Display:

Results

Viewing 151 to 180 of 22751
2015-04-14
Journal Article
2015-01-1683
Bernie Porter, Hugh Blaxill, Noor Jariri
Abstract The 2025 Corporate Average Fleet Economy (CAFE) fuel economy regulations are a significant challenge to the automotive industry. These regulations require dramatic increases in vehicle fleet fuel economy. This paper will identify and analyze a portfolio of technologies that have the potential to achieve the 2025 CAFE fuel economy targets, focusing on powertrain enhancements. The study uses a MAHLE Powertrain developed fleet modeling tool and a range of vehicle technologies and powertrain data taken from MAHLE's global research and development activities. Powertrain technologies considered include extreme engine downsizing, dilute combustion, friction reduction, hybridization, diesel and alternative fuels. The vehicle technologies analyzed include vehicle light weighting, reduced rolling resistance, advanced transmissions and improved aerodynamics.
2015-04-14
Technical Paper
2015-01-0742
Apostolos Karvountzis-Kontakiotis, Leonidas Ntziachristos, Zissis Samaras, Athanasios Dimaratos, Mark Peckham
Abstract Cyclic combustion variability (CCV) is an undesirable characteristic of spark ignition (SI) engines, and originates from variations in gas motion and turbulence, as well as from differences in mixture composition and homogeneity in each cycle. In this work, the cycle to cycle variability on combustion and emissions is experimentally investigated on a high-speed, port fuel injected, spark ignition engine. Fast response analyzers were placed at the exhaust manifold, directly downstream of the exhaust valve of one cylinder, for the determination of the cycle-resolved carbon monoxide (CO) and nitric oxide (NO) emissions. A piezoelectric transducer, integrated in the spark-plug, was also used for cylinder pressure measurement. The impact of engine operating parameters, namely engine speed, load, equivalence ratio and ignition timing on combustion and emissions variability, was evaluated.
2015-04-14
Journal Article
2015-01-0589
Andrew Moskalik, Paul Dekraker, John Kargul, Daniel Barba
Abstract The benchmarking study described in this paper uses data from chassis dynamometer testing to determine the efficiency and operation of vehicle driveline components. A robust test procedure was created that can be followed with no a priori knowledge of component performance, nor additional instrumentation installed in the vehicle. To develop the procedure, a 2013 Chevrolet Malibu was tested on a chassis dynamometer. Dynamometer data, emissions data, and data from the vehicle controller area network (CAN) bus were used to construct efficiency maps for the engine and transmission. These maps were compared to maps of the same components produced from standalone component benchmarking, resulting in a good match between results from in-vehicle and standalone testing. The benchmarking methodology was extended to a 2013 Mercedes E350 diesel vehicle. Dynamometer, emissions, and CAN data were used to construct efficiency maps and operation strategies for the engine and transmission.
2015-04-14
Journal Article
2015-01-0993
Timothy V. Johnson
Abstract This review paper summarizes major developments in vehicular emissions regulations and technologies from 2014. The paper starts with the key regulatory advancements in the field, including newly proposed Non-Road Mobile Machinery regulations for 2019-20 in Europe, and the continuing developments towards real driving emissions (RDE) standards. An expert panel in India proposed a roadmap through 2025 for clean fuels and tailpipe regulations. LD (light duty) and HD (heavy-duty) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are demonstrating more than 50% brake thermal efficiency using methods that can reasonably be commercialized. Next, NOx control technologies are summarized, including SCR (selective catalytic reduction), lean NOx traps, and combination systems. Emphasis is on durability and control.
2015-04-14
Journal Article
2015-01-0984
Yang Zheng, Mengmeng Li, Michael Harold, Dan Luss
Abstract Current NOx emission reduction systems, selective catalytic reduction (SCR) and NOx storage and reduction (NSR), function well after achieving their operation temperature (typically ca. 250 °C) but have unsatisfactory NOx conversion at lower exhaust temperatures encountered during cold start and low load operation. The reduced exhaust temperature of advanced diesel engines with higher fuel efficiency challenges the low-T NOx reduction. We report here a new concept of high low-T deNOx efficiency of up to 80% at a feed temperature of ca. 200 °C at relevant space velocities (70k h−1). It utilizes high-frequency hydrocarbon pulsing on a dual-layer LNT-SCR monolithic catalyst under lean conditions. This system has the potential to expand the operating temperature window of the conventional deNOx devices.
2015-04-14
Journal Article
2015-01-0988
Fabien Ocampo, Virginie Harle, Naotaka Ohtake, Renaud Rohe, Barry W.L. Southward
Abstract The reduction of NOx to meet current diesel regulation standards has been achieved using two main technologies named NH3-SCR and LNT. In the forthcoming years, the implementation of new and colder test cycles such as “real driving emissions” (RDE), combined with CO2 targets (95 g/km is 2020 target in Europe) will require higher NOx storage capacity (NSC) in the low temperature region (120-350°C). On the other hand, lean-burn Gasoline vehicles, emitting exhaust gases at higher temperatures, will require improved NSC over a broader temperature range (200-500°C). Therefore, the development of more efficient NSC materials is an area of extensive study by original equipment manufacturers (OEMs), catalysts manufacturers, and raw materials suppliers. Today, ceria is a key component in the formulation of active NSC washcoats.
2015-04-14
Technical Paper
2015-01-1000
Anna Fathali, Fredrik Wallin, Annika Kristoffersson, Mats Laurell
Abstract The objective of this study was to investigate which of the artificial aging cycles available in the automotive industry that causes major deactivation of three-way catalysts (TWCs) and can be used to obtain an aged catalyst similar to the road aged converter (160 000km). Standard bench cycle (SBC) aging with secondary air injection (SAI) covered aging with various mass flows - a flow from three cylinders into one catalyst system and a flow from three cylinders into two parallel connected catalysts. For rapid catalyst bench aging, secondary air injection is a very efficient tool to create exotherms. Furthermore, the effect on catalytic activity of SAI aging with poisons from oil and fuel dopants (P, Ca, Zn) was investigated. The catalysts were thoroughly characterized in light-off and oxygen storage capacity measurements, emission conversion as a function of lambda and load variation was determined.
2015-04-14
Technical Paper
2015-01-0999
Jan Schoenhaber, Joerg Michael Richter, Joel Despres, Marcus Schmidt, Stephanie Spiess, Martin Roesch
Abstract The new emission regulations in Europe, EU 6 will promulgate more realistic driving conditions with more stringent HC, CO, NOx and particulate emissions. This legislation will also include the WLTP (Worldwide harmonized Light vehicles Test Procedure) cycle for CO2 measurements and a new requirement called “Real-Driving-Emissions” (RDE) as well. The RDE requirement is to ensure modern vehicles comply with the legislation under all conditions of normal driving. More robust aftertreatment solutions are needed to meet these new requirements. This work introduces an improved three-way catalyst (TWC) for gasoline engines for these new regulations. It is tested under static and dynamic conditions and on several engines and vehicles with various drive cycles. It offers better thermal stability combined with lower backpressure than former TWC generations.
2015-04-14
Technical Paper
2015-01-0997
Jonas Jansson, Åsa Johansson, Hanna Sjovall, Mikael Larsson, Gudmund Smedler, Colin Newman, Jason Pless
Abstract This paper will review several different emission control systems for heavy duty diesel (HDD) applications aimed at future legislations. The focus will be on the (DOC+CSF+SCR+ASC) configuration. As of today, various SCR technologies are used on commercial vehicles around the globe. Moving beyond EuroVI/US10 emission levels, both fuel consumption savings and higher catalyst system efficiency are required. Therefore, significant system optimization has to be considered. Examples of this include: catalyst development, optimized thermal management, advanced urea dosing calibrations, and optimized SCR inlet NO:NO2 ratios. The aim of this paper is to provide a thorough system screening using a range of advanced SCR technologies, where the pros and cons from a system perspective will be discussed. Further optimization of selected systems will also be reviewed. The results suggest that current legislation requirements can be met for all SCR catalysts under investigation.
2015-04-14
Journal Article
2015-01-1004
Joseph R. Theis, Jeong Kim, Giovanni Cavataio
Abstract A laboratory study was performed to assess the potential capability of passive TWC+SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. In this system, the TWC generates the NH3 for the SCR catalyst from the feedgas NOx during rich operation. Therefore, this approach benefits from high feedgas NOx during rich operation to generate high levels of NH3 quickly and low feedgas NOx during lean operation for a low rate of NH3 consumption. It was assumed that the exhaust system needed to include a close-coupled (CC) TWC, an underbody (U/B) TWC, and an U/B SCR converter to satisfy the emission standards during the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established.
2015-04-14
Technical Paper
2015-01-1003
Tomohito Kakema, Yukio Suehiro, Yoshiaki Matsuzono, Takeshi Narishige, Masanori Hashimoto
Abstract This research is aimed at development of the catalyst for gasoline automobiles which uses only palladium (Pd) among platinum group metals (PGMs). And the conformity emission category aimed at LEV III-SULEV30. For evaluation, the improvement effect was verified for 2013 model year (MY) ACCORD (LEV II-SULEV) as the reference. As compared with Pd-rhodium (Rh) catalyst, a Pd-only catalyst had the low purification performance of nitrogen oxides (NOx), and there was a problem in the drop in dispersion of Pd by sintering, and phosphorus (P) poisoning.
2015-04-14
Journal Article
2015-01-1002
Yuichiro Murata, Tomoko Morita, Katsuji Wada, Hiroshi Ohno
Abstract A new concept for trapping NOx and HC during cold start, the NOx Trap Three-Way Catalyst (N-TWC), is proposed. N-TWC adsorbs NOx at room temperature, and upon reaching activation temperature under suitable air-fuel ratio conditions, it reduces the adsorbed NOx. This allows a reduction in NOx emissions during cold start. N-TWC's reduction mechanism relies on NOx adsorption sites which are shown to be highly dispersed palladium on acid sites in the zeolite. Testing on an actual vehicle equipped with N-TWC confirmed that N-TWC is able to reduce emissions of NOx and HC during cold start, which is a challenge for conventional TWCs.
2015-04-14
Technical Paper
2015-01-1001
Shinichiro Otsuka, Yukio Suehiro, Hiroshi Koyama, Yoshiaki Matsuzono, Cameron Tanner, David Bronfenbrenner, Tinghong Tao, Kenneth Twiggs
Abstract With the increasing number of automobiles, the worldwide problem of air pollution is becoming more serious. The necessity of reducing tail-pipe emissions is as high as ever, and in countries all over the world the regulations are becoming stricter. The emissions at times such as after engine cold start, when the three-way catalyst (TWC) has not warmed up, accounts for the majority of the emissions of these pollutants from vehicles. This is caused by the characteristic of the TWC that if a specific temperature is not exceeded, TWC cannot purify the emissions. In other words, if the catalyst could be warmed up at an early stage after engine start, this would provide a major contribution to reducing the emissions. Therefore, this research is focused on the substrate weight and investigated carrying out major weight reduction by making the porosity of the substrate larger than that of conventional products.
2015-04-14
Technical Paper
2015-01-1009
Cameron W. Tanner, Kenneth Twiggs, Tinghong Tao, David Bronfenbrenner, Yoshiaki Matsuzono, Shinichiro Otsuka, Yukio Suehiro, Hiroshi Koyama
Abstract Regulations that limit emissions of pollutants from gasoline-powered cars and trucks continue to tighten. More than 75% of emissions through an FTP-75 regulatory test are released in the first few seconds after cold-start. A factor that controls the time to catalytic light-off is the heat capacity of the catalytic converter substrate. Historically, substrates with thinner walls and lower heat capacity have been developed to improve cold-start performance. Another approach is to increase porosity of the substrate. A new material and process technology has been developed to significantly raise the porosity of thin wall substrates (2-3 mil) from 27-35% to 55% while maintaining strength. The heat capacity of the material is 30-38% lower than existing substrates. The reduction in substrate heat capacity enables faster thermal response and lower tailpipe emissions. The reliance on costly precious metals in the washcoat is demonstrated to be lessened.
2015-04-14
Technical Paper
2015-01-1007
Steve Golden, Zahra Nazarpoor, Maxime Launois
Abstract In the context of evolving market conditions the Three-Way Catalyst (TWC) is entering an exciting new phase. It remains the main emission control strategy for gasoline powered vehicles but a period of rapidly evolving engine development, tighter tailpipe regulations and material supply issues present a unique challenge to catalyst developers. This paper presents an initial study outlining the development of spinel mixed metal oxides for application in modern TWC and addresses some specific challenges underlying this application. Lab and flow reactor data in the study showed how the spinel structure has significant potential in various aspects of the TWC with the necessary improvement in thermal stability. Some initial engine data show three-way performance at or near stoichiometric in a PGM and rare earth free spinel coating and a synergy effect when combined with PGM.
2015-04-14
Journal Article
2015-01-1006
Joseph R. Theis, Jeong Kim, Giovanni Cavataio
Abstract A laboratory study was performed to assess the potential capability of TWC+LNT/SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. It was assumed that the exhaust system would need a close-coupled (CC) TWC, an underbody (U/B) TWC, and a third U/B LNT/SCR converter to satisfy the emission standards on the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established. Sizing studies were performed to determine the minimum LNT/SCR volume needed to satisfy the NOx target. The ability of the TWC to oxidize the HC during rich operation through steam reforming was crucial for satisfying the HC target.
2015-04-14
Technical Paper
2015-01-1005
Masahide Miura, Yuki Aoki, Nobusuke Kabashima, Takahiko Fujiwara, Toshitaka Tanabe, Akira Morikawa, Hirotaka Ori, Hiroki Nihashi, Suguru Matsui
Abstract Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
2015-04-14
Journal Article
2015-01-1040
Harsha K. Nanjundaswamy, Joel Deussen, Roger Van Sickle, Dean Tomazic, Tamas Szailer, Michael Franke, Matthias Kotter, Thomas Koerfer
Abstract Upcoming motor vehicle emission regulations, such as California's LEVIII, continue to tighten emission limitations in diesel vehicles. These increasingly challenging emission requirements will be met by improving the combustion process (reducing engine-out emissions), as well as improving the exhaust gas aftertreatment efficiency. Furthermore, intricate On-Board Diagnostics (OBD) systems are required to properly diagnose and meet OBD regulation requirements for complex aftertreatment systems. Under these conditions, current monitoring strategies are unable to guarantee reliable detection of partially failed systems. Additionally, new OBD regulations require aftertreatment systems to be diagnosed as a whole. This paper covers potential OBD strategies for LEVIII aftertreatment concepts with regard to regulation compliance and robustness, while striving to use existing sensor concepts.
2015-04-14
Journal Article
2015-01-1017
Yuki Jin, Narimasa Shinoda, Yosuke Uesaka, Tatsuyuki Kuki, Masataka Yamashita, Hirofumi Sakamoto, Tasuku Matsumoto, Philipp Kattouah, Claus Dieter Vogt
Abstract Since the implementation of Euro 6 in September 2014, diesel engines are facing another drastic reduction of NOx emission limits from 180 to only 80 mg/km during NEDC and real driving emissions (RDE) are going to be monitored until limit values are enforced from September 2017. Considering also long term CO2 targets of 95 g/km beyond 2020, diesel engines must become cleaner and more efficient. However, there is a tradeoff between NOx and CO2 and, naturally, engine developers choose lower CO2 because NOx can be reduced by additional devices such as EGR or a catalytic converter. Lower CO2 engine calibration, unfortunately, leads to lower exhaust gas temperatures, which delays the activation of the catalytic converter. In order to overcome both problems, higher NOx engine out emission and lower exhaust gas temperatures, new aftertreatment systems will incorporate close-coupled DeNOx systems.
2015-04-14
Technical Paper
2015-01-1058
Osami Yamamoto, Tatsuya Okayama, Zhiwei Zhang, John Tolsma
Abstract Catalyst simulation, which can analyze the complicated reaction pathway of exhaust gas purifications and identify the rate-determining step, is an essential tool in the development of catalyst materials. This requires an elementary reaction model which describes the detailed processes, i.e. adsorption, decomposition, and others. In our previous work, the elementary reaction model on Pt/CeO2 catalyst was constructed. In this study, we focused on extending the Zeolite catalyst and including the gas diffusivity through the catalyst layer. The reaction rate of a Zeolite catalyst was expressed by an Arrhenius equation, and the elementary reaction model was composed of 17 reactions. Each Arrhenius parameter was optimized by the catalytic activity measurements. The constructed model was validated with NOx conversion in cyclic experiments which were repeated with Lean phase (NOx adsorption) and Rich phase (NOx reduction).
2015-04-14
Journal Article
2015-01-1063
Yi Liu, Changsheng Su, James Clerc, Arvind Harinath, Leigh Rogoski
Abstract One field-returned DPF loaded with a high amount of ash is examined using experimental and modeling approaches. The ash-related design factors are collected by coupling the inspection results from terahertz spectroscopy with a calibrated DPF model. The obtained ash packing density, ash layer permeability and ash distribution profile are then used in the simulation to assess the ash impact on DPF backpressure and regeneration behaviors. The following features have been observed during the simulation: 1 The ash packing density, ash layer permeability and ash distribution profile should be collected at the same time to ensure the accurate prediction of ash impact on DPF backpressure. Missing one ash property could mislead the measurement of the other two parameters and thus affects the DPF backpressure estimation.2 The ash buildup would gradually increase the frequency for the backpressure-based active soot regeneration.
2015-04-14
Technical Paper
2015-01-1069
Philipp Baumann, Matthias Schroeder, Harald Kurz, Thomas Maier, Wolfgang Thiel, Udo Strehl
Abstract The variety of increasingly complex powertrains including Plug-In Hybrid Electric Vehicles (PHEVs) is associated with a number of challenges to measure exhaust gas emissions: Although the conventional constant volume sampling (CVS) and exhaust gas measurement systems remain a high precision emission measurement concept new questions occur that need to be answered, such as mass transport, catalyst cooling during ICE-off and emission measurement accuracy. Mass transport of exhaust emissions from the transfer tube into the dilution tunnel during engine-off complicates phase assignment. This includes the investigation of the physical processes that are diffusion on basis of concentration differences, extraction due to the CVS underpressure and convection because of density diversities. Catalyst cooling will be investigated using a temperature sensor positioned at the oxy catalyst of a Diesel-PHEV.
2015-04-14
Journal Article
2015-01-1071
Qi Jiao, Rolf D. Reitz
Abstract Due to the upcoming regulations for particulate matter (PM) emissions from GDI engines, a computational fluid dynamic (CFD) modeling study to predict soot emissions (both mass and solid particle number) from gasoline direct injection (GDI) engines was undertaken to provide insights on how and why soot emissions are formed from GDI engines. In this way, better methods may be developed to control or reduce PM emissions from GDI engines. In this paper, the influence of engine operating parameters was examined for a side-mounted fuel injector configuration in a direct-injection spark-ignition (DISI) engine. The present models are able to reasonably predict the influences of the variables of interest compared to available experimental data or literature. For a late injection strategy, effects of the fuel composition, and spray cone angle were investigated with a single-hole injector.
2015-04-14
Journal Article
2015-01-1048
Per Nicolin, Dominik Rose, Florian Kunath, Thorsten Boger
Abstract The share of gasoline engines based on direct injection (DI) technology is rapidly growing, to a large extend driven by their improved efficiency and potential to lower CO2 emissions. One downside of these advanced engines are their significantly higher particulate emissions compared to engines based on port fuel injection technologies [1]. Gasoline particulate filters (GPF) are one potential technology path to address the EU6 particulate number regulation for vehicles powered by gasoline DI engines. For the robust design and operation of GPFs it is essential to understand the mechanisms of soot accumulation and oxidation under typical operating conditions. In this paper we will first discuss the use of detailed numerical simulation to describe the soot oxidation in particulate filters under typical gasoline engine operating conditions. Laboratory experiments are used to establish a robust set of soot oxidation kinetics.
2015-04-14
Technical Paper
2015-01-1044
Kiran C. Premchand, Krishnan Raghavan, John H. Johnson
Abstract Numerical models of aftertreatment devices are increasingly becoming indispensable tools in the development of aftertreatment systems that enable modern diesel engines to comply with exhaust emissions regulations while minimizing the cost and development time involved. Such a numerical model was developed at Michigan Technological University (MTU) [1] and demonstrated to be able to simulate the experimental data [2] in predicting the characteristic pressure drop and PM mass retained during passive oxidation [3] and active regeneration [4] of a catalyzed diesel particulate filter (CPF) on a Cummins ISL engine. One of the critical aspects of a calibrated numerical model is its usability - in other words, how useful is the model in predicting the pressure drop and the PM mass retained in another particulate filter on a different engine without the need for extensive recalibration.
2015-04-14
Journal Article
2015-01-1052
Bijesh M. Shakya, Balaji Sukumar, Yaritza M. López-De Jesús, Penelope Markatou
Abstract A combined experimental and modeling study was carried out to investigate the effects of Pt:Pd ratio on the performance of diesel oxidation catalysts (DOC) for heavy-duty applications1 (PGM<50 g/ft3). In the first part of this work, transient light-off and steady-state experiments were performed over a series of hydrothermally aged DOCs with different Pt:Pd ratios and PGM loadings. It was found that n-decane and NO oxidation activities increased monotonically as the Pt:Pd ratio was increased while the oxidation of unsaturated hydrocarbons (HC) (C3H6 and C7H8) first increased with an increase in Pt:Pd ratio and then plateaued at higher Pt content. In contrast, the CO oxidation exhibited opposite trend, with the catalyst containing low Pt (high Pd) level being more active. The presence of HC lowered the outlet NO2/NOx ratio by reducing the NO2 generated via NO oxidation back to NO. The negative effect of HCs on NO2/NOx ratio increased in the order: C3H6
2015-04-14
Journal Article
2015-01-1053
Jonathan E. Etheridge, Timothy C. Watling, Andrew J. Izzard, Michael A. J. Paterson
Abstract This paper presents a two-part study on the effect of Pt:Pd ratio (at a constant total Pt+Pd loading of 120 g ft−3) on the catalytic performance of a Diesel Oxidation Catalyst (DOC) intended for light-duty applications, covering ratios across the full range from 100% Pd to 100% Pt. (Work on a heavy-duty DOC is presented in SAE 2015-01-1052). The first part of this paper presents a reactor study on the effect of Pt:Pd ratio on the catalytic activity of key reactions occurring individually over the DOC, including the oxidation of CO, C3H6, n-C10H22, CH4 and NO. For some reactions, activity increases continuously with Pt content (oxidation of n-C10H22 and NO); in contrast the activity for CH4 oxidation increases with decreasing Pt content (increasing Pd content), while CO and C3H6 oxidation exhibit more complicated dependencies. The second part presents the development of a one-dimensional model capable of predicting the effect of Pt:Pd ratio on DOC performance.
2015-04-14
Journal Article
2015-01-1244
Luigi Teodosio, Vincenzo De Bellis, Fabio Bozza
Abstract It is well known that the downsizing philosophy allows the improvement of Brake Specific Fuel Consumption (BSFC) at part load operation for spark ignition engines. On the other hand, the BSFC is penalized at high/full load operation because of the knock occurrence and of further limitations on the Turbine Inlet Temperature (TIT). Knock control forces the adoption of a late combustion phasing, causing a deterioration of the thermodynamic efficiency, while TIT control requires enrichment of the Air-to-Fuel (A/F) ratio, with additional BSFC drawbacks. In this work, a promising technique, consisting of the introduction of a low-pressure cooled exhaust gas recirculation (EGR) system, is analyzed by means of a 1D numerical approach with reference to a downsized turbocharged SI engine. Proper “in-house developed” sub-models are used to describe the combustion process, turbulence phenomenon and the knock occurrence.
2015-04-14
Technical Paper
2015-01-1250
Nisar Al-Hasan, Johannes Beer, Jan Ehrhard, Thomas Lorenz, Ludwig Stump
Abstract In the past few years the gasoline direct injection (GDI) downsizing approach was the dominating gasoline engine technology used to reduce CO2 emission and to guarantee excellent transient performance. Forecasts for the next several years indicate that the worldwide market share of GDI engines will grow further. By 2022 it is expected that the gasoline DI engine will be the most popular combustion engine for passenger car application. However in the future the gasoline engine will have to comply with more stringent emission and CO2 standards. The European legislation demands a fleet average CO2 emission of 95g/km latest by 2021. Therefore, CO2 emission improvement, without compromising driveability, is the major goal of powertrain development. The perspective of more stringent CO2 and emission legislation in highly loaded drive cycle necessitates major development efforts.
2015-04-14
Technical Paper
2015-01-1073
Yoshitaka Ito, Takehide Shimoda, Takashi Aoki, Kazuya Yuuki, Hirofumi Sakamoto, Kyohei Kato, Dominic Thier, Philipp Kattouah, Etsuji Ohara, Claus Vogt
Abstract A Particle Number (PN) limit for Gasoline Direct Injection (GDI) vehicles was introduced in Europe from September 2014 (Euro 6b). In addition, further certification to Real Driving Emissions (RDE) is planned [1] [2], which requires low and stable emissions in a wide range of engine operation, which must be durable for at least 160,000 km. To achieve such stringent targets, a ceramic wall-flow Gasoline Particulate Filter (GPF) is one potential emission control device. This paper focuses on a catalyzed GPF, combining particle trapping and catalytic conversion into a single device. The main parameters to be considered when introducing this technology are filtration efficiency, pressure drop and catalytic conversion. This paper portrays a detailed study starting from the choice of material recipe, design optimization, engine bench evaluation, and final validation inside a standard vehicle from the market during an extensive field test up to 160,000 km on public roads.
Viewing 151 to 180 of 22751

Filter