Display:

Results

Viewing 181 to 210 of 24612
2017-04-20
Article
Exa Corp. is focusing on the vital and sometimes overlooked aspect of automated drivin: keeping onboard camera lenses and other sensor surfaces clean in all road conditions.
2017-04-17
Article
Cabins with triple sealing, and EPA fuel economy credits promote use of recirculation position with outside air shut off. CO2 builds up well beyond 0.1% comfort level, says CalsonicKansei researcher at SAE WCX17.
2017-04-17
Article
Our HVAC expert dives deep into the Prius Prime PHEV and sees an ultra-compact refrigerant liquid-gas separator and sophisticated circuitry that operates in any of six modes.
2017-04-11
Article
As Mercedes and Audi launch the new CO2 A/C refrigerant in production, members of Germany's VDA consortium ask for a compatible SAE standard during the SAE Interior Climate Control Committee meeting in April.
2017-04-06
Magazine
Connectivity continues its advance More OEMs and Tier 1 suppliers are focusing on embedded telematic systems, hoping to displace aftermarket hardware. Tailoring fuel injection to control NOx The next big step to help heavy-duty diesel engines meet stricter emissions regulations involves adapting the fuel-injection system to the combustion needs. Active on safety Crash-avoidance technologies are vital "building blocks" to automate commercial vehicles, implement truck platooning and ultimately achieve zero accidents. Engineering with simulation and data Companies are discovering new simulation techniques, especially optimization; the next step is to combine simulation with sensor data and predictive analytics to create even more robust off-highway equipment.
2017-04-05
Article
A car sharing study involving college students is providing Denso with feedback that could help the supplier develop new products.
2017-04-03
Article
The electrical power needed just to process the increasing deluge of incoming and in-vehicle data—generated from on-board sensor arrays, from other vehicles, the infrastructure and the cloud—is “the dirty little secret” of autonomous vehicle engineering.
2017-03-30
Magazine
Thought leadership at WCX17 Proliferating electrification and performance. Clarity of purpose Honda's 2017 Clarity Fuel Cell has impressive performance, zero emissions and zero range anxiety. Clarity is ready for the mainstream, but is hydrogen fuel? Lightweighting hinges on the details Multi-material design approaches require careful integration of all adjacent constituents. Haptic feedback for gesture-control HMI Mid-air gesture controls rely on sophisticated sensing to aid the human-machine interface and help keep drivers' eyes on the road. Road-efficient mud machine Jeep's new Compass benefits from a trick AWD system co-developed with GKN. Past as prelude to the future SAE's Mobility History Committee brings a trove of knowledge- and cool technology. The new Fellow from Ricardo Prof. Neville Jackson will be recognized as an SAE Fellow at WCX17.
2017-03-28
Technical Paper
2017-01-0684
Vickey B. Kalaskar, Raphael Gukelberger, Bradley Denton, Thomas Briggs
Abstract Dedicated EGR has shown promise for achieving high efficiency with low emissions [1]. For the present study, a 4-cylinder turbocharged GDI engine which was modified to a D-EGR configuration was used to investigate the impact of valve phasing and different injection strategies on the reformate production in the dedicated cylinder. Various levels of positive valve overlap were used in conjunction with different approaches for dedicated cylinder over fueling using PFI and DI fuel systems. Three speed-load combinations were studied, 2000 rpm 4 bar IMEPg, 2000 rpm 12 bar IMEPg, and 4000 rpm 12 bar IMEPg. The primary investigation was conducted to map out the dedicated cylinders' performance at the operating limits of intake and exhaust cam phasing. In this case, the limits were defined as conditions that yielded either no reformate benefit or led to instability in the dedicated cylinder.
2017-03-28
Technical Paper
2017-01-0682
Yuedong Chao, Haifeng Lu, Zongjie Hu, Jun Deng, Zhijun Wu, Liguang Li, Yuan Shen, Shuang Yuan
Abstract In this paper comparisons were made between the fuel economy improvement between a High Pressure loop (HP) water-cooled Exhaust Gas Recirculation (EGR) system and a Low Pressure loop (LP) water-cooled EGR system. Experiments were implemented on a 1.3-Litre turbocharged PFI gasoline engine in two pars. One was EGR rate as single operating point to compare the different effect of HP- and LP-EGR. The other was mini map from 1500rpm to 3000rpm and BMEP from 2bar to 14bar because of the relative narrow available range of HP-EGR system. In consideration of practical application of EGR system, the coolant used in this experiment was kept almost the same temperature as in real vehicles (88±3°C) instead of underground water temperature, besides a model was built to calculate constant volume ratio (CVR). The results indicated that the effect of HP-EGR was weaker than that of LP-EGR under the same EGR rate, which could be seen from change of combustion parameters.
2017-03-28
Technical Paper
2017-01-0679
Kelvin Xie, Shui Yu, Xiao Yu, Geraint Bryden, Ming Zheng, Mengzhu Liu
Abstract In order to meet the future carbon dioxide legislation, advanced clean combustion engines are tending to employ low temperature diluted combustion strategies along with intensified cylinder charge motion. The diluted mixtures are made by means of excess air admission or exhaust gas recirculation. A slower combustion speed during the early flame kernel development because of the suppressed mixture reactivity will reduce the reliability of the ignition process and the overall combustion stability. In an effort to address this issue, an ignition strategy using a multi-pole spark igniter is tested in this work. The igniter uses three electrically independent spark gaps to allow three spatially distributed spark discharges. The multi-pole spark strategy displayed more advanced combustion phasing and lower phasing variability compared to single spark discharges.
2017-03-28
Technical Paper
2017-01-0702
Raouf Mobasheri, Mahdi Seddiq
Abstract The simultaneous effects of pilot fuel quantity and pilot injection timing on engine performance and amount of pollutant emission have been computationally investigated in a High Speed Direct Injection (HSDI) diesel engine. In this study, a modified parameter called “Homogeneity Factor of in-cylinder charge (HF)” has been applied to analyze the air-fuel mixing and combustion processes. For this purpose, the simulated results has been firstly compared with the experimental data and a good agreement has been achieved for simulating the in-cylinder pressure and the amount of pollutant emissions. Then, nine different strategies based on two variables (the amount of fuel mass in pilot and main injection as well as the dwell between two injections) have been investigated.
2017-03-28
Technical Paper
2017-01-0700
Valentin Soloiu, Aliyah Knowles, Jose Moncada, Emerald Simons, Martin Muinos, Thomas Beyerl
Abstract The Cottonseed biodiesel combustion, sound and vibrations have been evaluated in a medium duty single cylinder DI engine (1.1L/cyl) by comparison with s ULSD#2 reference values. The engine was supercharged and had 20% EGR and all tests were conducted at 1400 rpm and at 4 bar BMEP load. Cylinder pressure was determined using a Kistler piezoelectric transducer. Combustion pressures peaked at 76 bar for both fuels. Ignition delay for CS100 decreased by 0.16 ms when compared to the ULSD#2 baseline. This would lead to a 23% lower peak heat release rate when operating CS100. The pressure rise rate for CS100 was 20% lower than ULSD#2, which related to the reduced ringing intensity for the biodiesel. The sound and vibrations were measured using a B&K condenser type multi-field microphone, and a tri-axial, piezoelectric accelerometer. All noise & vibration signals were analyzed with CPB and FFT Analysis, and Crank Angle Domain Analysis with B&K Pulse Platform software.
2017-03-28
Technical Paper
2017-01-0707
Srinivas Padala, Minh Khoi Le, Yoshihiro Wachi, Yuji Ikeda
Abstract The effect of microwave enhanced plasma (MW Plasma) on diesel spray combustion was investigated inside a constant volume high pressure chamber. A microwave-enhanced plasma system, in which plasma discharge generated by a spark plug was amplified using microwave pulses, was used as plasma source. This plasma was introduced to the soot cloud after the occurrence of autoignition, downstream of the flame lift-off position to allow additional plasma-generated oxidizers to be entrained into the hot combustion products. Planar laser induced incandescence (PLII) diagnostics were performed with laser sheet formed from 532 nm Nd:YAG laser to estimate possible soot reduction effect of MW plasma. A semi-quantitative comparison was made between without-plasma conventional diesel combustion and with-plasma combustion; with LII performed at different jet cross-sections in the combustion chamber.
2017-03-28
Technical Paper
2017-01-0675
Kenichiro Ogata
Low pressure cooled exhaust gas recirculation (EGR) to suppress engine knocking is increasingly being used to downsize engines and increase the compression ratio to improve thermal efficiency. This study aims to develop an ignition system to extend the EGR limit and EGR operation area. The ignition system must be improved to enhance ignitability of a mixture of fuel and air. In this paper, we focus on ignition energy of the ignition coil and summarize experimental results on a test dyno obtained by using reinforced conventional ignition coil on the basis of ignition energy and engine speed. As engine speed (mixture flow velocity between ignition plug electrode-gap) and EGR ratio were increased, the secondary energy requirement of the ignition coil was increased. This increase was considered to be caused by an increase of mixture flow velocity at the plug gap and a decrease of laminar flame velocity as EGR ratio increased.
2017-03-28
Technical Paper
2017-01-0763
Ethan Faghani, Pooyan Kheirkhah, Christopher W.J. Mabson, Gordon McTaggart-Cowan, Patrick Kirchen, Steve Rogak
Abstract High-pressure direct-injection (HPDI) in heavy duty engines allows a natural gas (NG) engine to maintain diesel-like performance while deriving most of its power from NG. A small diesel pilot injection (5-10% of the fuel energy) is used to ignite the direct injected gas jet. The NG burns in a predominantly mixing-controlled combustion mode which can produce particulate matter (PM). Here we study the effect of injection strategies on emissions from a HPDI engine in two parts. Part-I investigated the effect of late post injection (LPI); the current paper (Part-II) reports on the effects of slightly premixed combustion (SPC) on emission and engine performance. In SPC operation, the diesel injection is delayed, allowing more premixing of the natural gas prior to ignition. PM reductions and tradeoffs involved with gas slightly premixed combustion was investigated in a single-cylinder version of a 6-cylinder, 15 liter HPDI engine.
2017-03-28
Technical Paper
2017-01-0775
Robert Draper, Brendan Lenski, Franz-Joseph Foltz, Roderick Beazley, William Tenny
Abstract With environmental policies becoming ever more stringent, there is heightened interest in natural gas (NG) as a viable fuel for medium to heavy duty engines. Typically, the industry has seen minor changes to the base engine when converting to run on NG, which, in turn historically provides degraded performance. In utilizing the positive properties of NG, Westport Fuel Systems has developed the High Efficiency Spark Ignition (HESI) combustion technology that has been shown to significantly improve performance. The HESI technology leverages a proven combustion system that is capable of generating a knock resistant charge motion while cooling the flame face. In conjunction with high boost for driving high pressure exhaust gas recirculation (EGR), this technology demonstrates the possibility for downsizing strategies while maintaining performance.
2017-03-28
Technical Paper
2017-01-0721
Michele Bardi, Gilles Bruneaux, André Nicolle, Olivier Colin
Abstract This paper is a contribution to the understanding of the formation and oxidation of soot in Diesel combustion. An ECN spray A injector (single axial-oriented orifice) was tested in a well characterized high-temperature/high-pressure vessel at engine relevant conditions. The size of the test section (>70mm) enables to study the soot formation process in nearly free field conditions, which constitutes an ideal feature for fundamental understanding and model validation. Simultaneous high-speed OH* chemiluminescence imaging and high-speed 2D extinction were performed to link together the information regarding flame chemistry (i.e. lift-off length) and the soot data. The experiments were carried out for a set of fuels with different CN and sooting index (Diesel fuel, Jet fuel, gasoline and n-dodecane) performing parametric variations in the test conditions (ambient temperature and oxygen concentration).
2017-03-28
Technical Paper
2017-01-0741
Xinlei Liu, Laihui Tong, Hu Wang, Zunqing Zheng, Mingfa Yao
Abstract In this work the gasoline compression ignition (GCI) combustion characterized by both premixed gasoline port injection and gasoline direct injection in a single-cylinder diesel engine was investigated experimentally and computationally. In the experiment, the premixed ratio (PR), injection timing and exhaust gas recirculation (EGR) rate were varied with the pressure rise rate below 10 bar/crank angle. The experimental results showed that higher PR and earlier injection timing resulted in advanced combustion phasing and improved thermal efficiency, while the pressure rise rates and NOx emissions increased. Besides, a lowest ISFC of 176 g/kWh (corresponding to IMEP =7.24 bar) was obtained, and the soot emissions could be controlled below 0.6 FSN. Despite that NOx emission was effectively reduced with the increase of EGR, HC and CO emissions were high. However, it showed that GCI combustion of this work was sensitive to EGR, which may restrict its future practical application.
2017-03-28
Technical Paper
2017-01-0740
Yu Zhang, Yuanjiang Pei, Nayan Engineer, Kukwon Cho, David Cleary
Abstract The current study utilized 3-D computational fluid dynamics (CFD) combustion analysis to guide the development of a viable full load range combustion strategy in a light-duty gasoline compression ignition (GCI) engine. A higher reactivity gasoline that has a research octane number (RON) of 70 was used for the combustion strategy development. The engine has a geometric compression ratio of 14.5 with a piston bowl designed to accommodate different combustion strategies and injector spray patterns. Detailed combustion optimization was focused on 6 and 18 bar gross indicated mean effective pressure (IMEPg) at 1500 rpm through a Design of Experiments approach. Two different strategies were investigated: (a) a late triggering fuel injection with a wide spray angle (combustion strategy #1); and (b) an early triggering fuel injection with a narrow spray angle (combustion strategy #2).
2017-03-28
Technical Paper
2017-01-1725
Tanawat Tessathan, Chutiphon Thammasiri, Prabhath De Silva, Rehan Hussain, Nuksit Noomwongs
Abstract It is common for users of commuting passenger cars in Thailand to use the vehicle’s HVAC (Heating, Ventilating and Air Conditioning) system predominantly in recirculation (REC) mode. This minimizes the compressor work, thereby saving fuel, and reduces dust and odor infiltration into the vehicle cabin. The car windows are rarely opened for ventilation purposes, except for exchanges at service stations such as garage entrances and tollway booths. As such, there are few opportunities for fresh air to enter the cabin with the consequent accumulation of CO2 in vehicle cabins due to occupants’ exhalations being well documented. Field experiments conducted showed that the in-vehicle CO2 concentrations could reach up to 15 times that of the ambient concentration level during typical city commutes. Preliminary experiments were also conducted to quantify the air exchanges between the cabin and the ambient when the doors are opened for occupant egression.
2017-03-28
Technical Paper
2017-01-1721
Ho Teng, Ruigang Miao, Liming Cao, Xuwei Luo, Tingjun Hu, Min Wu
Abstract In order to improve low speed torques, turbocharged gasoline direct injection (TGDI) engines often employ scavenging with a help of variable valve timing (VVT) controlled by the cam phasers. Scavenging improves the compressor performance at low flows and boosts low-speed-end torques of the engines. Characteristics of the engine combustion in the scavenging zone were studied with a highly-boosted 1.5L TGDI engine experimentally. It was found that the scavenging zone was associated with the highest blowby rates on the engine map. The blowby recirculation was with heavy oil loading, causing considerable hydrocarbon fouling on the intake ports as well as on the stem and the back of the intake valves after the engine was operated in this zone for a certain period of time. The low-speed pre-ignition (LSPI) events observed in the engine tests fell mainly in the scavenging zone.
2017-03-28
Technical Paper
2017-01-0382
Oscar Hernandez Cervantes, Antonio Espiritu Santo Rincon
Abstract The development of an automatic control system for a towing dynamometer used for testing is described in this paper. The process involved the deployment of new power electronics circuit boards, a TELMA retarder, instrumentation and a human machine interface (HMI) achieved through an open source platform. The purpose of this platform is to have a low cost system that allows further function development, data acquisition and communication with other devices. This system is intended as a novel solution that will allow closed loop and automated tests integrated with PCM data for engine calibration. It is projected to be part of a flexible calibration system with direct communication to the interfaces used during development (ATI, ETAS), which will be used to achieve lean test and development schedules.
2017-03-28
Technical Paper
2017-01-0179
Saravanan Sambandan, Manuel Valencia, Sathish Kumar S
Abstract In an automotive air-conditioning (AC) system, the heater system plays a major role during winter condition to provide passenger comforts as well as to clear windshield defogging and defrost. In order to meet the customer satisfaction the heater system shall be tested physically in severe cold conditions to meet the objective performance in wind tunnel and also subjective performance in cold weather regions by conducting on road trials. This performance test is conducted in later stage of the program development, since the prototype or tooled up parts will not be available at initial program stage. The significance of conducting the virtual simulation is to predict the performance of the HVAC (Heating ventilating air-conditioning) system at early design stage. In this paper the development of 1D (One dimensional) model with floor duct systems and vehicle cabin model is studied to predict the performance. Analysis is carried out using commercial 1D simulation tool KULI®.
2017-03-28
Technical Paper
2017-01-0163
Gursaran D. Mathur
The author has developed a model that can be used to predict build-up of cabin carbon dioxide levels for automobiles based on many variables. There are a number of parameters including number of occupants that dictates generation of CO2 within the control volume, cabin leakage (infiltration or exfiltration) characteristics, cabin volume, blower position or airflow rate; vehicle age, etc. Details of the analysis is presented in the paper. Finally, the developed model has been validated with experimental data. The simulated data follows the same trend and matches fairly well with the experimental data.
2017-03-28
Technical Paper
2017-01-0160
Longjie Xiao, Tianming He, Gangfeng Tan, Bo Huang, Xianyao Ping
Abstract While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
2017-03-28
Technical Paper
2017-01-0154
Sudhi Uppuluri, Hemant R Khalane, Ajay Naiknaware
Abstract With the upcoming regulations for fuel economy and emissions, there is a significant interest among vehicle OEMs and fleet managers in developing computational methodologies to help understand the influence and interactions of various key parameters on Fuel Economy and carbon dioxide emissions. The analysis of the vehicle as a complete system enables designers to understand the local and global effects of various technologies that can be employed for fuel economy and emission improvement. In addition, there is a particular interest in not only quantifying the benefit over standard duty-cycles but also for real world driving conditions. The present study investigates impact of exhaust heat recovery system (EHRS) on a typical 1.2L naturally aspirated gasoline engine passenger car representative of the India market.
2017-03-28
Technical Paper
2017-01-0141
Ray Host, Peter Moilanen, Marcus Fried, Bhageerath Bogi
Abstract Future vehicle North American emissions standards (e.g., North American Tier 3 Bin 30 or LEVIII SULEV 30) require the exhaust catalyst to be greater than 80% efficient by 20 seconds after the engine has been started in the Federal Test Procedure. Turbocharged engines are especially challenged to deliver fast catalyst light-off since the presence of the turbocharger in the exhaust flow path significantly increases exhaust system heat losses. A solution to delivering cost effective SULEV 30 emissions in turbocharged engines is to achieve fast catalyst light-off by reducing exhaust system heat losses in cold start, without increasing catalyst thermal degradation during high load operation. A CAE methodology to assess the thermal performance of exhaust system hardware options, from the exhaust port to the catalyst brick face is described, which enables compliance with future emissions regulations.
2017-03-28
Technical Paper
2017-01-0135
Jose Grande, Julio Abraham Carrera, Manuel Dieguez Sr
Abstract Exhaust Gas Recirculation (EGR) is an effective technique for reducing NOx emissions in order to achieve the ever more stringent emissions standards. This system is widely used in commercial vehicle engines in which thermal loads and durability are a critical issue. In addition, the development deadlines of the new engine generations are being considerably reduced, especially for validation test phase in which customers usually require robust parts for engine validation in the first stages of the project. Some of the most critical issues in this initial phases of program development are heavy boiling and thermal fatigue. Consequently it has been necessary to develop a procedure for designing EGR coolers that are sufficiently robust against heavy boiling and thermal fatigue in a short period of time, even when the engine calibration is not finished and the working conditions of the EGR system are not completely defined.
2017-03-28
Technical Paper
2017-01-0123
Saiful Bari
Abstract In general, diesel engines have an efficiency of about 35% and hence, a considerable amount of energy is expelled to the ambient air. In water-cooled engines, about 25%, 33% and 7% of the input energy are wasted in the coolant, exhaust gas, and friction, respectively. The heat from the exhaust gas of diesel engines can be an important heat source to provide additional power and improve overall engine efficiency. Studies related to the application of recoverable heat to produce additional power in medium capacity diesel engines (< 100 kW) using separate Rankine cycle are scarce. To recover heat from the exhaust of the engine, an efficient heat exchanger is necessary. For this type of application, the heat exchangers are needed to be designed in such a way that it can handle the heat load with reasonable size, weight and pressure drop. This paper describes the study of a diesel generator-set attached with an exhaust heat recovery system.
Viewing 181 to 210 of 24612

Filter