Display:

Results

Viewing 151 to 180 of 24715
2017-10-08
Technical Paper
2017-01-2361
David R. Lancaster
Abstract Virtually all developed countries regulate light-duty vehicle emissions and fuel consumption. Those regulations rely on different procedures and driving cycles in testing to different standards in different countries. As a result, it is often very difficult to compare the standards imposed by different countries. This paper utilizes publicly available data to compare the energy requirements of the chassis dynamometer driving cycles in common use throughout the world. It also examines the relative severity of the currently existing light duty vehicle CO2 standards, some of which are mass-based with a targeted fleet average, and some of which are individual vehicle targets based on footprint.
2017-10-08
Journal Article
2017-01-2296
Andreas Glawar, Fabian Volkmer, Yanyun Wu, Adrian Groves
Abstract Driven by increasingly stringent tailpipe CO2 and fuel economy regulations, gasoline direct injection (GDI) engines are enjoying rapidly increasing market penetration. Already more than 50% of newly produced vehicles in the US and western Europe employ direct-injection technology and many markets in Asia are also seeing an increasingly rapid uptake. However, with the adoption of GDI engine technology, which is able to push the boundaries of engine efficiency, new challenges are starting to arise such as injector nozzle deposits, which can adversely affect performance. Multi-hole solenoid actuated fuel injectors are particularly vulnerable to deposits formed when operated on some market fuels. In order to address this challenge, the development of a reliable industry test platform for injector cleanliness in GDI engines is currently underway in both the US and Europe.
2017-09-28
Magazine
Using Thermal Simulation to Model the Effects of Wind on the Mars Curiosity Rover Quality and Validation of Digital Designs for Aerospace and Defense Scaling LiDAR Optical Payloads from Drones to Miniature UAVs Using Sintered Fiber Metal Composites for Aircraft Acoustic Attenuation GaN Breaks Barriers RF Power Amplifiers Go Wide and High Test System Ensures Flawless Performance of Military RF Devices The Impact of Video Compression on Remote Cardiac Pulse Measurement Using Imaging Photoplethysmography Remote physiological measurement technique leverages digital cameras to recover the blood volume pulse from the human body. Sensitivity Simulation of Compressed Sensing Based Electronic Warfare Receiver Using Orthogonal Matching Pursuit Algorithm Calculate the sensitivity of a CS based EW receiver using two modulation schemes.
2017-09-27
Article
Regional power grids all over the world are incapable of supporting rapid EV growth.
2017-09-26
WIP Standard
AS4792B
This SAE Aerospace Standard (AS) covers water conditioning agents used to facilitate aqueous wet-method magnetic particle inspection. Such conditioning agents, in powder or liquid form, provide suitable corrosion protection, wetting, and particle dispensability properties when mixed in water for application of magnetic particles on the surface of an object for magnetic particle inspection as described in AMS3042, AMS3044, ASTM E1444, and others. Water conditioning agents can consist of varying combinations of such components as dispersants, surfactants, corrosion inhibitors, and anti-foaming agents. Individual components may be added to the bath of a system to develop specific properties. The user is referred to the manufacturer of the conditioning agent to develop the most suitable combination of ingredients for the user’s requirements.
2017-09-25
Article
The 2018 CT6 PHEV is an engaging and efficient luxury sedan aimed primarily at China’s burgeoning New Energy Vehicle market.
2017-09-23
Technical Paper
2017-01-2011
Suyash Singh, Ankur Mathur, Sandeep Das, Purnendu Sinha, Vinay Singh
Abstract In the Smart Cities, main objective is to promote cities that provide core infrastructure and give a decent quality of life to its citizens, a clean and sustainable environment and application of ‘Smart’ Solutions. The process said for utilization of available resources is the best fit for our concept. Our concept is to convert and refurbish the old and scrap vehicles which will increase their longevity and can be used in any smart city in India or abroad. The ultimate aim to provide this technology for the development of any new smart city in India is the utilization of available resources and reduction in the junk materials and environmental pollution. Refurbishing the old and scrap vehicles with replacement of IC engines doesn’t mean that they will be kept as a scrap and be thrown away, our idea is to utilize maximum of all the available resources. The IC engines taken out of these vehicles will be re-used appropriately.
2017-09-23
Technical Paper
2017-01-1988
XueFei Deng, Lu Che, Lei Zhang, Rong Sun
Abstract The problem of this paper can be described as: An oil company has a number of distribution centers in a region, these distribution centers have a number of the same type of multi- compartment vehicles, The optimization goal of the problem is that the distribution costs and carbon emissions considering the oil transportation process, through the model of rational allocation of each distribution center planning and tanker route, so that the cost and carbon emissions throughout the distribution process reached the minimum or at the same time the results of low. This paper studies a low-carbon oil distribution route optimization problem with the targets of minimizing the transport costs and carbon emissions. Firstly, the mathematical model is proposed to describe the problem. According to the characteristics of the model We propose a kind of improved multi-objective SA-TS hybrid optimization algorithm to solve this model.
2017-09-23
Technical Paper
2017-01-1953
Manfei Bai, Lu Xiong, Zhiqiang Fu, Renxie Zhang
Abstract In this paper, a speed tracking controller is designed for the All-terrain vehicles. The method of feedforward with state variable feedback based on conditional integrators is adopted by the proposed control algorithm. The feedforward is designed considering the influence of the road slope on the longitudinal dynamics, which makes the All-terrain vehicles satisfy the acceleration demand of the upper controller when it tracks the desired speed on the road with slope varying greatly. The road slope is estimated based on a combined kinematic and dynamic model. This method solves the problem that road slope estimation requires an accurate vehicle dynamic model and are susceptible to acceleration sensor bias. Based on the vehicle dynamic model and the nonlinear tire model, the method of conditional integration is used in the state variable feedback, which considers the saturation constraint of the actuator with the intention of preventing the divergent integral operation.
2017-09-19
Article
The International Catalist SuperTruck employed lightweighting strategies to help improve efficiency, and Navistar's focus on weight reduction continues unabated for its SuperTruck II program.
2017-09-19
Article
The project, partially funded by the U.K. government, features a mini-turbine range extender.
2017-09-19
Article
Nissan's Leaf has been the world's best-selling electric car since it debuted in 2010.
2017-09-19
Technical Paper
2017-01-2026
Narayanan Komerath, Shravan Hariharan, Dhwanil Shukla, Sahaj Patel, Vishnu Rajendran, Emily Hale
Abstract Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
2017-09-19
Technical Paper
2017-01-2143
Narayanan Komerath, Dhwanil Shukla, Shravan Hariharan, Sahaj Patel, Nandeesh Hiremath
Abstract A direct solution to Global Warming would be to reflect a part of sunlight back into Space. A system tradeoff study is being developed with three of the concepts that are being evaluated as long-endurance high-altitude reflectors. The first concept is a high aspect ratio solar powered flying wing towing reflector sheets. This concept is named “Flying Carpet”. Second is a centrifugally stretched high altitude solar reflector (CSHASR). The CSHASR has 4 rotors made of reflector sheets with a hub stretching to 60 percent of the radius, held together by an ultralight quad-rotor structure. Each rotor is powered by a solar-electric motor. A variation on this concept, forced by nighttime descent rate concerns, is powered by tip-mounted solar panels and propellers with some battery storage augmenting rotational inertia as well as energy storage. The third concept is an Aerostatically Balanced Reflector (ABR) sheet, held up by hydrogen balloons.
2017-09-19
Technical Paper
2017-01-2141
Fengmei Li, Peng Ke
Abstract For the ice protection of the engine air induction part manufactured with low thermal conductivity composite material, the combined heating method using interior impingement and exterior air film has certain advantages. To study the influence of the external jet air film on the impingement characteristics of droplets, the numerical simulation method of three dimensional water droplet impingement based on Eulerian method was developed and verified by experimental data from references. The droplets impingement characteristics under three different blowing ratios and two different velocities were then investigated based on the configuration of 3D cylinder with two parallel jet holes.
2017-09-19
Technical Paper
2017-01-2137
Dnyaneshwar V. Kadam, Sangram D. Jadhav
Abstract Vibration is the most considerable factor in dynamics of machinery. Vibration causes an adverse effect on engine components and may reduce the life of the engine. The conventional fossil fuel sources are limited in the world. The dependency on diesel should be reduced by using biodiesel as an alternative fuel in next few years. The input parameters are affected on engine performance and emission. The present study mainly focuses on an optimization of vibrations, performance and emission using Taguchi and multiple regression analysis for biodiesel as a fuel. The test was performed on a single cylinder, four-stroke, diesel engine with VCR. Taguchi method is used to prepare the design of experiment of the L16 array to minimize the number of experiments and multiple regression analysis used for finding the best relationship between the input and output parameters. The selected input parameters are- fuel fraction, compression ratio, injection pressure and injection timing.
2017-09-19
Technical Paper
2017-01-2136
Almuddin Rustum Sayyad, Pratik Salunke, Sangram Jadhav
Abstract The objective of this work is to optimize the operating parameters of the Direct Injection Single Cylinder (5.2 kw) CI engine with respect to Brake Thermal Efficiency (BTE), Hydrocarbons (HC) and Carbon dioxide (CO2). For this investigation, we used Simarouba Biodiesel as an alternate fuel for diesel fuel which possesses low cetane number which is not sufficient to operate existing diesel engine. However, this could be combined with the diesel fuel in the form of blends. For this investigation four levels and four parameters were selected viz. Injection Pressure (IP), Fuel Fraction (FF), Compression Ratio (CR) and Injection Timing (Before TDC). Taguchi Method is used for minimizing the number of experiments and Multiple Regression Analysis is used to find the optimum condition. Three outputs variables such as; Brake Thermal Efficiency (BTE), content of HC particles and CO2 in the emission are measured and considered its influence on CI Engine performance.
2017-09-19
Technical Paper
2017-01-2124
Violet Leavers
Abstract Within the aviation industry analysis of wear debris particles recovered from magnetic plugs and lubricating fluids is an essential condition monitoring tool. However, in large organisations, high staff turnover in remote work environments often leaves dangerous gaps in on-site support and background knowledge. The current work develops interactive software for wear debris particle classification, root cause diagnosis and serviceability prognostics. During the research several hundred wear debris particle images were collected, analysed and classified by a number of experts. At each stage of the analysis the experts were questioned about the knowledge and experience used to make their diagnoses and prognoses. The end result is an extensive knowledge base representing the combined expertise of a number of highly trained engineers, each with decades of hands-on experience.
2017-09-19
Technical Paper
2017-01-2123
Violet Leavers
Abstract The need to maintain aircraft in remote, harsh environments poses significant challenges. For example, in desert assignments or on-board carrier vessels where frequent rotation of staff with variable levels of skill and experience requires condition monitoring equipment that is not only robust and portable but also user friendly and requiring a minimum of training and skill to set up and use correctly. The mainstays of any on-site aircraft maintenance program are various fluid and particulate condition monitoring tests that convey information about the current mechanical state of the system. In the front line of these is the collection and analysis of wear debris particles retrieved from a component’s lubricating or power transmission fluid or from magnetic plugs. It is standard practice within the specialist laboratory environment to view and image wear debris using a microscope.
2017-09-17
Technical Paper
2017-01-2535
Yongbing Xu, Binyu Mei, Longjie Xiao, Wanyang XIA, Gangfeng Tan
Abstract The continuous braking for the brake drum will cause the brake thermal decay when the heavy truck is driving down the long slope in the mountain areas. It reduces the heavy truck’s braking performance and the braking safety. The engine braking and the hydraulic retarder braking both consume the kinetic energy of the heavy truck and can assist the truck driving in the mountain areas. This research proposes a combined hill descent braking strategy for heavy truck based on the recorded information of the slopes to ensure the braking safety of the heavy truck. The vehicle dynamic model and the brake drum temperature rising model are established to analyze the drum’s temperature variation during the downhill progress of the heavy truck. Then based on the slope information, the combined braking temperature variation is analyzed considering the characteristics of the engine braking, the drum braking and the hydraulic retarder braking.
2017-09-16
Journal Article
2017-01-9183
Tine Christiansen, Johanne Jensen, Andreas Åberg, Jens Abildskov, Jakob Huusom
Abstract A methodology for the development of catalyst models is presented. Also, a methodology of the implementation of such models into a modular simulation tool, which simulates the units in succession, is presented. A case study is presented illustrating how suitable models can be found and used for simulations. Such simulations illustrate the behavior of the individual units and the overall system. It is shown how, by simulating the units in succession, the entire after treatment system can be tested and optimized, because the integration makes it possible to observe the effect of the modules on one another.
2017-09-11
Technical Paper
2017-01-5008
Glenn W. Passavant
As part of an effort to shift focus from the emissions performance of pre-production prototypes in certification to the emissions performance of in-use vehicles, the US Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) instituted the “CAP 2000” program. As part of that program, manufacturers are required to retrieve customer-operated in-use vehicles and test their emissions. The EPA and CARB rules contain specific sample size and mileage criteria. The program has been in place for over 15 model years. This paper examines the in-use performance results for 3115 refueling tests, 3844 hot soak+2-day diurnal evaporative emission tests covering five sets of regulatory emission standards, and evaluates several related regulatory issues such as in-use durability and the effectiveness of evaporative on-board diagnostic (OBD) systems.
2017-09-08
Article
The platform concept was created to be capable of supporting multiple vehicle types and multiple wheelbases - with longer range.
2017-09-08
Article
A 1.6-L "Ecotec" diesel is offered as an option, rated at 52 mpg highway on Cruze, 39 mpg highway for Equinox. A rear-facing timing chain and 10-step solenoid injectors contribute to low-noise design.
2017-09-08
Article
Jaguar unveils its autonomous Future-Type and details pure electric technology for classic E-Type
2017-09-08
Article
Automakers are looking to harness the sun's energy to power electrical components in new vehicles
2017-09-06
Article
New Holland is ramping up its focus on vehicles that burn alternative fuels, unveiling the prototype for a methane-powered tractor set for introduction in the 2020 time frame. The engine slashes operating costs, reduces emissions and cuts noise.
2017-09-06
WIP Standard
J2185
This SAE Standard applies to lead-acid 12 V heavy-duty storage batteries as described in SAE J537 and SAE J930 for uses in starting, lighting and ignition (SLI) applications on motor vehicles and/or off-road machines. These applications have some of the following characteristics:
2017-09-04
Technical Paper
2017-24-0179
Marco Tonetti, Giorgio Rustici, Massimo Buscema, Luca Ferraris
Abstract Final Euro6d emission legislation with the new homologation cycle and Real Driving Emission requirements has set a strong challenge for the ICE Passenger Car applications. Thanks to their well-known low fuel consumption characteristics, Diesel Engines can play a key role for the fulfillment of the European 2020 CO2 fleet target but need to confirm their capability to fully control noxious emissions even in extreme operating conditions, while restraining the overall engine costs and complexity. CO2 and NOx emissions reduction are considered the main drivers for diesel engine evolution. In this perspective, Exhaust Gas After-treatment and Combustion System have been identified as the two main technology aspects to be developed. The purpose of this paper is to describe the evolution paths of these two technologies and the results achieved so far in terms of noxious emissions reduction.
2017-09-04
Technical Paper
2017-24-0163
Apostolos Pesiridis, Angelo Saccomanno, Raffaele Tuccillo, Alfredo Capobianco
Abstract The modern automotive industry is under strict regulations to reduce emissions to comply with the Kyoto Protocol, a universally acknowledged treaty aiming at reducing exhaust gas emissions. In order to achieve the required future emission reduction targets, further developments on gasoline engines are required. One of the main methods to achieve this goal is the application of engine downsizing. Turbocharging is a cost-effective method of downsizing an engine whilst reducing exhaust gas emissions, reducing fuel consumption and maintaining prior performance outputs. For these reasons, the turbocharging is becoming the most widely adopted technology in the automotive markets. In 2012, 32% of passenger and commercial vehicles sold had a turbocharger installed, and is predicted to be 40% of 2017 [1]. Even if the engine turbocharging is a widespread technology, there are still drawbacks present in current turbocharging systems.
Viewing 151 to 180 of 24715

Filter