Display:

Results

Viewing 181 to 210 of 22856
2015-04-14
Technical Paper
2015-01-1083
Robert L. Russell, Kent Johnson, Thomas Durbin, Patrick P. Chen, Jasna Tomic, Richard Parish
Abstract Emissions, fuel economy, and performance are determined over a light and a heavy driving cycle designed to represent the vehicles in-use driving patterns. The vehicles are 2010 class 8 Freightliner tractor trucks equipped with Cummins engines with Selective Catalytic Reduction and Diesel Particulate Filter emission control systems. The hybrid has lower carbon dioxide emissions, better fuel economy, and nitrogen oxide emissions statistically the same as the conventional. The CO emissions are well below the standards for both vehicles, but they are higher from the hybrid. The higher CO emissions for the hybrid are primarily related to the cooling of the Diesel Oxidation Catalyst (DOC) during the standard 20 minute key-off soak between repeats of the driving cycles. With a 1 minute key-off soak the CO emissions from the hybrid are negative.
2015-04-14
Technical Paper
2015-01-1259
Tapio Pohjalainen, Martti Larmi
Abstract This study presents a novel crank mechanism which enables easy and fast compression ratio adjustment. The novel crank mechanism and piston travel are explained and highlighted. The basic idea is that eccentric gear is installed on a crankshaft web. Eccentric gear is fitted to the big end of the connection rod and eccentricity is controlled by rotating the control gear a discrete amount. Thus the position of eccentricity is varied and controls an effective stroke length. The compression ratio is adjusted to best fit current load demand, either optimizing fuel efficiency or engine power and torque. Adjustments are individual to each cylinder. The system is capable of adjusting from min to max within 10 milliseconds [ms]. Emphasis is on reduction of CO2 emissions and reducing fuel consumption, especially at part load condition. The governing mechanical equations are presented.
2015-04-14
Journal Article
2015-01-1306
Jeremy S. Neubauer, Eric Wood, Ahmad Pesaran
Abstract Battery second use-putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure-has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g., electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to battery degradation, including: How long will PEV batteries last in automotive service? How healthy will PEV batteries be when they leave automotive service? How long will retired PEV batteries last in second-use service? How well can we best predict the second-use lifetime of a used automotive battery? Under the support of the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory has developed a methodology and the requisite tools to answer these questions, including the Battery Lifetime Simulation Tool (BLAST).
2015-04-14
Technical Paper
2015-01-1631
Michinori Tani, Atsuhiro Miyauchi, Yoshiaki Matsuzono
Abstract Recently, automotive emission regulations are being further tightened, such as the Tier III/LEV III in the U.S. As a result, reducing cost of after-treatment systems to meet these strict regulations has become an urgent issue, and then the demand for high-precision air-fuel ratio (A/F) control which can achieve this cost reduction is high [1]. On the other hand, in order to meet rapidly changing market needs, it is becoming difficult to keep enough development periods that enable sufficient calibration by trial-and-error, such as feedback-gain calibration. This leads to an increase in three-way catalytic converter costs in some cases. For these reasons, it is necessary to construct control system that can make full use of hardware capabilities, can shorten development periods regardless of the skill level of engineers.
2015-04-14
Technical Paper
2015-01-1648
Hendrik Golzke, Heiko Holler, Wolfgang Friedrich, Philippe Leick, Ulrich Schoenauer, Andreas Dreizler
Abstract The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
2015-04-14
Technical Paper
2015-01-1639
Indranil Brahma, Odinmma Ofili, Matthew Campbell, Henrique Chiang, Vincent Giralo, Peter Stryker, Daniel Johnson, Aaron Clark
Abstract EGR flow rate measurements on production engines are commonly made using orifices or flow nozzles. These devices increase the exhaust pressure resulting in an increase in fuel consumption. Further, they are accurate and recommended only for steady state flow, and not pulsating flow encountered in engines. In this work measurements made at the EGR cooler, such as the pressure drop across it and the inlet and outlet temperatures, have been examined for their ability to predict mass flow rate through the cooler. Direct measurements of pulsating flow through an EGR cooler were made by routing all of the engine exhaust flow through the cooler while making accurate measurements of the air and fuel flowing into the engine. Based on dimensional arguments, the flow resistance of the EGR cooler was characterized by a loss coefficient within the standard head loss energy equation.
2015-04-14
Technical Paper
2015-01-1637
SeungBum Kim, SeongMin Park, DongUk Han
Abstract This paper focuses on the vehicle test result of the US fuel economy test cycles such as FTP75, HWY and US06 with model based Cooled EGR system. Cooled EGR SW function was realized by Model Based Development (internal rapid prototyping) using iRPT tool. With EGR, mixing exhaust gas with clean air reduces the oxygen concentration in the cylinder charge, as a result, the combustion process is slowed, and the combustion temperature drops. This experiment confirmed that the spark timing was more advanced without knocking and manifold pressure was increased in all cases with EGR. A positive potential of fuel economy improvement on FTP mode, US06 mode have seen in this experiment but not for HWY where the engine load is quite low and the spark advance is already optimized. As a result, fuel economy was increased by maximum 3.3% on FTP, 2.7% on US06, decreased by 0.3% on HWY mode respectively with EGR.
2015-04-14
Technical Paper
2015-01-1684
KV Shivaprasad, PR Chitragar, GN Kumar
Abstract This article experimentally characterizes the combustion and emission parameters of a single cylinder high speed SI engine operating with different concentrations of hydrogen with gasoline fuel. For this purpose, the conventional carbureted high speed SI engine was modified into an electronically controllable engine, wherein ECU was used to control the injection timings and durations of gasoline. The experiments have been conducted for different engine speeds at various throttle positions. The experimental results demonstrated that engine brake power and brake thermal efficiency increased to certain extent and then decreases with the increase of hydrogen percentage in the fuel blend. The experimental results revealed that heat release and cylinder pressure increased with addition of hydrogen fraction till 20%. It also showed the reduction in HC and CO emissions in comparison with pure gasoline.
2015-04-14
Technical Paper
2015-01-1250
Nisar Al-Hasan, Johannes Beer, Jan Ehrhard, Thomas Lorenz, Ludwig Stump
Abstract In the past few years the gasoline direct injection (GDI) downsizing approach was the dominating gasoline engine technology used to reduce CO2 emission and to guarantee excellent transient performance. Forecasts for the next several years indicate that the worldwide market share of GDI engines will grow further. By 2022 it is expected that the gasoline DI engine will be the most popular combustion engine for passenger car application. However in the future the gasoline engine will have to comply with more stringent emission and CO2 standards. The European legislation demands a fleet average CO2 emission of 95g/km latest by 2021. Therefore, CO2 emission improvement, without compromising driveability, is the major goal of powertrain development. The perspective of more stringent CO2 and emission legislation in highly loaded drive cycle necessitates major development efforts.
2015-04-14
Collection
This technical paper collection focuses on particle emissions from combustion engines, including measurement and testing methods, and the effects of changes in fuel composition. Papers also cover the topics of the environmental and health effects of elemental carbon and organic carbon that constitutes solid cored particles plus the environmental and health effects of secondary organic aerosol emissions. This includes particulate emissions from both gasoline and diesel engines.
2015-04-14
Technical Paper
2015-01-0863
Hideyuki Ogawa, Peilong Zhao, Taiki Kato, Gen Shibata
Abstract Dual fuel combustion with premixed natural gas as the main fuel and diesel fuel as the ignition source was investigated in a 0.83 L, single cylinder, DI diesel engine. At low loads, increasing the equivalence ratio of natural gas to around 0.5 with intake throttling makes it possible to reduce the THC and CO emissions as well as to improve the thermal efficiency. At high loads, increasing the boost pressure moderates the combustion, but increases the THC and CO emissions, resulting in deterioration of the thermal efficiency. The EGR is essential to suppress the rapid combustion. As misfiring occurs with a compression ratio of 14.5 and there is excessively rapid combustion with 18.5 compression ratio, 16.5 is a suitable compression ratio.
2015-04-14
Journal Article
2015-01-1034
Homayoun Ahari, Michael Smith, Michael Zammit, Kenneth Price, Jason Jacques, Thomas Pauly, Lin Wang
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III/Tier III Emissions Standards for Light Duty Diesel (LDD) passenger vehicles. As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, durability and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR). The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) provided as Diesel Exhaust Fluid (DEF), which is an aqueous urea solution 32.5% concentration in weight with water (CO(NH2)2 + H2O), optimum operating temperatures, and optimum nitrogen dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is most influenced by Precious Group Metals (PGM) containing catalysts upstream of the SCR catalyst.
2015-04-14
Technical Paper
2015-01-1026
Padmanabha Reddy Ettireddy, Adam Kotrba, Thirupathi Boningari, Panagiotis Smirniotis
Abstract The main objective of this work is to develop a low-temperature SCR catalyst for the reduction of nitrogen oxides at cold start, low-idle and low-load conditions. A series of metal oxide- incorporated beta zeolite catalysts were prepared by adopting incipient wetness technique, cation-exchange, deposition-precipitation and other synthesis techniques. The resulting catalysts were characterized and tested for reduction of NOx in a fixed bed continuous flow quartz micro-reactor using ammonia as the reductant gas. Initial catalyst formulations have been exhibited good NOx reduction activity at low-temperatures. These catalyst formulations showed a maximum NOx conversion in the temperature range of 100 - 350°C. Besides, more experiments were performed with the aim of optimizing these formulations with respect to the metal atomic ratio, preparation method, active components and supported metal type.
2015-04-14
Journal Article
2015-01-1040
Harsha K. Nanjundaswamy, Joel Deussen, Roger Van Sickle, Dean Tomazic, Tamas Szailer, Michael Franke, Matthias Kotter, Thomas Koerfer
Abstract Upcoming motor vehicle emission regulations, such as California's LEVIII, continue to tighten emission limitations in diesel vehicles. These increasingly challenging emission requirements will be met by improving the combustion process (reducing engine-out emissions), as well as improving the exhaust gas aftertreatment efficiency. Furthermore, intricate On-Board Diagnostics (OBD) systems are required to properly diagnose and meet OBD regulation requirements for complex aftertreatment systems. Under these conditions, current monitoring strategies are unable to guarantee reliable detection of partially failed systems. Additionally, new OBD regulations require aftertreatment systems to be diagnosed as a whole. This paper covers potential OBD strategies for LEVIII aftertreatment concepts with regard to regulation compliance and robustness, while striving to use existing sensor concepts.
2015-04-14
Technical Paper
2015-01-0989
Steve Schiller, Mark Brandl, Bruce Hoppenstedt, Korneel De Rudder
Abstract Diesel engine NOx emissions requirements have become increasingly stringent over the past two decades. Engine manufacturers have shown through the use of EGR and SCR technology that these requirements can be met. However, the desires for improved fuel efficiency, lower overall cost, and potential legislation to reduce NOx levels further increase the demand for higher DEF dosing rates. To meet this demand, a new DEF mixing technology has been developed. This paper describes the development methods used to create a compact, in-pipe mixer which utilizes an optimized wire mesh along with swirling flow to permit high DEF dosing rates without deposit formation. Its excellent mixing characteristics allowed for high NOx reduction to be achieved. Utilization of this technology makes it possible to reduce regeneration frequency, reduce the overall size of the SCR system, possibly eliminate the EGR system, and improve fuel efficiency through combustion enhancements.
2015-04-14
Technical Paper
2015-01-1730
Luca Romani, Giovanni Vichi, Giovanni Ferrara, Francesco Balduzzi, Paolo Trassi, Jacopo Fiaschi, Federico Tozzi
Abstract High specific fuel consumption and pollutant emissions are the main drawbacks of the small crankcase-scavenged two-stroke engine. The symmetrical port timing combined with a carburetor or an indirect injection system leads to a lower scavenging efficiency than a four-stroke engine and to the short-circuit of fresh air-fuel mixture. The use of fuel supply systems as the indirect injection and the carburetor is the standard solution for small two-stroke engine equipment, due to the necessity of reducing the complexity, weight, overall dimensions and costs. This paper presents the results of a detailed study on the application of an innovative Low Pressure Direct Injection system (LPDI) on an existing 300 cm3 cylinder formerly equipped with a carburetor. The proposed solution is characterized by two injectors working at 5 bar of injection pressure.
2015-04-14
Technical Paper
2015-01-1007
Steve Golden, Zahra Nazarpoor, Maxime Launois
Abstract In the context of evolving market conditions the Three-Way Catalyst (TWC) is entering an exciting new phase. It remains the main emission control strategy for gasoline powered vehicles but a period of rapidly evolving engine development, tighter tailpipe regulations and material supply issues present a unique challenge to catalyst developers. This paper presents an initial study outlining the development of spinel mixed metal oxides for application in modern TWC and addresses some specific challenges underlying this application. Lab and flow reactor data in the study showed how the spinel structure has significant potential in various aspects of the TWC with the necessary improvement in thermal stability. Some initial engine data show three-way performance at or near stoichiometric in a PGM and rare earth free spinel coating and a synergy effect when combined with PGM.
2015-04-14
Technical Paper
2015-01-1678
Akshay Kumar, Naveen Kumar, Dhruv Gupta, Vasu Kumar
Abstract Increased demand and use of fossil fuels in transportation sector accompanied by the global oil crisis does not support sustainable development for the future generations to come. Not only that, today's on-road vehicles produce over one third of the CO and NOX present in our atmosphere and over twenty per cent of the global warming pollution. This air pollution carries significant risks for human health and the environment. Through clean vehicle and fuel technologies, it is possible to significantly reduce air pollution from our vehicles. In such a grim situation, Compressed Air Vehicles (CAV) powered by pressurized air stored in high pressure storage tanks seem to be one of the practical solutions available for tackling the fuel crisis and environment related issues.
2015-04-14
Journal Article
2015-01-1683
Bernie Porter, Hugh Blaxill, Noor Jariri
Abstract The 2025 Corporate Average Fleet Economy (CAFE) fuel economy regulations are a significant challenge to the automotive industry. These regulations require dramatic increases in vehicle fleet fuel economy. This paper will identify and analyze a portfolio of technologies that have the potential to achieve the 2025 CAFE fuel economy targets, focusing on powertrain enhancements. The study uses a MAHLE Powertrain developed fleet modeling tool and a range of vehicle technologies and powertrain data taken from MAHLE's global research and development activities. Powertrain technologies considered include extreme engine downsizing, dilute combustion, friction reduction, hybridization, diesel and alternative fuels. The vehicle technologies analyzed include vehicle light weighting, reduced rolling resistance, advanced transmissions and improved aerodynamics.
2015-04-14
Technical Paper
2015-01-1682
Sangram D. Jadhav, Madhukar S Tandale
Abstract The mangifera indica oil is a nonedible vegetable oil, which is available in large quantities in mango cultivating countries including India. Very little research has been done on utilization of oil in general and optimization of transesterification process for biodiesel production. In present study, the transesterification processes with heterogeneous catalyst. The various input parameters like methanol to oil molar ratio (1:08, 1:12 and 1:16), heterogeneous catalyst types (ZnO, MgO and CaO), catalyst concentration (0.5, 1 and 1.5 wt %) and reaction temperature (59, 64 and 69°C) were studied by applying the orthogonal experimental array L9.ANOVA (F-test at P=0.05 contribution of each signal to noise factor) technique was used for optimization with the objective of maximizing the yield of high quality mangifera indica oil biodiesel.
2015-04-14
Technical Paper
2015-01-1072
Aron D. Butler, Rafal A. Sobotowski, George J. Hoffman, Paul Machiele
Abstract The EPAct/V2/E-89 gasoline fuel effects program collected emissions data for 27 test fuels using a fleet of 15 high-sales cars and light trucks from the 2008 model year (all with port fuel injection). The test fuel matrix covered values of T50, T90, vapor pressure, ethanol content, and total aromatic content spanning ranges typical of market gasolines. Emission measurements were made over the LA92 cycle at a nominal temperature of 24°C (75°F). The resulting emissions database of 956 tests includes a particulate matter (PM) mass measurement for each. Emission models for PM fuel effects were fit based on terms for which the fuel matrix was originally optimized, with results published by EPA in a 2013 analysis report. This paper presents results of a subsequent modeling analysis of this PM data using the PM Index fuel parameter, and compares these models to the original versions.
2015-04-14
Journal Article
2015-01-0730
Tsutomu Miyadera
Abstract A pre-treatment technique for improving coating adhesion on stainless steel has been developed. This method dramatically enhances the adhesion between the stainless steel and the coating by pre-treating the stainless steel with a known nickel strike plating for a short period of time. Furthermore, when this process was applied to stainless fuel filler pipes to improve corrosion resistance, layout restrictions and chipping covers became unnecessary, costs were reduced, and vehicle weight was lowered.
2015-04-14
Technical Paper
2015-01-1162
Frank Atzler, Michael Wegerer, Fabian Mehne, Stefan Rohrer, Christoph Rathgeber, Sebastian Fischer
Abstract Modern vehicles need to fulfil challenging requirements with respect to emissions, noise and fuel consumption. Up to the EU5 legislation a sound steady state application was sufficient for passenger car Diesel engines to meet these requirements, and fuel consumption was less in the focus than the emissions of nitrous oxides and soot, hydrocarbons and carbon monoxide. Future legislation will require not only tighter limits in emissions but additionally will set fuel consumption targets. More demanding drive cycles will make it even more difficult to achieve these targets. Additional to measures on the combustion engine, moderate electrification for energy recuperation as well as the supply of electrical generated torque to the drive train will increasingly find its way into modern passenger cars. The presence of an electric machine can be used not only to reduce the fuel consumption but also the emissions of the combustion engine.
2015-04-14
Journal Article
2015-01-0255
Claudia Meis, Stefan Mueller, Stephan Rohr, Matthias Kerler, Markus Lienkamp
Abstract Battery aging in electric and hybrid vehicles is a major issue, and one which has to be taken into consideration during all stages of the vehicle lifecycle. It depends on many factors, such as the cell chemistry, the cell design and stress factors as well as the current rate, ΔDOD and temperature. The stress factors have been identified as being crucial due to their influence on two important battery parameters: capacity and inner resistance. Battery aging models are essential to describing the interacting influences that stress factors have on battery parameters. They provide insights about battery aging without the need for extensive measurements. Various battery aging models with widely varying capabilities are described in the literature. The aim of this paper is to provide a decision guide for utilizing the most appropriate aging model for the major stages of the vehicle lifecycle: vehicle development, operation (onboard and offboard) and post-operation.
2015-04-14
Technical Paper
2015-01-1005
Masahide Miura, Yuki Aoki, Nobusuke Kabashima, Takahiko Fujiwara, Toshitaka Tanabe, Akira Morikawa, Hirotaka Ori, Hiroki Nihashi, Suguru Matsui
Abstract Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
2015-04-14
Technical Paper
2015-01-0849
Mufaddel Dahodwala, Satyum Joshi, Erik Koehler, Michael Franke, Dean Tomazic
Abstract Substitution of diesel fuel with natural gas in heavy-duty diesel engines offers significant advantages in terms of operating cost, as well as NOx, PM emissions and greenhouse gas emissions. However, the challenges of high THC and CO emissions, combustion stability, exhaust temperatures and pressure rise rates limit the substitution levels across the engine operating map and necessitate an optimized combustion strategy. Reactivity controlled compression ignition (RCCI) combustion has shown promise in regard to improving combustion efficiency at low and medium loads and simultaneously reducing NOx emissions at higher loads. RCCI combustion exploits the difference in reactivity between two fuels by introducing a less reactive fuel, such as natural gas, along with air during the intake stroke and igniting the air-CNG mixture by injecting a higher reactivity fuel, such as diesel, later in the compression stroke.
2015-04-14
Technical Paper
2015-01-0752
Zhi Wang, Yunliang Qi, Hui Liu, Yan Long, Jian-Xin Wang
Abstract Occurrence of sporadic super-knock is the main obstacle to the development of advanced gasoline engines. One of the possible inducements of super-knock, agglomerated soot particle induced pre-ignition, was studied for high boosted gasoline direct injection (GDI) engines. The correlation between soot emissions and super-knock frequency was investigated in a four-cylinder gasoline direct injection production engine. The test results indicate that higher in-cylinder soot emission correlate with more pre-ignition and super-knock cycles in a GDI production engine. To study the soot/carbon particles trigger super-knock, a single-cylinder research engine for super-knock study was developed. The carbon particles with different temperatures and sizes were introduced into the combustion chamber to trigger pre-ignition and super-knock.
2015-04-14
Technical Paper
2015-01-0755
Yasuo Moriyoshi, Toshio Yamada, Daisuke Tsunoda, Mingzhao Xie, Tatsuya Kuboyama, Koji Morikawa
Abstract The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
2015-04-14
Technical Paper
2015-01-0264
Jeya Padmanaban
Abstract This study examined the Consumer Product Safety Commission (CPSC) Death Certificate file to identify frequency and rate of accidental CO poisoning deaths associated with exhaust gases of stationary vehicles in enclosed areas. A comprehensive search was then made to determine whether or not there was an increase in such deaths with the introduction of “smart keys” (available as standard equipment beginning in 2004). For 2000-2011 CY, the CPSC file contained 4,760 death certificate records for ICD-10 code X47 (accidental poisoning by exposure to other gases and vapors). The manual review of narratives for these records covered 2004-2011 and found 1,553 CO poisoning deaths associated with vehicle exhaust, including 748 for enclosed areas. For these 748 incidents, information on victim and location was then identified, and an exhaustive effort was undertaken to determine whether the vehicles involved were equipped with rotary or smart keys.
2015-04-14
Journal Article
2015-01-0810
Hao-ye Liu, Zhi Wang, Jian-Xin Wang
Abstract Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from Initial Boiling Point (IBP) of gasoline to Final Boiling Point (FBP) of diesel. Polyoxymethylene Dimethyl Ethers (PODEn) have high oxygen content and cetane number, are promising green additive to diesel fuel. In this paper, WDF was prepared by blending diesel and gasoline at ratio of 1:1, by volume; the mass distribution of oligomers in the PODE3-4 product was 88.9% of PODE3 and 8.46% of PODE4. Diesel fuel (Diesel), WDF (G50D50) and WDF (80%)-PODE3-4 (20%) (G40D40P20) were tested in a light-duty single-cylinder diesel engine, combustion characteristic, fuel consumption and exhaust emissions were measured. The results showed that: at idling condition, G40D40P20 has better combustion stability, higher heat release rate, higher thermal efficiency compared with G50D50.
Viewing 181 to 210 of 22856

Filter