Display:

Results

Viewing 181 to 210 of 24427
2017-03-28
Journal Article
2017-01-0610
Nicolo Cavina, Francesco Ranuzzi, Matteo De Cesare, Enrico Brugnoni
Abstract The most recent European regulations for two- and three-wheelers (Euro 5) are imposing an enhanced combustion control in motorcycle engines to respect tighter emission limits, and Air-Fuel Ratio (AFR) closed-loop control has become a key function of the engine management system also for this type of applications. In a multi-cylinder engine, typically only one oxygen sensor is installed on each bank, so that the mean AFR of two or more cylinders rather than the single cylinder one is actually controlled. The installation of one sensor per cylinder is normally avoided due to cost, layout and reliability issues. In the last years, several studies were presented to demonstrate the feasibility of an individual AFR controller based on a single sensor. These solutions are based on the mathematical modelling of the engine air path dynamics, or on the frequency analysis of the lambda probe signal.
2017-03-28
Journal Article
2017-01-0796
J. Felipe Rodriguez, Wai K. Cheng
Abstract The NOx emissions during the crank-start and cold fast-idle phases of a GDI engine are analyzed in detail. The NOx emissions of the first 3 firing cycles are studied under a wide set of parameters including the mass of fuel injected, start of injection, and ignition timing. The results show a strong dependence of the NOx emissions with injection timing; they are significantly reduced as the mixture is stratified. The impact of different valve timings on crank-start NOx emissions was analyzed. Late intake and early exhaust timings show similar potential for NOx reduction; 26-30% lower than the baseline. The combined strategy, resulting in a large symmetric negative valve overlap, shows the greatest reduction; 59% lower than the baseline. The cold fast-idle NOx emissions were studied under different equivalence ratios, injection strategies, combustion phasing, and valve timings. Slightly lean air-fuel mixtures result in a significant reduction of NOx.
2017-03-28
Journal Article
2017-01-0584
Haksu Kim, Jaewook Shin, Myoungho Sunwoo
Abstract With fuel efficiency becoming an increasingly critical aspect of internal combustion engine (ICE) vehicles, the necessity for research on efficient generation of electric energy has been growing. An energy management (EM) system controls the generation of electric energy using an alternator. This paper presents a strategy for the EM using a control mode switch (CMS) of the alternator for the (ICE) vehicles. This EM recovers the vehicle’s residual kinetic energy to improve the fuel efficiency. The residual kinetic energy occurs when a driver manipulates a vehicle to decelerate. The residual energy is commonly wasted as heat energy of the brake. In such circumstances, the wasted energy can be converted to electric energy by operating an alternator. This conversion can reduce additional fuel consumption. For extended application of the energy conversion, the future duration time of the residual power is exploited.
2017-03-28
Journal Article
2017-01-0596
Vittorio Ravaglioli, Federico Stola, Matteo De Cesare, Fabrizio Ponti, Stefano Sgatti
Abstract Upcoming more stringent emission regulations throughout the world pose a real challenge, especially in regard to Diesel systems for passenger cars, where the need of additional after-treatment has a big impact in terms of additional system costs and available packaging space. Therefore, the need for strategies that allow managing combustion towards lower emissions, that require a precise control of the combustion outputs, is definitely increasing. Acoustic emission of internal combustion engines contains a large amount of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. In particular, recent research from the same authors of this paper demonstrated that combustion noise can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy.
2017-03-28
Journal Article
2017-01-0586
Hayato Shirai, Hayato Nakada, Akio Matsunaga, Hiroyuki Tominaga
Abstract In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits.
2017-03-28
Journal Article
2017-01-0587
Cetin Gurel, Elif Ozmen, Metin Yilmaz, Didem Aydin, Kerem Koprubasi
Abstract Emissions and fuel economy optimization of internal combustion engines is becoming more challenging as the stringency of worldwide emission regulations are constantly increasing. Aggressive transient characteristics of new emission test cycles result in transient operation where the majority of soot is produced for turbocharged diesel engines. Therefore soot optimization has become a central component of the engine calibration development process. Steady state approach for air-fuel ratio limitation calibration development is insufficient to capture the dynamic behavior of soot formation and torque build-up during transient engine operation. This paper presents a novel methodology which uses transient maneuvers to optimize the air-fuel ratio limitation calibration, focusing on the trade-off between vehicle performance and engine-out soot emissions. The proposed methodology features a procedure for determining candidate limitation curves with smoothness criteria considerations.
2017-03-28
Journal Article
2017-01-0583
Farraen Mohd Azmin, Phil Mortimer, Justin Seabrook
Abstract With the introduction in Europe of drive cycles such as RDE and WLTC, transient emissions prediction is more challenging than before for passenger car applications. Transient predictions are used in the calibration optimization process to determine the cumulative cycle emissions for the purpose of meeting objectives and constraints. Predicting emissions such as soot accurately is the most difficult area, because soot emissions rise very steeply during certain transients. The method described in this paper is an evolution of prediction using a steady state global model. A dynamic model can provide the instantaneous prediction of boost and EGR that a static model cannot. Meanwhile, a static model is more accurate for steady state engine emissions. Combining these two model types allows more accurate prediction of emissions against time. A global dynamic model combines a dynamic model of the engine air path with a static DoE (Design of Experiment) emission model.
2017-03-28
Journal Article
2017-01-0605
Anthony D'Amato, Yan Wang, Dimitar Filev, Enrique Remes
Abstract Government regulations for fuel economy and emission standards have driven the development of technologies that improve engine performance and efficiency. These technologies are enabled by an increased number of actuators and increasingly sophisticated control algorithms. As a consequence, engine control calibration time, which entails sweeping all actuators at each speed-load point to determine the actuator combination that meets constraints and delivers ideal performance, has increased significantly. In this work we present two adaptive optimization methods, both based on an indirect adaptive control framework, which improve calibration efficiency by searching for the optimal process inputs without visiting all input combinations explicitly. The difference between the methods is implementation of the algorithm in steady-state vs dynamic operating conditions.
2017-03-28
Journal Article
2017-01-0603
Vicente Cuapio Espino, Akshay Bichkar, Joycer D. Osorio
Abstract Software development for automotive application requires several iterations in order to tune parameters and strategy logic to operate accordantly with optimal performance. Thus, in this paper we present an optimizer method and tool used to tune calibration parameters related to torque estimation for a hybrid automatic transmission application. This optimizer aims to minimize the time invested during the software calibration and software development phases that could take significant time in order to cover the different driving conditions under which a hybrid automatic transmission can operate. For this reason, an optimization function based on the Nelder-Mead simplex algorithm using Matlab software helps to find optimized calibration values based on a cost function (square sum error minimization).
2017-03-28
Journal Article
2017-01-0602
Vladimir Vasilije Kokotovic, Colby Buckman
Abstract With the trending electrification of vehicle accessory drives brings new control concepts useful in many cases to optimize energy management within the powertrain system. Considering that direct engine drives do not have as much flexibility as independent electric drives, it is apparent that several advantages are to be expected from electric drives. New developed high efficient electric drives can be implemented when considering many vehicle sub-systems. Combinations of continuous varying and discrete flow control devices offer thermal management opportunities across several vehicle attributes including fuel economy, drivability, performance, and cabin comfort. Often new technologies are integrated with legacy systems to deliver maximum value. Leveraging both electrical and mechanical actuators in some cases presents control challenges in optimizing energy management while delivering robust system operation.
2017-03-28
Journal Article
2017-01-0598
Mohammad Reza Amini, Meysam Razmara, Mahdi Shahbakhti
Electronic throttle control is an integral part of an engine electronic control unit (ECU) that directly affects vehicle fuel economy, drivability, and engine-out emissions by managing engine torque and air-fuel ratio through adjusting intake charge flow to the engine. The highly nonlinear dynamics of the throttle body call for nonlinear control techniques that can be implemented in real-time and are also robust to controller implementation imprecision. Discrete sliding mode control (DSMC) is a computationally efficient controller design technique which can handle systems with high degree of nonlinearity. In this paper, a generic robust discrete sliding mode controller design is proposed and experimentally verified for the throttle position tracking problem. In addition, a novel method is used to predict and incorporate the sampling and quantization imprecisions into the DSMC structure. First, a nonlinear physical model for an electromechanical throttle body is derived.
2017-03-28
Journal Article
2017-01-0608
Qilun Zhu, Robert Prucka, Michael Prucka, Hussein Dourra
This paper proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicate Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actions. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and sensor/actuator offset. The complete control system demonstrated strong disturbance rejection and close loop stability.
2017-03-28
Journal Article
2017-01-0607
Nahid Pervez, Ace Koua Kue, Adarsh Appukuttan, John Bogema, Michael Van Nieuwstadt
Abstract Designing a control system that can robustly detect faulted emission control devices under all environmental and driving conditions is a challenging task for OEMs. In order to gain confidence in the control strategy and the values of tunable parameters, the test vehicles need to be subjected to their limits during the development process. Complexity of modern powertrain systems along with the On-Board Diagnostic (OBD) monitors with multidimensional thresholds make it difficult to anticipate all the possible scenarios. Finding optimal solutions to these problems using traditional calibration processes can be time and resource intensive. A possible solution is to take a data driven calibration approach. In this method, a large amount of data is collected by collaboration of different groups working on the same powertrain. Later, the data is mined to find the optimum values of tunable parameters for the respective vehicle functions.
2017-03-28
Journal Article
2017-01-0863
Bader Almansour, Sami Alawadhi, Subith Vasu
Abstract The biofuel and engine co-development framework was initiated at Sandia National Labs. Here, the synthetic biologists develop and engineer a new platform for drop-in fuel production from lignocellulosic biomass, using several endophytic fungi. Hence this process has the potential advantage that expensive pretreatment and fuel refining stages can be optimized thereby allowing scalability and cost reduction; two major considerations for widespread biofuel utilization. Large concentrations of ketones along with other volatile organic compounds were produced by fungi grown over switchgrass media. The combustion and emission properties of these new large ketones are poorly known.
2017-03-28
Journal Article
2017-01-0918
Joseph R. Theis, Andrew Getsoian, Christine Lambert
In anticipation that stoichiometric gasoline engines of the future will have improved fuel efficiency and therefore lower exhaust temperatures during low load operation, a project was initiated in 2014 to develop three-way catalysts (TWC) with significantly improved activity at lower temperatures while maintaining the thermal durability of current TWCs. This project is a collaboration between the Ford Motor Company, Oak Ridge National Laboratory, and the University of Michigan and is being funded by the US Department of Energy. The ultimate goal is to show progress towards the USDRIVE goal of 90% conversion of hydrocarbons (HC), carbon monoxide (CO), and the oxides of nitrogen (NOx) at 150oC.
2017-03-28
Journal Article
2017-01-0899
Paul Dekraker, John Kargul, Andrew Moskalik, Kevin Newman, Mark Doorlag, Daniel Barba
Abstract The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of internal energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been updated utilizing newly acquired data from model year 2013-2016 engines and vehicles. Simulations conducted with ALPHA provide data on the effectiveness of various GHG reduction technologies, and reveal synergies that exist between technologies. The ALPHA model has been validated against a variety of vehicles with different powertrain configurations and GHG reduction technologies.
2017-03-28
Journal Article
2017-01-0927
Carl Justin Kamp, Shawn Zhang, Sujay Bagi, Victor Wong, Greg Monahan, Alexander Sappok, Yujun Wang
Abstract Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
2017-03-28
Journal Article
2017-01-0935
Christoph Boerensen, Dirk Roemer, Christian Nederlof, Evgeny Smirnov, Frank Linzen, Felix Goebel, Brendan Carberry
Abstract The most significant challenge in emission control for compression ignited internal combustion engines is the suppression of NOx. In the US, NOx-levels have faced a progressive reduction for several years, but recently the introduction of the Real Driving Emissions legislation (RDE) in Europe has not only significantly increased the severity of the required emission reduction but now is in the advent of stretching technology to its limits. Emission control is based on engine-internal optimization to reduce the engine-out emissions in conjunction with aftertreatment technologies, that are either Selective Catalytic Reduction (SCR) or Lean NOx Trap (LNT) based systems. Due to its ability to control high amounts of NOx, SCR is widely used in heavy-duty applications and is becoming more popular in light-duty and passenger car applications as well.
2017-03-28
Journal Article
2017-01-0925
Tatsuro Sugino, Eriko Tanaka, Huong Tran, Norihiko Aono
Diesel particulate filter (DPF) has been an essential aftertreatment component for reducing particulate matter (PM) emission for diesel engine vehicles thereby meeting stringent emission regulations. Installation of DPF can achieve high filtration efficiency; however PM filtration causes high pressure drop due to deep bed filtration. Although periodic PM regeneration is needed for keeping low pressure drop, it causes significant deterioration in fuel efficiency. Improving the efficiency of PM regeneration and low pressure drop are major challenges for DPF to meet future CO2 emission regulations. In this paper, a novel morphological catalyst layer for DPF was presented. This catalyst layer located in wall surface of inlet DPF channels and formed highly porous and 3 dimension meshwork shape. These features enhanced not only preventing deep bed filtration for low pressure drop, but also soot-catalyst contact for fast PM regeneration rate.
2017-03-28
Journal Article
2017-01-0926
Kentaro Iwasaki
Abstract The diesel particulate filter (DPF) has been used in the automobile industry for around a decade. As a key technology for emissions control the DPF design needs to be increasingly optimized to expand its function to deal with any emission not just particulate matter (PM). NOx emission regulations need to be met as well as CO2 targets through minimizing any fuel penalty. Cost is extremely important to deliver an effective after-treatment catalyst. Aluminum titanate and cordierite-based material DPFs are very cost effective in part because their properties allow monolith-manufacturing. Furthermore, geometrical design of the DPF channel structure can contribute to multi-functionalization of the DPF to provide further advantages. Square and asymmetric square-designed channel structures have been utilized on current after-treatment DPF systems.
2017-03-28
Technical Paper
2017-01-0875
Valentin Soloiu, Jose Moncada, Martin Muinos, Aliyah Knowles, Remi Gaubert, Thomas Beyerl, Gustavo Molina
This paper investigates the performance of an indirect injection (IDI) diesel engine fueled with Bu25, 75% ultra-low sulfur diesel (ULSD#2) blended with 25% n-butanol by mass. N-butanol, derivable from biomass feedstock, was used given its availability as an alternative fuel that can supplement the existing limited fossil fuel supply. Combustion and emissions were investigated at 2000 rpm across loads of 4.3-7.2 bar indicated mean effective pressure (IMEP). Cylinder pressure was collected using Kistler piezoelectric transducers in the precombustion (PC) and main combustion (MC) chambers. Ignition delays ranged from 0.74 - 1.02 ms for both operated fuels. Even though n-butanol has a lower cetane number, the high swirl in the separate combustion chamber would help advance its premixed combustion. The heat release rate of Bu25 became initially 3 J/crank-angle-degree (CAD) higher than that of ULSD#2 as load increased to 7.2 bar IMEP.
2017-03-28
Journal Article
2017-01-1277
Jakobus Groenewald, Thomas Grandjean, James Marco, Widanalage Widanage
Abstract Increasingly international academic and industrial communities desire to better understand, implement and improve the sustainability of vehicles that contain embedded electrochemical energy storage. Underpinning a number of studies that evaluate different circular economy strategies for the electric vehicle (EV) battery system are implicit assumptions about the retained capacity or State-of-Health (SoH) of the battery. International standards and best-practice guides exist that address the performance evaluation of both EV and HEV battery systems. However, a common theme in performance testing is that the test duration can be excessive and last for a number of hours. The aim of this research is to assess whether energy capacity and internal resistance measurements of Li-ion based modules can be optimized, reducing the test duration to a value that may facilitate further End-of-Life (EoL) options.
2017-03-28
Journal Article
2017-01-1278
Keisuke Isomura
Abstract In the automobile industry, interest in the prevention of global warming has always been high. The development of eco cars (HV, EV etc.), aimed at reducing CO2 emissions during operation, has been progressing. In the announcement of its "Toyota Environmental Challenge 2050", Toyota declared its commitment to creating a future in which people, cars, and nature coexist in harmony. In this declaration, Toyota committed to reducing CO2 emissions not only during operation but also over the entire life cycle of vehicles, and to using resources effectively based on a 4 R’s approach (refuse, reduce, reuse, and recycle). Although eco cars decrease CO2 emissions during operation, most of them increase CO2 emissions during manufacturing. For example, the rare-earths (Nd, Dy etc.) used in the magnets of driving motors are extracted through processes that produce a significant amount of CO2 emissions.
2017-03-28
Journal Article
2017-01-1273
Qiang Dai, Jarod C. Kelly, Amgad Elgowainy
Abstract Vehicle lightweighting has been a focus of the automotive industry, as car manufacturers seek to comply with corporate average fuel economy (CAFE) and greenhouse gas (GHG) emissions standards for model year (MY) 2017-2025 vehicles. However, when developing a lightweight vehicle design, the automotive industry typically targets maximum vehicle weight reduction at minimal cost increase. In this paper, we consider the environmental impacts of the lightweighting technology options. The materials used for vehicle lightweighting include high-strength steel (HSS), aluminum, magnesium and carbon fiber reinforced plastic (CFRP). Except for HSS, the production of these light materials is more GHG-intensive (on a kg-to-kg basis) compared with the conventional automotive materials they substitute. Lightweighting with these materials, therefore, may partially offset the GHG emission reductions achieved through improved fuel economy.
2017-03-28
Journal Article
2017-01-0920
Jean P. Roy, Ahmed Ghoniem, Robert Panora, Joseph Gehret, Bruce Falls, David Wallace, Daniel Ott
Abstract All vehicles sold today are required to meet emissions standards based on specific driving cycles. Emissions standards are getting tighter and the introduction of real driving tests is imminent, potentially calling for improved aftertreatment systems. A dual stage catalyst system, with exhaust temperature control, can provide a robust solution to meet challenging modes of operation such as rapid acceleration and other heavy-duty transients. The Ultera® technology, developed and successfully implemented on stationary natural gas CHP (Combined Heat and Power) engines, introduces a second stage catalyst downstream of a three-way catalyst. Air is injected between the two stages to provide oxygen required for the second stage reaction that removes additional CO and NMOG. Critical to the process is to avoid the reformation of NOx.
2017-03-28
Journal Article
2017-01-0599
Yichao Guo
Abstract Misfire is generally defined as be no or partial combustion during the power stroke of internal combustion engine. Because a misfired engine will dramatically increase the exhaust emission and potentially cause permanent damage to the catalytic converters, California Air Resources Board (CARB), as well as most of other countries’ on-board diagnostic regulations mandates the detection of misfire. Currently almost all the OEMs utilize crankshaft position sensors as the main input to their misfire detection algorithm. The detailed detection approaches vary among different manufacturers. For example, some chooses the crankshaft angular velocity calculated from the raw output of the crankshaft positon sensor as the measurement to distinguish misfires from normal firing events, while others use crankshaft angular acceleration or the associated torque index derived from the crankshaft position sensor readings as the measurement of misfire detection.
2017-03-28
Journal Article
2017-01-1319
Christoph Huber, Bernhard Weigand, Heinrich Reister, Thomas Binner
Abstract A simulation approach to predict the amount of snow which is penetrating into the air filter of the vehicle’s engine is important for the automotive industry. The objective of our work was to predict the snow ingress based on an Eulerian/Lagrangian approach within a commercial CFD-software and to compare the simulation results to measurements in order to confirm our simulation approach. An additional objective was to use the simulation approach to improve the air intake system of an automobile. The measurements were performed on two test sites. On the one hand we made measurements on a natural test area in Sweden to reproduce real driving scenarios and thereby confirm our simulation approach. On the other hand the simulation results of the improved air intake system were compared to measurements, which were carried out in a climatic wind tunnel in Stuttgart.
2017-03-28
Journal Article
2017-01-1316
Dhaval Vaishnav, Mohsen Ehteshami, Vylace Collins, Syed Ali, Alan Gregory, Matthew Werner
Abstract A jet pump (also known as ejector) uses momentum of a high velocity jet (primary flow) as a driving mechanism. The jet is created by a nozzle that converts the pressure head of the primary flow to velocity head. The high velocity primary flow exiting the nozzle creates low pressure zone that entrains fluid from a secondary inlet and transfers the total flow to desired location. For a given pressure of primary inlet flow, it is desired to entrain maximum flow from secondary inlet. Jet pumps have been used in automobiles for a variety of applications such as: filling the Fuel Delivery Module (FDM) with liquid fuel from the fuel tank, transferring liquid fuel between two halves of the saddle type fuel tank and entraining fresh coolant in the cooling circuit. Recently, jet pumps have been introduced in evaporative emission control system for turbocharged engines to remove gaseous hydrocarbons stored in carbon canister and supply it to engine intake manifold (canister purging).
2017-03-28
Journal Article
2017-01-1328
Yoshiteru Tanaka, Jun Yamamura, Atsushi Murakawa, Hiroshi Tanaka, Tsuyoshi Yasuki
Abstract When vehicles run on the flooded road, water enters to the engine compartment and sometimes reaches the position of the air intake duct and electrical parts and causes the reliability problems. Numerical simulation is an effective tool for this phenomenon because it can not only evaluate the water level before experiment but also identify the intrusion route. Recently, the gap around the engine cooling modules tends to become smaller and the undercover tends to become bigger than before in order to enhance the vehicle performance (e.g., aerodynamics, exterior noise). Leakage tightness around the engine compartment becomes higher and causes an increase of the buoyancy force from the water. Therefore the vehicle attitude change is causing a greater impact on the water level. This paper describes the development of a water level prediction method in engine compartment while running on the flooded road by using the coupled multibody and fluid dynamics.
2017-03-28
Journal Article
2017-01-1327
Prashant Khapane, Vivek Chavan, Uday Ganeshwade
Abstract Physical testing of a vehicle wading through water is performed to gauge its capability to traverse through shallow to deep levels of water, wherein various vehicle performance parameters are observed, recorded and analysed. Jaguar Land Rover (JLR) has instigated and established a comprehensive CAE test procedure for assessing the same, which makes use of overset mesh (in a CFD environment) for a non-traditional approach to vehicle motion. The paper presents investigations made into the established wading physics, in order to optimise the splashing and water jet modelling. Large Scale Interface model was implemented instead of the previously standardised VOF-VOF fluid phase interaction model, and a comparison is made between the two. The implemented wheel rotation approach was scrutinised as well and appropriate inferences are drawn.
Viewing 181 to 210 of 24427

Filter