Display:

Results

Viewing 211 to 240 of 23234
2016-04-05
Technical Paper
2016-01-0915
Keld Johansen, Anders Widd, Frank Zuther, Hannes Viecenz
Abstract For trucks today, the diesel particulate filter (DPF) and SCR catalysts are combined in this sequential order in diesel exhaust systems with the drawback of insufficient temperature for the SCR catalyst during cold start and large volume. The problems can potentially be solved by integrating the SCR catalyst into the particulate filter as one multifunctional unit. For off-road and heavy-duty vehicles applications with fully managed passive NO2-soot regenerations, integration of V-based SCR formulations on the DPF (V-SCRonDPF) represents an attractive solution due to high sulfur resistance accompanied by low-temperature NOx conversion and improved fuel economy. Engine bench tests together with an NO2-active DOC show that it is possible to manage the NO2/NOx ratio so both a high NOx conversion and still a low soot balance point temperature is obtained. The soot balance point is almost unaffected by the fast SCR reaction when urea is introduced.
2016-04-05
Journal Article
2016-01-0921
Ashok Kumar, Kristopher Ingram, Deepesh Goyal, Krishna Kamasamudram
Abstract Exposure of hydrocarbons (HCs) and particulate matter (PM) under certain real-world operating conditions leads to carbonaceous deposit formation on V-SCR catalysts and causes reversible degradation of its NOx conversion. In addition, uncontrolled oxidation of such carbonaceous deposits can also cause the exotherm that can irreversibly degrade V-SCR catalyst performance. Therefore carbonaceous deposit mitigation strategies, based on their characterization, are needed to minimize their impact on performance. The nature and the amount of the deposits, formed upon exposure to real-world conditions, were primarily carried out by the controlled oxidation of the deposits to classify these carbonaceous deposits into three major classes of species: i) HCs, ii) coke, and iii) soot. The reversible NOx conversion degradation can be largely correlated to coke, a major constituent of the deposit, and to soot which causes face-plugging that leads to decreased catalyst accessibility.
2016-04-05
Technical Paper
2016-01-0929
Devin Aryan, Kenneth Price, Thomas Pauly
Abstract There is growing interest in application of SCR on DPF (SDPF) for light and heavy duty applications, particularly to provide improvements in cold start emissions, as well as improvements in system cost and packaging [1, 2, 3]. The first of systems containing SDPF are just coming to market, with additional introductions expected, particularly for light duty and non-road applications [4]. To provide real world testing for a new SDPF product design prior to availability of OEM SDPF applications, an SDPF and one SCR catalyst were substituted in place of the original two SCR catalysts and a catalyzed diesel particulate filter (CDPF) on a Ford F250 HD pickup. To ensure that the on-road emissions would be comparable to the production system replaced, and to make sure that the control system would be able to operate without detecting some difference in behavior and seeing this as a fault, initial chassis dynamometer work was done before putting the vehicle on the road.
2016-04-05
Technical Paper
2016-01-0931
Akifumi Kawakami, Yuki Fukumi, Masaaki Ito, Shingo Sokawa, Satoshi Sakashita, Mychal Taylor, Mitsuhiro Ito, Masataka Yamashita, Hirofumi Sakamoto, Hiroshi Kurachi
Abstract Honeycomb substrates are widely used to reduce harmful emissions from gasoline engines and are exposed to numerous thermal shocks during their lifetime making thermal shock resistance one of the key factors in designing honeycomb substrates. More stringent emission regulations will require the honeycomb substrates to be lighter in weight to improve light-off performance and to have better thermal shock resistance than conventional honeycomb substrates to handle higher expected temperature gradients. Thermal shock resistance is generally evaluated on a substrate by evaluating the thermal strain caused by temperature gradients inside the substrate during durability testing [1,2]. During the test, a heated substrate is cooled at a surface face to generate temperature gradients while the temperature inside the honeycomb substrate is monitored by multiple thermocouples.
2016-04-05
Technical Paper
2016-01-0756
Dong Han, Peng Zhao, Zhen Huang
Abstract Exhaust gas recirculation (EGR) has been proven an effective strategy for the ignition and combustion control in homogeneous charge compression ignition (HCCI) engines. Carbon dioxide (CO2), a major constituent in EGR, was found to pose a coupled effect on engine combustion: reduced intake oxygen concentration (dilution effect), increased gas heat capacity (thermal effect) and participation of CO2 in chemical reactions (chemical effect). In this paper, a numerical study using a detailed chemical kinetic model was conducted, aiming to isolate the dilution, thermal and chemical effects of CO2 on the two-stage auto-ignition process of n-heptane at engine-like pressure conditions. Four different initial temperatures were selected in this study, representing the low-temperature dominant region, the boundary between the low-temperature region and the negative temperature coefficient (NTC) region, the NTC region and the high temperature region, respectively.
2016-04-05
Technical Paper
2016-01-0659
Alok Warey, Venkatesh Gopalakrishnan, Michael Potter, Enrico Mattarelli, Carlo Alberto Rinaldini
Abstract Two-stroke diesel engines could be a promising solution for reducing carbon dioxide (CO2) emissions from light-duty vehicles. The main objective of this study was to assess the potential of two-stroke engines in achieving a substantial reduction in CO2 emissions compared to four-stroke diesel baselines. As part of this study 1-D models were developed for loop scavenged two-stroke and opposed piston two-stroke diesel engine concepts. Based on the engine models and an in-house vehicle model, projections were made for the CO2 emissions for a representative light-duty vehicle over the New European Driving Cycle and the Worldwide Harmonized Light Vehicles Test Procedure. The loop scavenged two-stroke engine had about 5-6% lower CO2 emissions over the two driving cycles compared to a state of the art four-stroke diesel engine, while the opposed piston diesel engine had about 13-15% potential benefit.
2016-04-05
Journal Article
2016-01-0919
Timothy Johnson
Abstract This review paper summarizes major and representative developments in vehicular emissions regulations and technologies from 2015. The paper starts with the key regulatory advancements in the field, including newly proposed Euro 6 type regulations for Beijing, China, and India in the 2017-20 timeframe. Europe is continuing developments towards real driving emissions (RDE) standards with the conformity factors for light-duty diesel NOx ramping down to 1.5X by 2021. The California heavy duty (HD) low-NOx regulation is advancing and may be proposed in 2017/18 for implementation in 2023+. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations. LD gasoline concepts are achieving 45% BTE (brake thermal efficiency or net amount of fuel energy gong to the crankshaft) and closing the gap with diesel.
2016-04-05
Technical Paper
2016-01-0994
Chetankumar Patel, Nikhil Sharma, Nachiketa Tiwari, Avinash Kumar Agarwal
Abstract Biodiesel made from Jatropha oil by transesterification process has viscosity and other important physical properties comparable to mineral diesel hence it can be used as an alternate fuel in conventional diesel engines. It is important to investigate the spray characteristics of biodiesel because emissions from the engines are dependent on fuel atomization process and resulting fuel-air mixing. This study focuses on the Jatropha biodiesel spray investigations using Phase Doppler Interferometry (PDI) for measurement of various microscopic spray parameters such as Sauter mean diameter (SMD) and spray droplet size and velocity distributions. The spray and engine experiments were carried out for Jatropha biodiesel (JB100) and their 20% blends (JB20) with mineral diesel as baseline. Fuel injection pressure during the spray experiments was maintained at 200 bars for all tests, quite similar to small horse power agricultural engines, and the fuel injection quantity was varied.
2016-04-05
Technical Paper
2016-01-0949
Ryuji Kai, Tsuyoshi Asako, Tetsuo Toyoshima, Claus Vogt, Shogo Hirose, Shiori Nakao
Abstract Ammonia Selective Catalytic Reduction (SCR) is a key emission control component utilized in diesel engine applications for NOx reduction. There are several types of SCR catalyst currently in the market: Cu-Zeolite, Fe-Zeolite and Vanadia. Diesel vehicle and engine manufacturers down select their production SCR catalyst primarily based on vehicle exhaust gas temperature operation, ammonia dosing strategy, fuel quality, packaging envelope and cost. For Vanadia SCR, the operating temperature is normally controlled below 550oC to avoid vanadium sublimation. In emerging markets, the Vanadia SCR is typically installed alone or downstream of the DOC with low exhaust gas temperature exposure. Vanadia SCR is also utilized in some European applications with passive DPF soot regeneration. However, further improvement of Vanadia SCR NOx conversion at low exhaust gas temperatures will be required to meet future emission regulations (i.e.: HDD Phase 2 GHG).
2016-04-05
Journal Article
2016-01-0956
Amin Reihani, Benjamin Corson, John W. Hoard, Galen B. Fisher, Evgeny Smirnov, Dirk Roemer, Joseph Theis, Christine Lambert
Abstract Lean NOx Traps (LNTs) are one type of lean NOx reduction technology typically used in smaller diesel passenger cars where urea-based Selective Catalytic Reduction (SCR) systems may be difficult to package . However, the performance of lean NOx traps (LNT) at temperatures above 400 C needs to be improved. The use of Rapidly Pulsed Reductants (RPR) is a process in which hydrocarbons are injected in rapid pulses ahead of a LNT in order to expand its operating window to higher temperatures and space velocities. This approach has also been called Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) by Toyota. There is a vast parameter space which could be explored to maximize RPR performance and reduce the fuel penalty associated with injecting hydrocarbons. In this study, the mixing uniformity of the injected pulses, the type of reductant, and the concentration of pulsed reductant in the main flow were investigated.
2016-04-05
Journal Article
2016-01-0946
Jonas Jansson, Soran Shwan, Magnus Skoglundh
Abstract Emissions of nitrogen oxides (NOx) from heavy-duty diesel engines are subject to more stringent environmental legislation. Selective catalytic reduction (SCR) over metal ion-exchanged zeolites is in this connection an efficient method to reduce NOx. Understanding durability of the SCR catalyst is crucial for correct design of the aftertreatment system. In the present paper, thermal and chemical ageing of Fe-BEA as NH3-SCR catalyst is studied. Experimental results of hydrothermal ageing, and chemical ageing due to phosphorous and potassium exposure are presented. The catalyst is characterized by flow reactor experiments, nitrogen physisorption, DRIFTS, XRD, and XPS. Based on the experimental results, a multisite kinetic model is developed to describe the activity of the fresh Fe-BEA catalyst.
2016-04-05
Technical Paper
2016-01-0954
Jason Jacques, Thomas Pauly, Michael Zammit, Homayoun Ahari, Michael Smith
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III Emissions Standards for Light Duty Diesel passenger vehicles (LDD). As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, robustness and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR) catalyst. The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) typically provided as urea, adequate operating temperatures, and optimum Nitrogen Dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is mostly influenced by Precious Group Metals (PGM) containing catalysts located upstream of the SCR catalyst. Different versions of zeolite based SCR technologies are available on the market today and these vary in their active metal type (iron, copper, vanadium), and/or zeolite type.
2016-04-05
Technical Paper
2016-01-0933
Steve Golden, Zahra Nazarpoor, Maxime Launois, Ru-Fen Liu, Pardha Maram
Abstract In the context of evolving market conditions, the three-way catalyst (TWC) design is entering an exciting new phase. It remains the main emission control strategy for gasoline powered vehicles; in the meantime a rapid period of evolving engine developments, the constrained tailpipe regulations and the material supply issues present a unique challenge to the catalyst developers. A key approach here is to achieve highly beneficial emission performance based on the ultra-low PGM levels. In this regard, we mainly focus on the materials design and have developed the advanced spinel oxides for zero precious metals (ZPGM) and synergized precious metals (SPGM) TWCs. These advanced spinel materials showed improved thermal stability compared to that of PGM based standard materials. Fundamental studies on the microstructure of spinel oxide with newly developed composition confirm the aging stability.
2016-04-05
Technical Paper
2016-01-0932
Masanori Hashimoto, Yoshiyuki Nakanishi, Hiroshi Koyama, Syouji Inose, Hiroki Takeori, Takayuki Watanabe, Takeshi Narishige, Tatsuya Okayama, Yukio Suehiro
Abstract Engine technologies using efficient combustion and down-sizing turbo have become important in order to reduce automotive CO2 emissions. However, the exhaust gas temperature also becomes lower by these technologies. As a result, the catalyst performance becomes lower. Therefore it is necessary to develop low temperature active catalysts to reduce emissions. This research was focused on Pd/CeO2, and it’s able to oxidize CO at low temperatures. In order to increase the catalyst activity, the addition of some elements to the CeO2 was studied. Zn addition was found to have an advantage to reduce the CO light off temperature by 60 °C. Then, we tried to clarify the cause of improvement. As a result, it made clear that the Zn addition promotes the active oxygen release from the CeO2 surface. However, repeated engine exhaust gas tests indicated a decline in purification performance.
2016-04-05
Technical Paper
2016-01-0930
Yasunari Hanaki, Misaki Fujimoto, Junji Itou
Abstract This paper describes a new catalyst powder has been developed that provides cleaner exhaust emissions and reduces the consumption of precious metals. In recent years, precious metal usage has been increasing due to the tightening of emission regulations and the increase in automobile production worldwide. Minimizing the use of precious metals in exhaust catalysts is crucial not only for reducing the cost of vehicles but also for effective utilization of scarce resources. Iron is one of the alternative material candidates for precious metals. It was found that the Iron catalyst was activated by iron becoming the low oxidation state while iron oxide and cerium oxide synchronized in a nanostructure interface. A catalyst with improved iron support technology that enables better contact between highly dispersed particles of iron and ceria was found to exhibit higher exhaust gas cleansing performance than precious metal catalysts even after aging.
2016-04-05
Journal Article
2016-01-0942
Nicholas Custer, Carl Justin Kamp, Alexander Sappok, James Pakko, Christine Lambert, Christoph Boerensen, Victor Wong
Abstract The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
2016-04-05
Journal Article
2016-01-0941
Christine K. Lambert, Mira Bumbaroska, Douglas Dobson, Jon Hangas, James Pakko, Paul Tennison
Abstract The purpose of this work was to examine gasoline particle filters (GPFs) at high mileages. Soot levels for gasoline direct injection (GDI) engines are much lower than diesel engines; however, noncombustible material (ash) can cause increased backpressure, reduced power, and lower fuel economy. In this study, a post mortem was completed of two GPFs, one at 130,000 mi and the other at 150,000 mi, from two production 3.5L turbocharged GDI vehicles. The GPFs were ceramic wall-flow filters containing three-way catalytic washcoat and located downstream of conventional three-way catalysts. The oil consumption was measured to be approaching 23,000 mpqt for one vehicle and 30,000 mpqt for the other. The ash contained Ca, P, Zn, S, Fe, and catalytic washcoat. Approximately 50 wt% of the collected ash was non-lubricant derived. The filter capture efficiency of lubricant-derived ash was about 50% and the non-lubricant metal (mostly Fe) deposition rate was 0.9 to 1.2 g per 10,000 mi.
2016-04-05
Technical Paper
2016-01-0937
James E. Parks, John M. E. Storey, Vitaly Y. Prikhodko, Melanie M. Debusk, Samuel A. Lewis
Abstract New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal.
2016-04-05
Technical Paper
2016-01-0936
Anoop Reghunathan Nair, Brett Schubring, Kiran Premchand, Andrew Brocker, Peter Croswell, Craig DiMaggio, Homayoun Ahari, Jeffrey Wuttke, Michael Zammit, Michael Andrew Smith
New Particulate Matter (PM) and Particulate Number (PN) regulations throughout the world have created a need for aftertreatment solutions that include particulate control as an option to comply with the legislation. However, limitations in other criteria emissions cannot be sacrificed to accomplish the reduction of PM/PN. For this work, three-way washcoat catalyzed wall-flow Gasoline Particulate Filters (GPF) and similarly catalyzed flow-through catalysts of common defined volume were tested. Their catalytic performance was determined by measuring NOx, CO and HC conversion efficiencies and CO2 levels over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) cycles. Analysis of the impact on CO2 emissions was also evaluated in relation to backpressure from 1-D modeling analysis. All exhaust systems used the same loading and ratio of Platinum Group Metals (PGM), but employed different cell structures in their substrates.
2016-04-05
Technical Paper
2016-01-0987
Mike M. Lambert, Belachew Tesfa
Abstract Tightening emissions regulations are driving increasing focus on both equipment and measurement capabilities in the test cell environment. Customer expectations are therefore rising with respect to data uncertainty. Key critical test cell parameters such as load, fuel rate, air flow and emission measurements are more heavily under scrutiny and require real time methods of verification over and above the traditional test cell calibration in 40CFR1065 regulation. The objective of this paper is to develop a system to use a carbon dioxide (CO2) based balance error and an oxygen (O2) based balance error for diagnosing the main measurement system error in the test cell such as fuel rate meter, air flow meter, emission sample line, pressure transducer and thermocouples. The general combustion equation is used to set up the balance equations with assumptions.
2016-04-05
Technical Paper
2016-01-0943
Paul Ragaller, Alexander Sappok, Leslie Bromberg, Natarajan Gunasekaran, Jason Warkins, Ryan Wilhelm
Abstract Efficient aftertreatment management requires accurate sensing of both particulate filter soot and ash levels for optimized feedback control. Currently a combination of pressure drop measurements and predictive models are used to indirectly estimate the loading state of the filter. Accurate determination of filter soot loading levels is challenging under certain operating conditions, particularly following partial regeneration events and at low flow rate (idle) conditions. This work applied radio frequency (RF)-based sensors to provide a direct measure of the particulate filter soot levels in situ. Direct measurements of the filter loading state enable advanced feedback controls to optimize the combined engine and aftertreatment system for improved DPF management. This study instrumented several cordierite and aluminum titanate diesel particulate filters with RF sensors.
2016-04-05
Technical Paper
2016-01-0995
Michael A. Robinson, Jacob Backhaus, Ryan Foley, Z. Gerald Liu
Abstract Introduction of modern diesel aftertreatment, primarily selective catalytic reduction (SCR) designed to reduced NOx, has increased the presence of urea decomposition byproducts, mainly ammonia, in the aftertreatment system. This increase in ammonia has been shown to lead to particle formation in the aftertreatment system. In this study, a state of the art diesel exhaust fluid (DEF)-SCR system was investigated in order to determine the influence of DEF dosing on solid particle count. Post diesel particulate filter (DPF) particle count (> 23 nm) is shown to increase by over 400% during the World Harmonized Transient Cycle (WHTC) due to DEF dosing. This increase in tailpipe particle count warranted a detailed parametric study of DEF dosing parameters effect on tailpipe particle count. Global ammonia to NOx ratio, DEF droplet residence time, and SCR catalyst inlet temperature were found to be significant factors in post-DPF DEF based particle formation.
2016-04-05
Technical Paper
2016-01-0749
Kelvin Xie, Tadanori Yanai, Zhenyi Yang, Graham Reader, Ming Zheng
Abstract Advances in engine technology in recent years have led to significant reductions in the emission of pollutants and gains in efficiency. As a facet of investigations into clean, efficient combustion, the homogenous charge compression ignition (HCCI) mode of combustion can improve upon the thermal efficiency and nitrogen oxides emission of conventional spark ignition engines. With respect to conventional diesel engines, the low nitrogen oxides and particulate matter emissions reduce the requirements on the aftertreatment system to meet emission regulations. In this paper, n-butanol, an alcohol fuel with the potential to be derived from renewable sources, was used in a light-duty diesel research engine in the HCCI mode of combustion. Control of the combustion was implemented using the intake pressure and external exhaust gas recirculation. The moderate reactivity of butanol required the assistance of increased intake pressure for ignition at the lower engine load range.
2016-04-05
Journal Article
2016-01-0760
Mark Sellnau, Matthew Foster, Wayne Moore, James Sinnamon, Kevin Hoyer, William Klemm
Abstract The second generation 1.8L Gasoline Direct Injection Compression Ignition (GDCI) engine was built and tested using RON91 gasoline. The engine is intended to meet stringent US Tier 3 emissions standards with diesel-like fuel efficiency. The engine utilizes a fulltime, partially premixed combustion process without combustion mode switching. The second generation engine features a pentroof combustion chamber, 400 bar central-mounted injector, 15:1 compression ratio, and low swirl and squish. Improvements were made to all engine subsystems including fuel injection, valve train, thermal management, piston and ring pack, lubrication, EGR, boost, and aftertreatment. Low firing friction was a major engine design objective. Preliminary test results indicated good improvement in brake specific fuel consumption (BSFC) over the first generation GDCI engines, while meeting targets for engine out emissions, combustion noise and stability.
2016-04-05
Technical Paper
2016-01-0562
Hassan Karaky, Gilles Mauviot, Xavier Tauzia, Alain Maiboom
Abstract Due to its harmful effect on both human health and environment, soot emission is considered as one of the most important diesel engine pollutants. In the last decades, the industrial engine manufacturers have been able to strongly reduce its engine-out value by many different techniques, in order to respect the stricter emission norms. Simulation modeling has played and continues to play a key role for this purpose in the engine control system development. In this context, this paper proposes a new soot emission model for a direct injection diesel engine. This soot model is based on a zero-dimensional semi-physical approach coupled with a crank-angle resolved combustion model and a thermodynamic calculation of the burned gas products temperature. Furthermore, a multi linear regression model has been used to estimate the soot emissions as function of significant physical combustion parameters.
2016-04-05
Journal Article
2016-01-0712
Terrence Alger, Mark Walls, Christopher Chadwell, Shinhyuk Joo, Bradley Denton, Kelsi Kleinow, Dennis Robertson
Abstract Experiments were performed on a small displacement (< 2 L), high compression ratio, 4 cylinder, port injected gasoline engine equipped with Dedicated EGR® (D-EGR®) technology using fuels with varying anti-knock properties. Gasolines with anti-knock indices of 84, 89 and 93 anti-knock index (AKI) were tested. The engine was operated at a constant nominal EGR rate of ∼25% while varying the reformation ratio in the dedicated cylinder from a ϕD-EGR = 1.0 - 1.4. Testing was conducted at selected engine speeds and constant torque while operating at knock limited spark advance on the three fuels. The change in combustion phasing as a function of the level of overfuelling in the dedicated cylinder was documented for all three fuels to determine the tradeoff between the reformation ratio required to achieve a certain knock resistance and the fuel octane rating.
2016-04-04
Article
Tesla engineers have previously talked about a potential mixed-materials strategy as they move down the retail-price ladder. The prospect of an aluminum-intensive Model 3 raises the question of how profitable a $35,000 EV will be when it carries 60-80% of the battery capacity of the basic $71,200 Model S 70.
2016-03-31
WIP Standard
J2974
This SAE Technical Information Report provides information on Automotive Battery Recycling. This document provides a compilation of current recycling definitions, technologies and flow sheets and their application to different battery chemistries.
2016-03-30
Article
Mitsubishi brings its best-selling Outlander PHEV to North America with AWD, as Toyota launches its new plug-in Prius.
2016-03-30
Article
The 0.24-Cd body was designed for electrified propulsion only, and the propulsion system eliminates the 12-V lead acid battery in favor of a "tap" on the Li-ion battery for hotel loads and accessory power.
Viewing 211 to 240 of 23234

Filter