost optimization of an intake runner having the ability to vary the swirl ratio within the runner. Test runs reveal that NOx and CO2 follow a relatively smaller gradient of rise and fall in their values depending on the configuration; whereas UHC and CO have a rapid changes in values with larger gradients. However, in a relative analysis, no configuration was able to simultaneously reduce all emission parameters and thus, there exists a necessity to find an optimized configuration as a negotiation between the improved and deteriorated parameters.
2016-04-05
Technical Paper
2016-01-1003
Fabian Fricke, Om Parkash Bhardwaj, Bastian Holderbaum, Terrence Scofield, Elmar Grußmann, Marco Kollmeier
Abstract Improvements in the efficiency of internal combustion engines has led to a reduction in exhaust gas temperatures. The simultaneous tightening of exhaust emission limits requires ever more complex emission control methods, including aftertreatment whose efficiency is crucially dependent upon the exhaust gas temperature. Double-walled (also called air-gap) exhaust manifold and turbine housing modules made from sheet metal have been used in gasoline engines since 2009. They offer the potential in modern Diesel engines to reduce both the emissions of pollutants and fuel consumption. They also offer advantages in terms of component weight and surface temperatures in comparison to cast iron components. A detailed analysis was conducted to investigate the potential advantages of insulated exhaust systems for modern diesel engines equipped with DOC and SCR coated DPF (SDPF).
2016-04-05
Technical Paper
2016-01-1002
Benjamin Kaal, Michael Grill, Michael Bargende
Abstract This paper presents a quasi-dimensional emission model for calculating the transient nitric oxide emissions of a diesel engine. Using conventional and high-speed measurement technology, steady-state and transient emissions of a V6 diesel engine were examined. Based on measured load steps and steady-state measurements a direct influence of the combustion chamber wall temperature on the nitric oxide emissions was found. Load steps to and from, as well as steady-state measurements down to almost stoichiometric global combustion air ratios were used to examine the behavior of nitric oxide formation under these operating conditions. An existing emission model was expanded in order to represent the direct influence of the combustion chamber wall temperature on the nitric oxide emissions as well as enabling the forecasting of nitric oxide emissions at low global combustion air ratios: Both particularly important aspects for the simulation of transient emissions.
2016-04-05
Technical Paper
2016-01-0999
Yuesen Wang, Xingyu Liang, Ge-Qun Shu, lihui Dong, Hanzhengnan Yu, Yajun Wang, Zhijun Li
Abstract In this paper, the influence of sulfur and ash fraction of lubricating oil on particle emissions was investigated via experimental works. Especially, we focus on the characterizations like size distribution, morphology and element composition in diesel particles. All of the research was done on a two-cylinder diesel engine under different load conditions. Five kinds of lubricating oils with different levels of sulfur and ash fraction were used in this study, among which a kind of 5W-30 (ACEA, C1) oil was used as baseline oil. Diesel primary particles were collected by thermophoretic system, and analyzed by transmission electron microscopy and energy dispersive X-ray spectrum technique, respectively. Conclusions drawn from the experiments indicate that the sulfur and ash change the primary particle emissions directly.
2016-04-05
Technical Paper
2016-01-1064
Daniel Pachner, Jaroslav Beran
Abstract The Exhaust Gas Recirculation (EGR) rate is a critical parameter of turbocharged diesel engines because it determines the trade-off between NOx and particulate matter (PM) emissions. On some heavy duty engines the EGR mass flow is directly measured with a Venturibased sensor and a closed loop control system maintains EGR flow. However, on most light duty diesel engines the EGR mass flow must be estimated. This paper compares two methods for estimating EGR mass flow. The first method, referred to as the Speed Density method, serves as a baseline for comparison and uses sensors for engine speed, intake manifold pressure and temperature, as well as fresh air flow (MAF). The new, second method adds turbo speed to this sensor set, and includes additional engine modelling equations, such as the EGR valve equation and the turbine equation. Special measures are taken to allow the additional equations to execute without issue on production ECMs (Electronics Controls Modules).
2016-04-05
Technical Paper
2016-01-1070
Gopichandra Surnilla, Richard Soltis, James Hilditch, Christopher House, Timothy Clark, Matthew Gerhart
Abstract Traditional EGR measurement systems using delta pressure over a fixed orifice such as a DPFE sensor (Delta Pressure Feedback for EGR), have limitations in the ability to measure EGR accurately. Also, the pressure drop that results from the orifice may not be acceptable in some applications. To measure the EGR accurately and without any pressure loss, a new measurement system was developed that uses an oxygen sensor in the intake air. In this paper, the technology of using an oxygen sensor to measure the EGR concentration is discussed. The paper details the EGR measurement principle with an oxygen sensor and the associated mathematical relations of translating the oxygen measurement to EGR measurement. Factors affecting the EGR measurement such as the air/fuel ratio of the EGR, intake air pressure, and diffusion effects of the EGR constituents are discussed in detail. Compensation mechanisms are explained and associated results shown.
2016-04-05
Technical Paper
2016-01-1071
Sangchul Lee, SeongMin Park, Changsun Hwang
Abstract A low pressure exhaust gas recirculation system (LP EGR system) enables the expansion of the EGR operating area than that of the widely used high pressure EGR system. As a result, fuel consumption and emissions can be improved. In order to meet the EU 5 emissions regulations, an exhaust throttle LP EGR system was used. The EU5 vehicles developed using this system have greater merits than other vehicles. However, because the exhaust throttle LP EGR valve is installed adjacent to the after-treatment system, the material of the LP EGR valve itself must be stainless steel in order to withstand the thermal stress, consequently, the cost is increased. Therefore, in order to achieve cost rationalization for EU6 vehicles, an intake throttle LP EGR system is developed and applied to replace the exhaust throttle LP EGR system. In order to apply the intake throttle LP EGR system, the EGR valve is installed in front of the turbo charger compressor.
2016-04-05
Technical Paper
2016-01-1016
Yolanda Bravo, Carmen Larrosa, Jose Lujan, Héctor Climent, Manuel Rivas
Abstract Spark ignition (SI) engines are increasing their popularity worldwide since compression ignition (CI) engines have been struggling to comply with new pollutant emission regulations. At the moment, downsizing is the main focus of research on SI engines, decreasing their displacement and using a turbocharging system to compensate this loss in engine size. Exhaust gas recirculation is becoming a popular strategy to address two main issues that arise in heavily downsized turbocharged engines at full load operation: knocking at low engines speeds and fuel enrichment at high engine speeds to protect the turbine. In this research work, a fuel consumption optimization for different operating conditions was performed to operate with a cooled EGR loop, with gasoline and E85. Thus, the benefits of exhaust gas recirculation are proven for a SI gasoline turbocharged direct injection engine.
2016-04-05
Technical Paper
2016-01-1015
Somendra Pratap Singh, Shikhar Asthana, Naveen Kumar
Abstract Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.
2016-04-05
Technical Paper
2016-01-1052
Adwitiya Dube, A Ramesh
Abstract Direct injection of fuel has been seen as a potential method to reduce fuel short circuiting in two stroke engines. However, most work has been on low pressure injection. In this work, which employed high pressure direct injection in a small two stroke engine (2S-GDI), a detailed study of injection parameters affecting performance and combustion has been presented based on experiments for evaluating its potential. Influences of injection pressure (IP), injection timing (end of injection - EOI) and location of the spark plug at different operating conditions in a 199.3 cm3 automotive two stroke engine using a real time open engine controller were studied. Experiments were conducted at different throttle positions and equivalence ratios at a speed of 3000 rpm with various sets of injection parameters and spark plug locations. The same engine was also run in the manifold injection (2S-MI) mode under similar conditions for comparison.
2016-04-05
Technical Paper
2016-01-1084
Chendi Sun, Vinson Jia
Abstract With rigorous fuel consumption regulation and emission law implemented, accuracy requirement of design and measurement signal is increasing, it becomes more and more indispensable to consider the influence on pressure loss and flow behavior coming from the incrementally loaded dust on filter element of Air Intake System (AIS). Dust is composed of many different sizes of particles, and studies shows that these different sizes of particles have very distinct influence on pressure loss of filter elements, which makes dust a challenge to model in Computational Fluid Dynamics (CFD) simulation. In order to precisely simulate pressure loss behavior of dust loaded filter element, a methodology for 3-D CFD dust loading simulation is developed, where the influence of particles sizes on pressure loss of filter element are taken into consideration by introducing a pressure loss weighting factors.
Viewing 211 to 240 of 576

Filter