Criteria

Display:

Results

Viewing 211 to 240 of 22466
2014-04-27
Article
Average MY2012 vehicle CO2 emissions fell by 22 g/mi from MY2011, with a corresponding improvement in fuel economy, according to a new report by the U.S. EPA. The figures of 376 g/mi and 23.6 mpg figures are both records, the agency said.
2014-04-21
Article
Vehicle has 18 mi/30 km all-electric range from lithium-ion battery pack. Uses 2.0-l twin-scroll turbo engine with combination peak output of 270 hp/201 kW and 300 lb ft/407 N-m. Offers "predictive navigation" for high fuel efficiency, and can save battery capacity for areas that may require electric vehicle-only operation. European drive cycle ratings are 3.8 l/100 km (62 mpg) and just 89 grams CO₂/100 km.
2014-04-16
Article
Acoustic panels are installed almost everywhere including in front of the engine and on the rear hatch.
2014-04-15
Article
Written for those who have an interest in or need to understand automotive fuels, SAE International offers the third edition of its best-selling Automotive Fuels Reference Book.
2014-04-15
Technical Paper
2014-01-9076
Rakesh Kumar Maurya, Avinash Kumar Agarwal
Homogeneous charge compression ignition (HCCI) engines are attracting attention as next-generation internal combustion engines mainly because of very low NOx and PM emission potential and excellent thermal efficiency. Particulate emissions from HCCI engines have been usually considered negligible however recent studies suggest that PM number emissions from HCCI engines cannot be neglected. This study is therefore conducted on a modified four cylinder diesel engine to investigate this aspect of HCCI technology. One cylinder of the engine is modified to operate in HCCI mode for the experiments and port fuel injection technique is used for preparing homogenous charge in this cylinder. Experiments are conducted at 1200 and 2400 rpm engine speeds using gasoline, ethanol, methanol and butanol fuels. A partial flow dilution tunnel was employed to measure the mass of the particulates emitted on a pre-conditioned filter paper. The collected particulate matter (PM) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals (marker of toxicity) using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES).
2014-04-14
Article
The passenger-vehicle and commercial-vehicle industries are working to meet government regulations for emissions and fuel economy while ironing out potential unintended issues.
2014-04-14
Standard
ARP5446A
These recommendations are provided to aid the international air transport industry by identifying a standard, minimum amount of safety instructions that should be given to sight-impaired passengers. This document is not meant to address problems associated with communicating safety information to sight- impaired passengers who are also hearing impaired or non- conversant in the language(s) used by the cabin crew to disseminate general safety information to passengers. Aircraft operators are encouraged to customize the safety instructions for their own operations in order to ensure that required safety information is provided to sight-impaired passengers.
2014-04-09
Article
Misfire detection is most difficult, SAE Congress panel tells attendees, and overall emissions diagnosis is harder than with passenger cars and light-duty trucks.
2014-04-09
Article
A lively panel discussion at the SAE 2014 World Congress explored the role of battery-equipped vehicles in a smart, vehicle-to-grid network.
2014-04-01
Article
Engineering boss Pierpaolo Antonini noted several technology developments that will help maintain the diesel's viability in the face of increasingly stringent global emission regulations.
2014-04-01
Article
The flywheel energy-storage technology that was used in, among other things, the Le Mans-winning Audi R18 e-tron quattro is being sold by Williams to GKN Land Systems for use mainly in mass-transit vehicles.
2014-04-01
Article
IMSA Tudor United SportsCar Championship promotes a variety of green technologies to link racing to the road.
2014-04-01
Collection
This technical paper collection includes papers on PM measurement methods, soot generation, alternative methods of PM mass determination, in-cylinder contol of emissions, the effects of EGR, biodiesel fuels, duel fuel systems, soot emissions modeling, PM emissions from gasoline engines, including GDI, ethanol effects, and modeling.
2014-04-01
Collection
This technical paper collection covers topics such as: new materials for lean NOx traps (LNT) and Selective Catalytic Reduction (SCR); system integration and durability; advances in NOx catalyst substrates, novel reductants and mixing designs.
2014-04-01
Collection
This technical paper collection covers emissions measuring techniques and testing regimes including new analysis techniques and the novel application of existing techniques, the comparison of existing and proposed testing regimes with real world experience, including modeling.
2014-04-01
Collection
This technical paper collection covers DOC, HC Trap, DPF, GPF, LNT, TWC, SCR, SCRF, ammonia oxidation catalysts, hybrid or combined catalysts, urea-water solution spray dynamics, and mixture non-uniformity. Modeling aspects range from fundamental, 3D models of individual components to system level simulation, optimization, variation, degradation, and control.
2014-04-01
Collection
This technical paper collection explores advances in the creation of sustainable energy sources and their usage in the transportation sector. Topics can include research and in-production technology used to produce renewable energy sources and materials.
2014-04-01
Collection
Topics included in this technical paper collection are the integration of various diesel particulate matter (PM) and diesel Nitrogen Oxide (NOx) reduction technologies plus analogous technologies for the growing population of direct injection gasoline engines.
2014-04-01
Collection
This technical paper collection covers the complete particulate filter system. There are papers covering the DOC aging as well as the effect of high sulfur fuel on the DOC. A couple of papers study the effect of ash accumulation and two papers cover a novel new asymmetric cell design and modeling of this new design. Finally we have a paper on gasoline particulate filters.
2014-04-01
Collection
This technical paper collection focuses on the general topic of combustion engine gaseous emissions (regulated and non-regulated). This includes well-to-wheels CO2 production for alternative technologies, fuel economy and all greenhouse gas emission research. It also includes hydrocarbon species and specific NOx species production over aftertreatment devices as a result of changes in fuel specification and the inclusion of bio-derived components and consideration of secondary emissions production (slip) as a result of aftertreatment.
2014-04-01
Technical Paper
2014-01-1005
Helmut Brunner, Mario Hirz
Abstract Increasing urbanization, the growing degree of motorization and traffic performance in urban areas and environmental aspects like greenhouse gas emissions (GHG) are the motivation for a detailed analysis of personal individual mobility in urban areas, which is presented in this study. In the first step, the publication examines a study of market potential of new small and lightweight vehicle concepts. A mobility inquiry conducted in a mid-sized European city enables an estimation of the potential user groups for alternative vehicle concepts for individual urban traffic. In a second step, the CO2 reduction potential of urban car concepts is simulated for a generic vehicle fleet. This fleet consists of conventional vehicles of various classes (subcompact, compact, mid-sized …) as well as new lightweight urban car concepts. A novel vehicle concept for urban transportation will be presented as well. A comparison with the simulation results of a conventional vehicle fleet shows the potential regarding CO2-reduction and a reduction of parking space by application of future-oriented vehicle concepts.
2014-04-01
Technical Paper
2014-01-0936
Prashant Khapane, Uday Ganeshwade
Abstract Vehicle water wading capability refers to vehicle functional part integrity (e.g. engine under-tray, bumper cover, plastic sill cover etc.) when travelling through water. Wade testing involves vehicles being driven through different depths of water at various speeds. The test is repeated and under-body functional parts are inspected afterwards for damage. Lack of CAE capability for wading equates to late detection of failure modes which inevitably leads to expensive design change, and potentially affects program timing. It is thus of paramount importance to have a CAE capability in this area to give design loads to start with. Computational fluid dynamics (CFD) software is used to model a vehicle travelling through water at various speeds. A non-classical CFD approach was deemed necessary to model this. To validate the method, experimental testing with a simplified block was done and then verified with CFD modelling. The simple rectangular block at two different speeds and three immersion depths in water was utilized for the purpose.
2014-04-01
Technical Paper
2014-01-0750
Gangfeng Tan, Ming Chen, Haobo Xu, Bing Luo, Jiameng Wang
Abstract Vacuum cleaning vehicle is the necessary equipment for the Municipal Sanitation Department to keep the road surface clean and the dust subsidence system is the heart unit for the proper function of the cleaning vehicle. The reasonable design of this system could increase the load capacity of the vehicle and be convenient for the garbage collecting and dumping. Meanwhile, the engine power could be relatively reduced and the influence on the environment duo to the dusty air in the outlet could be also effectively improved. In the study, the gravity dedusting principle is used firstly for structure design to reduce the flow rate of dust particles inside the lower part of the dust subsidence system. The ruleless collision loss among dust particles is reduced and thereby the fan power is saved. By means of a reasonable separated chamber design and the use of inertia baffle, the sort management for dust particles is developed and the work stress of the export filter is released observably.
2014-04-01
Technical Paper
2014-01-0781
Aaron Hula, Jeffrey Alson, Amy Bunker, Kevin Bolon
Abstract This paper examines the pace at which manufacturers have added certain powertrain technology into new vehicles from model year 1975 to the present. Based on data from the EPA's Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends database [1], the analysis will focus on several key technologies that have either reached a high level of penetration in light duty vehicles, or whose use in the new vehicle fleet has been growing in recent years. The findings indicate that individual manufacturers have, at times, implemented new technology across major portions of their new vehicle offerings in only a few model years. This is an important clarification to prior EPA analysis that indicated much longer adoption times for the industry as a whole. This new analysis suggests a technology penetration paradigm where individual manufacturers have a much shorter technology penetration cycle than the overall industry, due to “sequencing” by individual manufacturers.
2014-04-01
Technical Paper
2014-01-1071
Haichun Yao, Baigang Sun, Huayu Tian, Qinghe Luo, Hongyang Tang
Abstract NOx are the only harmful emissions of hydrogen internal combustion engine. EGR is one of the effective methods to reduce NOx. The traditional EGR is not suitable for hydrogen internal combustion engine. Therefore, the study of influence of hot EGR on hydrogen internal combustion engine is important. A 2.0L hydrogen internal combustion engine with hot EGR system model is employed to optimize the diameter and position of hot EGR based on a simulation analysis. The result shows that both of the combustion temperature and NOx increase as EGR increases due to the rise of intake temperature for low load condition, for heavy load, with the increase of EGR rate, NOx emissions decreases slightly before the mixture equivalence ratio comes to 1and then dropped significantly after the mixture equivalence ratio greater than 1. Unburned hydrogen in TWC has the effect of reducing NOx after catalysts decrease largely. Hydrogen engine combustion characteristics with hot EGR was analyzed, it suggests that EGR hasn't any benefit on combustion and NOx emission under low load condition; however, a significant amount reduce of NOx can be achieved under a rich condition (equivalence ratio greater than 1) by adjusting the EGR rate for high load condition with sacrificing power output slightly.
2014-04-01
Technical Paper
2014-01-1145
Joohan Kim, Gyujin Kim, Hoon Lee, Kyoungdoug Min
Abstract Direct-injection spark-ignition (DISI) engines are regarded as a promising technology for the reduction of fuel consumption and improvement of engine thermal efficiency. However, due to direct injection, the shortened fuel-air mixing duration leads to a spatial gradient of the equivalence ratio, and these locally rich regions cause the formation of particulate matter. In the current study, numerical investigations on pollutant formation in a DISI engine were performed using combined flamelet models for premixed and diffusion flames. The G-equation model for partially premixed combustion was improved by incorporating the laminar flamelet library. Gasoline fuel was represented as a ternary mixture of gasoline surrogate and its laminar flame speeds were obtained under a wide range of engine operating conditions. For the flame propagation in a partially premixed condition, the presumed shape of the probability density function approach was adopted, whereas the burned gas compositions were determined from the steady laminar flamelet library.
2014-04-01
Technical Paper
2014-01-1177
Paul B. Dickinson, Kieran Hegarty, Nick Collings, Tashiv Ramsander
Abstract The control of NOX emissions by exhaust gas recirculation (EGR) is of widespread application. However, despite dramatic improvements in all aspects of engine control, the subtle mixing processes that determine the cylinder-to-cylinder distribution of the recirculated gas often results in a mal-distribution that is still an issue for the engine designer and calibrator. In this paper we demonstrate the application of a relatively straightforward technique for the measurement of the absolute and relative dilution quantity in both steady state and transient operation. This was achieved by the use of oxygen sensors based on standard UEGO (universal exhaust gas oxygen) sensors but packaged so as to give good frequency response (∼ 10 ms time constant) and be completely insensitivity to the sample pressure and temperature. Measurements can be made at almost any location of interest, for example exhaust and inlet manifolds as well as EGR path(s), with virtually no flow disturbance. At the same time, the measurements yield insights into air-path dynamics.
2014-04-01
Technical Paper
2014-01-1165
Yong-Wha Kim, Michiel Van Nieuwstadt, Greg Stewart, Jaroslav Pekar
Abstract This paper presents the application of model predictive control (MPC) to DOC temperature control during DPF regeneration. The model predictive control approach is selected for its advantage - using a model to optimize control moves over horizon while handling constraints. Due to the slow thermal dynamics of the DOC and DPF, computational bandwidth is not an issue, allowing for more complex calculations in each control loop. The control problem is formulated such that all the engine control actions, other than far post injection, are performed by the existing production engine controller, whereas far post injection is selected as the MPC manipulated variable and DOC outlet temperature as the controlled variable. The Honeywell OnRAMP Design Suite (model predictive control software) is used for model identification, control design and calibration. The paper includes description of the DPF regeneration process, model identification and validation results, control design and trade-off analysis and experimental validation of the controller on a Ford Superduty diesel truck.
2014-04-01
Technical Paper
2014-01-1161
Donald Selmanaj, Harald Waschl, Michael Schinnerl, Sergio Savaresi, Luigi del Re
Abstract Especially in view of more and more stringent emission legislation in passenger cars it is required to reduce the amount of pollutants. In the case of Diesel engines mainly NOx and PM are emitted during engine operation. The main influence factors for these pollutants are the in-cylinder oxygen concentration and the injected fuel amount. Typically the engine control task can be divided into two separate main parts, the fuel and the air system. Commonly air system control, consisting of a turbocharger and exhaust gas recirculation control, is used to provide the required amount of oxygen and address the emission targets, whereas the fuel is used to provide the desired torque. Especially in transient maneuvers the different time scales of both systems can lead to emission peaks which are not desired. Against this background in this work instead of the common way to address the air system, the fuel system is considered to reduce emission peaks during transients. The idea is to start from a base calibration and adapt the injection parameters, like start and amount of pilot and main injection, to reduce transient emission peaks.
Viewing 211 to 240 of 22466

Filter

  • Article
    1062
  • Book
    75
  • Collection
    38
  • Magazine
    499
  • Technical Paper
    20181
  • Standard
    611