Display:

Results

Viewing 151 to 180 of 24521
2017-03-28
Technical Paper
2017-01-0973
Naoko Uchiumi, Hiroshi Hirabayashi, Shinya Sato, Takafumi Yamauchi
Abstract Urea-SCR(selective catalytic reduction) system is widely used as a technology of NOx(Nitrogen Oxides) reduction from diesel engine exhaust gases. Emission regulations have becoming stricter all over the world, and high NOx reduction performance is necessary to meet the emission regulations. To get higher NOx reduction performance of the Urea-SCR system, it is important to understand detailed chemical reaction mechanisms of Urea-SCR catalysts. In this study, we focused on elucidation of the reaction mechanism of the Urea-SCR catalyst by numerical simulation approach. The chemical reaction models with detail chemical reactions were built for both Fe-catalyst and Cu-catalyst. Both of the catalytic reaction models can predict difference of the catalytic reaction performance between the Fe-catalyst and the Cu-catalyst. In addition, rate-determining reaction step of the Cu-catalyst was successfully identified by the numerical simulation results.
2017-03-28
Journal Article
2017-01-0974
Timothy C. Watling, Maya R. Ravenscroft, Jason P.E. Cleeton, Ian D. Rees, David A.R. Wilkins
Abstract The development of a one-dimensional model for the prediction of backpressure across a gasoline or diesel particulate filter (PF) is presented. The model makes two innovations: Firstly, the term for momentum convection in the gas momentum balance equations includes the loss (or gain) of axial momentum in the direction perpendicular to the channels; neglecting this results in the momentum convection term being too large. Secondly, equations for the pressure change due to the abrupt contraction at the PF entrance and for abrupt expansion at the exit are derived which take into account the fact that the velocity profile across the channels is not flat; often workers have used equations appropriate for high Reynolds numbers which assume flat velocity profiles. The model has been calibrated/tested against cold flow data for more than one length of PF. The use of more than one length allows along-filter pressure losses to be separated from entrance and exit effects.
2017-03-28
Journal Article
2017-01-0987
Nathan Ottinger, Niklas Schmidt, Z. Gerald Liu
Abstract Nitrous oxide (N2O), with a global warming potential (GWP) of 297 and an average atmospheric residence time of over 100 years, is an important greenhouse gas (GHG). In recognition of this, N2O emissions from on-highway medium- and heavy-duty diesel engines were recently regulated by the US Environmental Protection Agency (EPA) and National Highway Traffic Safety Administration’s (NHTSA) GHG Emission Standards. Unlike NO and NO2, collectively referred to as NOx, N2O is not a major byproduct of diesel combustion. However, N2O can be formed as a result of unselective catalytic reactions in diesel aftertreatment systems, and the mitigation of this unintended N2O formation is a topic of active research. In this study, a nonroad Tier 4 Final/Stage IV engine was equipped with a vanadium-based selective catalytic reduction (SCR) aftertreatment system. Experiments were conducted over nonroad steady and both cold and hot transient cycles (NRSC and NRTC, respectively).
2017-03-28
Journal Article
2017-01-0989
Jennifer H. Zhu, Christopher Nones, Yan Li, Daniel Milligan, Barry Prince, Mark Polster, Mark Dearth
Abstract Vehicle interior air quality (VIAQ) measurements are currently conducted using the offline techniques GC/MS and HPLC. To improve throughput, speed of analysis, and enable online measurement, specialized instruments are being developed. These instruments promise to reduce testing cost and provide shortened analysis times at comparable accuracy to the current state of the art offline instruments and methods. This work compares GCMS/HPLC to the Voice200ultra, a specialized real-time instrument utilizing the technique selected ion flow tube mass spectrometry (SIFT-MS). The Voice200ultra is a real-time mass spectrometer that measures volatile organic compounds (VOCs) in air down to the parts-per-trillion level by volume (pptv). It provides instantaneous, quantifiable results with high selectivity and sensitivity using soft chemical ionization.
2017-03-28
Technical Paper
2017-01-0986
Mohd Azman Abas, Shaiful Fadzil Zainal Abidin, Srithar Rajoo, Ricardo Martinez-Botas, Muhammad Izzal Ismail
Abstract Engine stop/start and cylinder deactivation are increasingly in use to improve fuel consumption of internal combustion engine in passenger cars. The stop/start technology switches off the engine to whenever the vehicle is at a stand-still, typically in a highly-congested area of an urban driving. The inherent issue with the implementation of stop/start technology in Southeast Asia, with tropical climate such as Malaysia, is the constant demand for the air-conditioning system. This inevitably reduces the duration of engine switch-off when the vehicle at stop and consequently nullifying the benefit of the stop/start system. On the other hand, cylinder deactivation technology improves the fuel consumption at certain conditions during low to medium vehicle speeds, when the engine is at part load operation only.
2017-03-28
Technical Paper
2017-01-0988
Michael Cunningham, Mi-Young Kim, Venkata Lakkireddy, William Partridge
Abstract Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
2017-03-28
Technical Paper
2017-01-0983
Masaaki Ito, Frank Katsube, Yasuhiko Hamada, Hiroaki Ishikawa, Tsuyoshi Asako
Abstract Particle Number (PN) regulation was firstly introduced for European light-duty diesel vehicles back in 2011[1]. Since then, PN regulation has been and is being expanded to heavy-duty diesel vehicles and non-road diesel machineries. PN regulation will also be expanded to China and India around 2020 or later. Diesel Particulate Filter (DPF) is significant factor for the above-mentioned PN regulation. This filter technology is to be continuously evolved for the near future tighter PN regulation. Generally, PN filtration performance test for filter technology development is carried out with chassis dynamometer, engine dynamometer or simulator [2]. This paper describes a simplified and relatively quicker alternative PN filtration performance test method for accelerating filter technology development compared to the current test method.
2017-03-28
Technical Paper
2017-01-0985
Joachim Demuynck, Cecile Favre, Dirk Bosteels, Heather Hamje, Jon Andersson
Abstract The market share of Gasoline Direct Injection (GDI) vehicles has been increasing, promoted by its positive contribution to the overall fleet fuel economy improvement. It has however been reported that this type of engine is emitting more ultrafine particles than the Euro 6c Particle Number (PN) limit of 6·1011 particles/km that will be introduced in Europe as of September 2017 in parallel with the Real Driving Emission (RDE) procedure. The emissions performance of a Euro 6b GDI passenger car was measured, first in the OEM build without a Gasoline Particulate Filter (GPF) and then as a demonstrator with a coated GPF in the underfloor position. Regulated emissions were measured on the European regulatory test cycles NEDC and WLTC and in real-world conditions with Portable Emissions Measurement Systems (PEMS) according to the published European RDE procedure (Commission Regulation (EU) 2016/427 and 2016/646).
2017-03-28
Journal Article
2017-01-0982
Dhruvang Rathod, Mark A. Hoffman, Simona Onori
Abstract The duration over which a three way catalyst (TWC) maintains proper functionality during lambda excursions is critically impacted by aging, which affects its oxygen storage capacity (OSC). As such, emissions control strategies, which strive to maintain post TWC air-to-fuel ratios at the stoichiometric value, will benefit from an accurate estimation of TWC age. To this end, this investigation examines a method of TWC age estimation suitable for real-world transient operation. Experimental results are harvested from an instrumented test vehicle equipped with a two-brick TWC during operation on a chassis dynamometer. Four differently aged TWCs are instrumented with wideband and switch-type Lambda sensors upstream (Pre TWC location), and downstream (Mid location) of first catalyst brick.
2017-03-28
Technical Paper
2017-01-0984
Wenran Geng, Diming Lou, Ning Xu, Piqiang Tan, Zhiyuan Hu
Abstract Recently Hybrid Electric Buses (HEBs) have been widely used in China for energy saving and emission reduction. In order to study the real road emission performance of HEBs, the emission tests of an in-use diesel-electric hybrid bus (DHEB) are evaluated both on chassis dynamometer over China City Bus Cycles (CCBC) and on-road using Portable Emissions Measurement Systems (PEMS). The DHEB is powered by electric motor alone at speed of 0~20km/h. When the speed exceeds 20km/h, engine gets engaged rapidly and then works corporately with the electric motor to drive the bus. For chassis dynamometer test over CCBC, emissions of NOx, particulate number, particulate mass, and THC of the DHEB are 7.68g/km, 5.88E+11#/km, 0.412mg/km, and 0.062g/km, respectively. They have all decreased greatly compared to those of the diesel bus. But the CO emission which is 3.48g/km has increased significantly.
2017-03-28
Technical Paper
2017-01-0960
Pankaj Kumar, Imad Makki
Abstract Traditionally, a three-way catalyst (TWC) is controlled to a set heated exhaust gas oxygen (HEGO) sensor voltage (typically placed after the monitored catalyst) that corresponds to optimal catalyst efficiency. This limits the control action, as we rely on emissions breakthrough at the HEGO sensor to infer the state of catalyst. In order to robustly meet the super ultra-low emission regulations, a more precise TWC control around the oxidation level of catalyst is desirable. In this work, we developed a comprehensive set of models to predict the oxygen storage capacity using measured in-vehicle signals only. This is accomplished by developing three models; the first model is a linear in parameter regression model to predict the feed gas emissions from measured signals like engine speed and air-to-fuel ratio (A/F). The second model is a low-dimensional physics based model of the three-way catalyst to predict the exhaust emissions and oxidation state of the catalyst.
2017-03-28
Technical Paper
2017-01-0959
Changpu Zhao, Yayong Zhu, Sirui Huang
Abstract Although diesel engines offer higher thermal efficiency and lower fuel consumption, larger amounts of Particulate Matters (PM) are emitted in comparison with gasoline engines. The Diesel Particulate Filters (DPF) have proved one of the most promising technologies due to the “particle number” emissions regulations. In this study, the Computational Fluid Dynamics (CFD) multi-channel model of DPF was built properly by utilizing AVL-Fire software code to evaluate the pressure drop and soot accumulation characteristics of DPF. The main objective of this paper was to investigate the effects of soot (capacity and deposit forms) and ash (capacity and distribution factors) interaction on DPF pressure drop and soot accumulation, as well as the effects of DPF boundary conditions (inlet mass flow rate and inlet temperature) on pressure drop.
2017-03-28
Technical Paper
2017-01-0961
Ray Host, Paul Ranspach, Bruce Anderson, Michael Collareno, George Tapos, Cornelius Henderson
Abstract In recent years, the EPA has implemented a requirement for monitoring the air fuel ratio balance in multi-cylinder engines such that those imbalances may not be so great as to cause the tailpipe emissions level to exceed 1.5 times the nominal emissions standard. Such imbalances may be the result of production fuel injector variation, contamination, leaks, or other malfunctions which cause the air or fuel rate to vary across the cylinders controlled by a single oxygen sensor. For many diagnostic systems that rely on the signal from the oxygen sensor, to achieve compliance to the new diagnostic standard, the sensor must see the signal from each cylinder equally. The aftertreatment system must also be robust to individual cylinder air fuel ratio variation. This paper introduces the concept of catalyst zone flow, a condition in which different cylinders of a multi-cylinder engine use different portions of the catalyst brick.
2017-03-28
Journal Article
2017-01-0955
Hai-Ying Chen, Donna Liu, Erich Weigert, Lasitha Cumaranatunge, Kenneth Camm, Patrick Bannon, Julian Cox, Louise Arnold
Abstract The phase-in of US EPA Tier 3 and California LEV III emission standards require further reduction of tailpipe criteria pollutants from automobiles. At the same time, the mandate for reducing Green House Gas (GHG) emissions continuously lowers the exhaust temperature. Both regulations pose significant challenges to emission control catalyst technologies, especially for cold start emissions. The recently developed diesel cold start concept technology (dCSC™) shows promising results. It stores NOx and HC during the cold start period until the downstream catalytic components reach their operating temperatures, when the stored NOx/HC are subsequently released and converted. The technology also has oxidation functions built in and acts as a diesel oxidation catalyst under normal operating conditions. In a US DOE funded project, the diesel cold start concept technology enabled a high fuel efficiency vehicle to achieve emissions targets well below the SULEV30 emission standards.
2017-03-28
Technical Paper
2017-01-0957
Ian Smith, Thomas Briggs, Christopher Sharp, Cynthia Webb
Abstract It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
2017-03-28
Technical Paper
2017-01-0966
Jana Aslanjan, Christian Klauer, Cathleen Perlman, Vivien Günther, Fabian Mauss
Abstract The three-way catalytic converter (TWC) is the most common catalyst for gasoline engine exhaust gas after treatment. The reduction of carbon monoxide (CO), nitrogen oxides (NOx) and unburned hydrocarbons (HC) is achieved via oxidation of carbon monoxide and hydrocarbons, and reduction of nitrogen oxides. These conversion effects were simulated in previous works using single-channel approaches and detailed kinetic models. In addition to the single-channel model multiple representative catalyst channels are used in this work to take heat transfer between the channels into account. Furthermore, inlet temperature distribution is considered. Each channel is split into a user given number of cells and each cell is treated like a perfectly stirred reactor (PSR). The simulation is validated against an experimental four-stroke engine setup with emission outputs fed into a TWC.
2017-03-28
Technical Paper
2017-01-0967
Xin Liu, Jeong Kim, Timothy Chanko, Christine Lambert, James Pakko
Abstract With an emerging need for gasoline particulate filters (GPFs) to lower particle emissions from gasoline direct injection (GDI) engines, studies are being conducted to optimize GPF designs in order to balance filtration efficiency, backpressure penalty, filter size, cost and other factors. Metal fiber filters could offer additional designs to the GPF portfolio, which is currently dominated by ceramic wall-flow filters. However, knowledge on their performance as GPFs is still limited. In this study, modeling on backpressure and filtration efficiency of fibrous media was carried out to determine the basic design criteria (filtration area, filter thickness and size) for different target efficiencies and backpressures at given gas flow conditions. Filter media with different fiber sizes (8 - 17 μm) and porosities (80% - 95%) were evaluated using modeling to determine the influence of fiber size and porosity.
2017-03-28
Technical Paper
2017-01-0968
Anand Srinivasan, Saurabh Joshi, Yadan Tang, Di Wang, Neal Currier, Aleksey Yezerets
Abstract Commercial Cu-Zeolite SCR catalyst can store and subsequently release significant amount of H2O. The process is accompanied by large heat effects. It is critical to model this phenomenon to design aftertreatment systems and to provide robust tuning strategies to meet cold start emissions and low temperature operation. The complex reaction mechanism of water adsorption and desorption over a Cu-exchanged SAPO-34 catalyst at low temperature was studied through steady state and transient experiments. Steady state isotherms were generated using a gravimetric method and then utilized to predict water storage interactions with respect to feed concentration and catalyst temperature. Transient temperature programmed desorption (TPD) experiments provided the kinetic information required to develop a global kinetic model from the experimental data. The model captures fundamental characteristics of water adsorption and desorption accompanied by the heat effects.
2017-03-28
Journal Article
2017-01-0970
Johann C. Wurzenberger, Christoph Triebl, Susanne Kutschi, Christoph Poetsch
The present work describes an existing transient, non-isothermal 1D+1D particulate filter model to capture the impact of different types of particulate matter (PM) on filtration and regeneration. PM classes of arbitrary characteristics (size, composition etc.) are transported and filtered following standard mechanisms. PM deposit populations of arbitrary composition and contact states are used to describe regeneration on a micro-kinetical level. The transport class and deposit population are linked by introducing a splitting deposit matrix. Filtration and regeneration modes are compared to experimental data from literature and a brief numerical assessment on the filtration model is performed. The filter model as part of an exhaust line is used in a concept study on different coating variants. The same exhaust line model is connected to an engine thermodynamic and vehicle model. This system model is run through a random drive cycle in office simulation.
2017-03-28
Technical Paper
2017-01-0962
Jian Gong, Di Wang, Avra Brahma, Junhui Li, Neal Currier, Aleksey Yezerets, Pingen Chen
Abstract Oxygen storage capacity (OSC) is one of the most critical characteristics of a three-way catalyst (TWC) and is closely related to the catalyst aging and performance. In this study, a dynamic OSC model involving two oxygen storage sites with distinct kinetics was developed. The dual-site OSC model was validated on a bench reactor and a natural gas engine. The model was capable of predicting temperature dependence on OSC with H2, CO and CH4 as reductants. Also, the effects of oxygen concentration and space velocity on the amount of OSC were captured by the model. The validated OSC model was applied to simulate lean breakthrough phenomena with varied space velocities and oxygen concentrations. It is found that OSC during lean breakthrough is not a constant for a particular TWC catalyst and is dependent on space velocity and oxygen concentration. Specifically, breakthrough time exhibits a non-linear, inverse correlation to oxygen flux.
2017-03-28
Technical Paper
2017-01-0963
Hoon Cho, Thomas Brewbaker, Devesh Upadhyay, Brien Fulton, Michiel Van Nieuwstadt
Abstract Many excellent papers have been written about the subject of estimating engine-out NOx on diesel engines based on real-time available data. The claimed accuracy of these models is typically around 6-10% on validation data sets with known inputs. This reported accuracy typically ignores input uncertainties, thus arriving at an optimistic estimate of the model accuracy in a real-time application. In our paper we analyze the effect of input uncertainty on the accuracy of engine-out NOx estimates via a numerical Monte Carlo simulation and show that this effect can be significant. Even though our model is based on an in-cylinder pressure sensor, this sensor is limited in its capability to reduce the effect of other measured inputs on the model.
2017-03-28
Technical Paper
2017-01-0964
Jakob Heide, Mikael Karlsson, Mireia Altimira
Abstract Selective Catalytic Reduction (SCR) of NOx through injection of Urea-Water-Solution (UWS) into the hot exhaust gas stream is an effective and extensively used strategy in internal combustion engines. Even though actual SCR systems have 95-96% de-NOx efficiency over test cycles, real driving emissions of NOx are a challenge, proving that there is room for improvement. The efficiency of the NOx conversion is highly dependent on the size of UWS droplets and their spatial distribution. These factors are, in turn, mainly determined by the spray characteristics and its interaction with the exhaust gas flow. The main purpose of this study is to numerically investigate the sensitivity to the modelling framework of the evaporation and mixing of the spray upstream of the catalyst. The dynamics of discrete droplets is handled through the Lagrangian Particle Tracking framework, with models that account for droplet breakup and coalescence, turbulence effects, and water evaporation.
2017-03-28
Technical Paper
2017-01-0944
Ryuji Ando, Takashi Hihara, Yasuyuki Banno, Makoto Nagata, Tomoaki Ishitsuka, Nobuyuki Matsubayashi, Toshihisa Tomie
Abstract Modern diesel emission control systems often use Urea Selective Catalytic Reduction (Urea-SCR) for NOx control. One of the most active SCR catalysts is based on Cu-zeolite, specifically Cu-Chabazite (Cu-CHA), also known as Cu-SSZ-13. The Cu-SCR catalyst exhibits high NOx control performance and has a high thermal durability. However, its catalytic performance deteriorates upon long-term exposure to sulfur. This work describes our efforts to investigate the detailed mechanism of poisoning of the catalyst by sulfur, the optimum conditions required for de-sulfation, and the recovery of catalytic activity. Density functional theory (DFT) calculations were performed to locate the sulfur adsorption site within the Cu-zeolite structure. Analytical characterization of the sulfur-poisoned catalyst was performed using Extreme Ultraviolet Photoelectron Spectroscopy (EUPS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS).
2017-03-28
Technical Paper
2017-01-0943
Cory S. Hendrickson, Devesh Upadhyay, Michiel Van Nieuwstadt
Abstract Over the past decade urea-based selective catalytic reduction (SCR) has become a leading aftertreatment solution to meet increasingly stringent Nitrogen oxide (NOx) emissions requirements in diesel powertrains. A common trend seen in modern SCR systems is the use of "split-brick" configurations where two SCR catalysts are placed in thermally distinct regions of the aftertreatment. One catalyst is close-coupled to the engine for fast light-off and another catalyst is positioned under-floor to improve performance at high space velocities. Typically, a single injector is located upstream of the first catalyst to provide the reductant necessary for efficient NOx reduction. This paper explores the potential benefit, in terms of improved NOx reduction, control of NH3 slip or reduced reductant consumption, of having independently actuated injectors in front of each catalyst.
2017-03-28
Journal Article
2017-01-0942
Joseph R. Theis, Christine Lambert
Abstract Model low temperature NOx adsorbers (LTNA) consisting of Pd on a ceria/zirconia washcoat on monoliths were evaluated for low temperature NOx storage under lean conditions to assess their potential for adsorbing the cold-start NOx emissions on a diesel engine during the period before the urea/SCR system becomes operational. A reactor-based transient test was performed with and without C2H4, CO/H2, and H2O to assess the effects of these species on the NOx storage performance. In the absence of C2H4 or CO/H2, H2O severely suppressed the NOx storage of these model LTNAs at temperatures below 100°C, presumably by blocking the storage sites. When C2H4 was included in the feedgas, H2O still suppressed the NOx storage below 100°C. However, the C2H4 significantly increased the NOx storage efficiency above 100°C, attributable to the formation of alkyl nitrites or alkyl nitrates on the catalyst.
2017-03-28
Journal Article
2017-01-0940
Jesus Emmanuel De Abreu Goes, Louise Olsson, Malin Berggrund, Annika Kristoffersson, Lars Gustafson, Mikael Hicks
Abstract Even though substantial improvements have been made for the lean NOx trap (LNT) catalyst in recent years, the durability still remains problematic because of the sulfur poisoning and sintering of the precious metals at high operating temperatures. Hence, commercial LNT catalysts were aged and tested in order to investigate their performance and activity degradation compared to the fresh catalyst, and establish a proper correlation between the aging methods used. The target of this study is to provide useful information for regeneration strategies and optimize the catalyst management for better performance and durability. With this goal in mind, two different aging procedures were implemented in this investigation. A catalyst was vehicle-aged in the vehicle chassis dynamometer for 100000 km, thus exposed to real conditions. Whereas, an accelerated aging method was used by subjecting a fresh LNT catalyst at 800 °C for 24 hours in an oven under controlled conditions.
2017-03-28
Journal Article
2017-01-0939
Ashok Kumar, Krishna Kamasamudram, Neal Currier, Aleksey Yezerets
Abstract Copper- and Iron- based metal-zeolite SCR catalysts are widely used in US and European diesel aftertreatment systems to achieve drastic reduction in NOx emission. These catalysts are highly selective to N2 under wide range of operating conditions. Nevertheless, the type of transition metal has a significant impact on the key performance and durability parameters such as NOx conversion, selectivity towards N2O, hydrothermal stability, and sensitivity to fuel sulfur content. In this study, we explained the differences in the performance characteristics of these catalysts based on their relative acidic-basic nature of transition metal present in these catalysts using practically relevant gas species present in diesel exhaust such as NO2, SOx, and NH3. These experiments show that Fe-zeolite has relatively acidic nature as compared to Cu-zeolite that causes NH3 inhibition and hence explains low NOx conversion on Fe-zeolite at low temperature under standard SCR conditions.
2017-03-28
Technical Paper
2017-01-0938
Gillis Hommen, Frank Kupper, Xander Seykens
Abstract This article describes a NOx sensor based urea dosing control strategy for heavy-duty diesel aftertreatment systems using Selective Catalytic Reduction. The dosing control strategy comprises of a fast-response, model-based ammonia storage control system in combination with a long-timescale tailpipe-feedback module that adjusts the dosing quantity according to current aftertreatment conditions. This results in a control system that is robust to system disturbances such as biased NOx sensors and variations in AdBlue concentrations. The cross-sensitivity of the tailpipe NOx sensor to ammonia is handled by a novel, smart signal filter that can reliably identify the contributions of NOx and NH3 in the tailpipe sensor signal, without requiring an artificial perturbation of the dosing signal.
2017-03-28
Journal Article
2017-01-0953
Jinyong Luo, Yadan Tang, Saurabh Joshi, Krishna Kamasamudram, Neal Currier, Aleksey Yezerets
Abstract Cu/CHA catalysts have been widely used in the industry, due to their desirable performance characteristics including the unmatched hydrothermal stability. While broadly recognized for their outstanding activity at or above 200°C, these catalysts may not show desired levels of NOx conversion at lower temperatures. To achieve high NOx conversions it is desirable to have NO2/NOx close to 0.5 for fast SCR. However even under such optimal gas feed conditions, sustained use of Cu/CHA below 200°C leads to ammonium nitrate formation and accumulation, resulting in the inhibition of NOx conversion. In this contribution, the formation and decomposition of NH4NO3 on a commercial Cu/CHA catalyst have been investigated systematically. First, the impact of NH4NO3 self-inhibition on SCR activity as a function of temperature and NO2/NOx ratios was investigated through reactor testing.
2017-03-28
Journal Article
2017-01-0952
Michael B. Hopka, David Bilby, Michiel Van Nieuwstadt
Abstract The resistive particulate matter sensor (PMS) is rapidly becoming ubiquitous on diesel vehicles as a means to diagnose particulate filter (DPF) leaks. By design the device provides an integrated measure of the amount of PM to which it has been exposed during a defined measurement period within a drive cycle. The state of the art resistive PMS has a large deadband before any valid output related to the accumulated PM is realized. As a result, most DPF monitors that use the PMS consider its output only as an indicator that a threshold quantity of PM has amassed rather than a real-time measure of concentration. This measurement paradigm has the unfortunate side effect that as the PM OBD threshold decreases, or the PMS is used on a vehicle with a larger exhaust volume flow, a longer measurement is required to reach the same PM sensor output. Longer PMS measurement times lead to long particulate filter monitoring durations that may reduce filter monitor completion frequency.
Viewing 151 to 180 of 24521

Filter