Display:

Results

Viewing 151 to 180 of 22530
2014-10-13
Journal Article
2014-01-2815
Anders Widd, Magnus Lewander
Abstract The Selective Catalytic Reduction (SCR) catalyst with ammonia as reducing agent plays a central role in today's exhaust after-treatment systems for heavy-duty vehicles and there is a wide selection of possible catalytic materials to use. In order to facilitate the design of future catalysts, several aspects of the materials must be evaluated both in steady-state and transient operation. To this end, this paper presents a methodology for comparing the dynamic properties of different catalysts using full-size engine testing. The studied characteristics include the ammonia storage capacity, the effect of starting with an empty catalyst, the transient response to temperature gradients and changes in the urea dosing level. The temperature response is of particular importance in transient operation, where temperature increases may lead to substantial ammonia slip.
2014-10-13
Journal Article
2014-01-2826
Jon Andersson, John May, Cecile Favre, Dirk Bosteels, Simon de Vries, Matthew Heaney, Matthew Keenan, Jonathon Mansell
Abstract The exhaust emissions of two Euro 6 diesel cars with different emissions control systems have been evaluated both on the road and over various chassis dynamometer test cycles. European emissions limits are currently set using the New European Driving Cycle (NEDC), but the European Commission is preparing additional test procedures to ensure that emissions are well controlled both in real-world use and over the legislative test cycle. The main focus of this work on ‘Real Driving Emissions’ (RDE) is on measurements using Portable Emissions Measurement Systems (PEMS) in truly representative, on-road, driving. A key focus of the test programme, undertaken as a collaboration between AECC (the Association for Emissions Control by Catalyst) and Ricardo UK, was therefore the use of PEMS systems to measure on-road emissions of both gaseous pollutants and particulate matter. This included measurement of particle number emissions with a new candidate system for this type of measurement.
2014-10-13
Journal Article
2014-01-2832
Barouch Giechaskiel, Giorgio Martini
Abstract In the current heavy-duty engine and light-duty diesel vehicle exhaust emission legislation Particle Number (PN) limits for solid particles >23 nm are prescribed. The legislation was extended to include Gasoline Direct Injection (G-DI) vehicles since September 2014 and will be applied to Non-Road Mobile Machinery engines in the future. However there are concerns transferring the same methodology to other engine technologies, where higher concentration of sub-23 nm particles might exist. This paper focuses on the capabilities of existing PN measurement equipment on measuring solid particles smaller than 23 nm.
2014-10-13
Journal Article
2014-01-2822
Achinta Varna, Konstantinos Boulouchos, Alexander Spiteri, Panayotis Dimopoulos Eggenschwiler, Yuri M. Wright
Simulations for a pressure-assisted multi-stream injector designed for urea-dosing in a selective catalytic reduction (SCR) exhaust gas system have been carried out and compared to measurements taken in an optically accessible high-fidelity flow test rig. The experimental data comprises four different combinations of mass flow rate and temperature for the gas stream with unchanged injection parameters for the spray. First, a parametric study is carried out to determine the importance of various spray sub-models, including atomization, spray-wall interaction, buoyancy as well as droplet coalescence. Optimal parameters are determined using experimental data for one reference operating condition.
2014-10-13
Journal Article
2014-01-2845
Jianye Su, Min Xu, Peng Yin, Yi Gao, David Hung
Abstract Spark-ignition direct-injection (SIDI) gasoline engine, especially in downsized boosted engine platform, has proven to be one of the most promising concepts to improve vehicle fuel economy. SIDI engines are also getting a larger share of the gasoline engine market which is traditionally dominated by the port fuel injection (PFI) engines in the U.S., European and Chinese vehicles. However, higher particle number emissions associated with operating the engine at higher loads pose additional challenges for meeting future stringent emissions regulations. In this study, the potential of using multiple injection strategies (double injection and triple injection strategy during the intake stroke in homogeneous combustion mode) to reduce particle number emissions in a 2.0 liter boosted SIDI gasoline engine at 1000 rpm, 11 bar BMEP condition was investigated using Horiba MEXA SPCS1000 PN measurement instrument.
2014-10-13
Journal Article
2014-01-2834
Barouch Giechaskiel, Urbano Manfredi, Giorgio Martini
Abstract In the current diesel vehicle exhaust emissions legislation Particle Number (PN) limits for solid particles >23 nm are prescribed. The legislation was extended to include Gasoline Direct Injection (G-DI) vehicles since September 2014. Target of this paper was to investigate whether smaller than 23 nm solid particles are emitted from engines in considerable concentration focusing on G-DI engines. The literature survey and the experimental investigation of >15 vehicles showed that engines emit solid sub-23 nm particles. The average percentage over a test cycle for G-DIs (30-40%) is similar to diesel engines. These percentages are relatively low considering the emission limit levels (6×1011 p/km) and the repeatability (10-20%) of the particle number method. These percentages are slightly higher compared to the percentages expected theoretically not to be counted due to the 23 nm cut-off size (5-15%).
2014-10-13
Journal Article
2014-01-2844
Matthias Stark, Richard Mittler
Abstract Understanding tribodynamic effects is crucial when aiming to reduce lube oil consumption and related exhaust gas emissions. This report briefly describes the lubrication concept of large two stroke marine diesel engines and different contributors to the lube oil balance of such an engine. Addressing possible measures to influence the contribution of lubrication system parameters on exhaust gas emissions requires a detailed analysis of possible actions to achieve the expected improvement. Activities to enhance lubrication system performance concentrate on: Modifications of relevant engine components The application of experimentally gained data to support computational simulation models The application of suitable validation approaches This report in particular highlights piston ring pack optimizations on basis of computational simulation.
2014-10-13
Journal Article
2014-01-2840
Juan J. Hernández, Rosario Ballesteros, Javier Barba, José Guillén-Flores
Abstract In order to reduce the pollutant emissions (NOx and PM) of diesel engines, the addition of small gaseous fuel amounts or dual mode operation have been proved as potential techniques. This paper is focused on a detailed characterization of the particles emitted from a single cylinder diesel engine when part of the diesel fuel (5 to 20% by energy) is replaced by a gaseous fuel (producer gas, mainly composed by H2, CO, CH4 and inert compounds) coming from biomass steam gasification. The engine was run at constant speed and torque and different EGR rates. Particle samples were collected by means of fiber glass filters placed in a dilution mini-tunnel. Simultaneously, during tests, part of the exhaust gas was conducted to an SMPS to determine the particle size distribution.
2014-10-13
Journal Article
2014-01-2846
Om Parkash Bhardwaj, Bernhard Lüers, Bastian Holderbaum, Thomas Koerfer, Stefan Pischinger, Markku Honkanen
Abstract The present work is a continuation of the earlier published results by authors on the investigation of Hydrogenated Vegetable Oil (HVO) on a High Efficiency Diesel Combustion System (SAE Int. J. Fuels Lubr. Paper No. 2013-01-1677 and JSAE Paper No. 283-20145128). In order to further validate and interpret the previously published results of soot microstructure and its consequences on oxidation behavior, the test program was extended to analyze the impact of soot composition, optical properties, and physical properties such as size, concentration etc. on the oxidation behavior. The experiments were performed with pure HVO as well as with petroleum based diesel and today's biofuel (i.e. FAME) as baseline fuels. The soot samples for the different analyses were collected under constant engine operating conditions at indicated raw NOx emissions of Euro 6 level using closed loop combustion control methodology.
2014-10-13
Journal Article
2014-01-2848
Matthew McAllister, Stephen Smith, Paul Kapus, Khai Vidmar, Alexander Hochnetz
This paper describes the findings of a design, simulation and test study into how to reduce particulate number (Pn) emissions in order to meet EU6c legislative limits. The objective of the study was to evaluate the Pn potential of a modern 6-cylinder engine with respect to hardware and calibration when fitted to a full size SUV. Having understood this capability, to redesign the combustion system and optimise the calibration in order to meet an engineering target value of 3×1011 Pn #/km using the NEDC drive cycle. The design and simulation tasks were conducted by JLR with support from AVL. The calibration and all of the vehicle testing was conducted by AVL, in Graz. Extensive design and CFD work was conducted to refine the inlet port, piston crown and injector spray pattern in order to reduce surface wetting and improve air to fuel mixing homogeneity. The design and CFD steps are detailed along with the results compared to target.
2014-10-07
Magazine
Outlook for autonomous driving includes cloud Connectivity with off-board data and services and among vehicles will be crucial in maintaining safety and security in future autonomous vehicles. The next wave of crash simulation As computing speed has improved and software itself has made significant speed and performance gains with each release, modeling tools are now quick enough to build high-quality, large, high-detail vehicle models in a very efficient manner. SAE 2014 Convergence preview Interest in advanced driver-assistance technologies is surging, with automotive engineers and decision makers at OEMs and suppliers working feverishly on the convenience vs. safety trade-off and other electronics-related challenges. Cooled EGR shows benefits for gasoline engines Exhaust gas recirculation systems now in use on diesel engines are used mainly to meet emissions regulations. In gasoline engines, they are an appealing way to meet ever more stringent fuel-economy standards
2014-09-30
Technical Paper
2014-01-2391
Farraen Mohd Azmin, Richard K. Stobart, John Rutledge, Edward Winward
Abstract A full calibration exercise of a diesel engine air path can take months to complete (depending on the number of variables). Model-based calibration approach can speed up the calibration process significantly. This paper discusses the overall calibration process of the air-path of the Cat® C7.1 engine using statistical machine learning tool. The standard Cat® C7.1 engine's twin-stage turbocharger was replaced by a VTG (Variable Turbine Geometry) as part of an evaluation of a novel air system. The changes made to the air-path system required a recalculation of the air path's boost set point and desired EGR set point maps. Statistical learning processes provided a firm basis to model and optimize the air path set point maps and allowed a healthy balance to be struck between the resources required for the exercise and the resulting data quality.
2014-09-30
Technical Paper
2014-01-2431
Sauhard Singh, Reji Mathai, Ved Singh, A K Sehgal, B Basu, R K Malhotra, S Nagarajan, S Yoganandam, G Senthil Kumar, G Gopal
Abstract In this paper, experimental evaluation was carried out on a 6.0 L heavy duty CNG engine which has been optimized for 18 percent hydrogen blended CNG (HCNG). Optimization test results shows that use of HCNG results in reduced CO, THC & CH4 emissions by 39, 25 & 25 percent respectively and increase in NOx by 32 percent vis-a-vis CNG. After optimization the engine was subjected to endurance test of 600 hours as per 15 mode engine simulated city driving cycle with HCNG. The performance & emission characteristics of the engine were analyzed after completion of every 100 hours as per European Transient Cycle (ETC). Test results indicate that there were no significant changes observed in engine power output over the complete endurance test of 600 hrs with HCNG. Specific fuel consumption (SFC) measurements were consistent at all the 15 modes of engine simulated city driving cycle.
2014-09-30
Technical Paper
2014-01-2432
Nils Olof Nylund, Veikko Karvonen, Hannu Kuutti, Juhani Laurikko
Abstract Over the years, natural gas has been promoted as a clean-burning fuel, especially for transit buses. A decade ago one could claim that natural gas buses deliver significant emission benefits over diesel buses, especially regarding particulate emissions. The spread in nitrogen oxide emissions has always been significant for natural gas engines, high for lean-burn engines and low for three-way catalyst equipped stoichiometric engines. With the introduction of US 2010 and Euro VI (effective as of 2014) exhaust emission regulations, independent of the fuel, the regulated emissions of all engines have been brought close to zero level. This means that the advantage of natural gas as a clean fuel is diminishing, especially in a situation in which electric transit buses are also entering the market. The motivation to use natural gas could still be diesel fuel substitution and to some extent, also reduction of greenhouse gas emissions.
2014-09-30
Technical Paper
2014-01-2429
C Venkatesan, V Faustino, S Arun, S Ravi Shankar
Abstract The automotive industry needs sustainable seating products which offer good climate performance and superior seating comfort. The safety requirement is always a concern for current seating systems. The life of the present seating system is low and absorbs moisture over a period of time which affects seat performance (cushioning effect). Recycling is one of the major concerns as far as polyurethane (PU) is concerned. This paper presents the development of an alternative material which is eco-friendly and light in weight. Thermoplastic Polyolefin (PO) materials were tried in place PU for many good reasons. It is closed cell foam which has better tear and abrasion resistance. It doesn't absorb water and has excellent weathering resistance. Also it has a better cushioning effect and available in various colours. Because of superior tear resistance, it is possible to eliminate upholstery and would reduce system level cost.
2014-09-30
Technical Paper
2014-01-2367
Xinyu Ge, Yongli Qi, Kai Zhang
Fuel properties impact the engine-out emission directly. For some geographic regions where diesel engines can meet emission regulations without aftertreatment, the change of fuel properties will lead to final tailpipe emission variation. Aftertreatment systems such as Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) are required for diesel engines to meet stringent regulations. These regulations include off-road Tier 4 Final emission regulations in the USA or the corresponding Stage IV emission regulations in Europe. As an engine with an aftertreatment system, the change of fuel properties will also affect the system conversion efficiency and regeneration cycle. Previous research works focus on prediction of engine-out emission, and many are based on chemical reactions. Due to the complex mixing, pyrolysis and reaction process in heterogeneous combustion, it is not cost-effective to find a general model to predict emission shifting due to fuel variation.
2014-09-30
Journal Article
2014-01-2368
Xiangang Wang, Zhangsong ZHAN, Tiegang Hu, Zuohua Huang
Abstract Experiments were conducted in a turbocharged, high-pressure common rail diesel engine to investigate particulate emissions from the engine fueled with biodiesel and diesel blends. An electrical low-pressure impactor (ELPI) was employed to measure the particle size distribution and number concentration. Heated dilution was used to suppress nuclei mode particles and focus on accumulation mode particles. The experiment was carried out at five engine loads and two engine speeds. Biodiesel fractions of 10%, 20%, 40%, 60% and 80% in volume were tested. The study shows that most of the particles are distributed with their diameters between 0.02 and 0.2 μm, and the number concentration becomes quite small for the particles with the diameters larger than 0.2 μm. With the increase of biodiesel fraction, engine speed and/or engine load, particle number concentration decreases significantly, while the particle size distribution varies little.
2014-09-30
Technical Paper
2014-01-2357
Philipp Scherer, Marcus Geimer
Abstract As a result of the Kyoto Protocol [1], the European Union's legislation demands higher saving rates for the total energy consumption of technical equipment. Heavy Equipment, such as construction- and agricultural machines, contributes over 80% of the total off-road diesel fuel consumption in Germany per annum. It is therefore necessary to provide helpful solutions in order to reach this ambitious aim. The German Federal Ministry of Education and Research cooperates with machine manufacturers, component suppliers and research institutes in the area of heavy equipment. Under the project name TEAM [2] a three year project has been started, which is focused on the development and integration of new propulsion and steering systems for heavy equipment. One task within the project is finding an appropriate way of evaluating the energy efficiency of the enhanced machines, after the powertrain modifications have been applied to it.
2014-09-30
Technical Paper
2014-01-2353
Harry Dwyer, Seungju Yoon, David Quiros, Mark Burnitzki, Roelof Riemersma, Donald Chernich, John Collins, Jorn Herner
Abstract A novel ambient dilution tunnel has been designed, tested and employed to measure the emissions from active parked regenerations of Diesel Particulate Filters (DPFs) for 2007 and 2010 certified heavy duty diesel trucks (HDDTs). The 2007 certified engine had greater regulated emissions than the 2010 certified engine. For a fully loaded 2007 DPF there was an initial period of very large mass emissions, which was then followed by very large number of small particle emissions. The Particle Size Distribution, PSD, was distributed over a large range from 10 nm to 10 μm. The parked regenerations of the 2010 DPF had a much lower initial emission pattern, but the second phase of large numbers of small particles was very similar to the 2007 DPF. The emission results during regeneration have been compared to total emissions from recent engine dynamometer testing of 2007 and 2010 DPFs, and they are much larger.
2014-09-30
Technical Paper
2014-01-2351
Meng-Huang Lu, Figen Lacin, Daniel McAninch, Frank Yang
Abstract Diesel exhaust aftertreatment solutions using injection, such as urea-based SCR and lean NOx trap systems, effectively reduce the emission NOx level in various light vehicles, commercial vehicles, and industrial applications. The performance of the injector plays an important role in successfully utilizing this type of technology, and the CFD tool provides not only a time and cost-saving, but also a reliable solution for extensively design iterations for optimizing the injector internal nozzle flow design. Inspired by this fact, a virtual test methodology on injector dosing rate utilizing CFD was proposed for the design process of injector internal nozzle flows.
2014-09-30
Technical Paper
2014-01-2372
Ilya A. Kulikov, Elena E. Baulina, Andrey I. Filonov
Abstract The paper gives a short description of the University's developments in the field of hybrid electric powertrains and vehicles as well as a survey of theoretical instruments utilized in these works for elaboration of powertrains control strategies. At the present, two units fitted with hybrid powertrains are in operation. These are the four-wheel-drive SUV and the powertrain test rig. Both allow to test different powertrain configurations. Prior to implementing a certain configuration in the rig, a theoretical research of powertrain is conducted to reveal its properties and find a way to control it optimally. The basic tool adopted for that purpose is R.Bellman's dynamic programming (DP). The paper gives an example of applying DP to explore a potential of decreasing fuel consumption and pollutant emissions of a light commercial vehicle by converting its powertrain into hybrid one.
2014-09-30
Technical Paper
2014-01-2434
Paul Salama, Adam Lubinsky, Bryan Roy, Ziga Ivanic, Paul Lipson, Luis Torres, Joseph Tario, Robert Ancar
Abstract The emergence of electric vehicle (EV) delivery trucks is resulting in health and environmental benefits, less noise, reduction of foreign energy dependency, and economic development opportunities. Green Loading Zones (GLZs) are dedicated curbside spaces for commercial delivery EVs meant to incentivize and accelerate market adoption. This study examined the impact and potential benefits of this strategy for New York City. Discussions with fleets revealed that while they are realizing operational savings and other benefits from the use of EVs, their incremental costs over diesel vehicles can take a very long time to recover, even with existing subsidy programs. Complementary incentives like GLZs can provide further justification for the investment in cleaner technology. Most fleets interviewed would place a high monetary value on guaranteed delivery locations and reduced parking violation expenses.
2014-09-30
Journal Article
2014-01-2325
Michael Franke, Shirish Bhide, Jack Liang, Michael Neitz, Thomas Hamm
Abstract Exhaust emission reduction and improvements in energy consumption will continuously determine future developments of on-road and off-road engines. Fuel flexibility by substituting Diesel with Natural Gas is becoming increasingly important. To meet these future requirements engines will get more complex. Additional and more advanced accessory systems for waste heat recovery (WHR), gaseous fuel supply, exhaust after-treatment and controls will be added to the base engine. This additional complexity will increase package size, weight and cost of the complete powertrain. Another critical element in future engine development is the optimization of the base engine. Fundamental questions are how much the base engine can contribute to meet the future exhaust emission standards, including CO2 and how much of the incremental size, weight and cost of the additional accessories can be compensated by optimizing the base engine.
2014-09-30
Technical Paper
2014-01-2346
Manoj K. Sampath, Figen Lacin
Abstract The Diesel engine combustion process results in harmful exhaust emissions, mainly composed of Particulate Matter (PM), Hydro Carbon (HC), Carbon monoxide (CO) and Nitrogen Oxides (NOx). Several technologies have been developed in the past decades to control these diesel emissions. One of the promising and well matured technology of reducing NOx is to implement Selective Catalytic Reduction (SCR) using ammonia (NH3) as the reducing agent. For an effective SCR system, the aqueous urea solutions should be fully decomposed into ammonia and it should be well distributed across the SCR. In the catalyst, all the ammonia is utilized for NOx reduction process. In the design stage, it is more viable to implement Computational Fluid Dynamics (CFD) for design iterations to determine an optimized SCR system based on SCR flow distribution. And in later stage, experimental test is required to predict the after-treatment system performance based on NOx reduction.
2014-09-30
Journal Article
2014-01-2347
Britney J. McCoy, Arman Tanman
Abstract In-use testing of diesel emission control technologies is an integral component of EPA's verification program. Device manufacturers are required to complete in-use testing once 500 units have been sold. Additionally, EPA conducts test programs on randomly selected retrofit devices from installations completed with grants by the National Clean Diesel Campaign. In this test program, EPA identified and recovered a variety of retrofit devices, including diesel particulate filters (DPFs) and diesel oxidation catalysts (DOCs), installed on heavy-duty diesel vehicles (on-highway and nonroad). All of the devices were tested at Southwest Research Institute in San Antonio, Texas. This study's goal was to evaluate the durability, defined here as emissions performance as a function of time, of retrofit technologies aged in real-world applications.
2014-09-30
Technical Paper
2014-01-2350
Zhiguo Zhao, Guanyu Zheng, Fengshuang Wang, Suying Zhang, Jianhua Zhang
In order to satisfy China IV emissions regulations, a unique design concept was proposed with injector closely coupled with Selective Catalytic Reduction (SCR) system outer body. The benefit of this design is significant in cost reduction and installation convenience. One paper was published to describe the vertical inlet layout [1]; this work is the second part describing applications of this concept to horizontal inlet configurations. For horizontal inlet pipe, two mixing pipe designs were proposed to avoid urea deposit and meet EU IV emission regulations. Computational Fluid Dynamics (CFD) technique was used to evaluate two design concepts; experiments were performed to validate both designs. CFD computations and experiments give the same direction on ranking of the two decomposition tubes. With the straight decomposition pipe design and unique perforated baffle design, no urea deposits were found; in addition, the emission level satisfied EU IV regulations.
2014-09-30
Journal Article
2014-01-2349
Alexander Sappok, Leslie Bromberg
Abstract Diesel Particulate Filters (DPF) are a key component in many on- and off-road aftertreatment systems to meet increasingly stringent particle emissions limits. Efficient thermal management and regeneration control is critical for reliable and cost-effective operation of the combined engine and aftertreatment system. Conventional DPF control systems predominantly rely on a combination of filter pressure drop measurements and predictive models to indirectly estimate the soot loading state of the filter. Over time, the build-up of incombustible ash, primarily derived from metal-containing lubricant additives, accumulates in the filter to levels far exceeding the DPF's soot storage limit. The combined effects of soot and ash build-up dynamically impact the filter's pressure drop response, service life, and fuel consumption, and must be accurately accounted for in order to optimize engine and aftertreatment system performance.
2014-09-29
Article
Volkswagen spreads its Audi A3 e-tron PHEV powertrain to the new Golf GTE. Powertrain control from ICE to electric drive is silky indeed, and EV range is worthy of a good city car. But system cost is significant in a VW-badged vehicle.
2014-09-26
Article
Small Off-Road Engine (SORE) fuel tanks traditionally have been blow molded in high-density polyethylene (HDPE), but HDPE on its own does not meet the new stringent permeation regulations. Of all commercially available solutions to reach the EPA requirements, monomaterial PA6 technology scores the highest when it comes to the combination of permeability, process stability, mechanical properties, and costs, according to DSM.
2014-09-23
Article
At the recent Battery Show in Novi, MI, Enerdel showcased two applications for its battery technologies--one for high energy, one for high power.
Viewing 151 to 180 of 22530

Filter