Display:

Results

Viewing 121 to 150 of 23233
2016-04-05
Technical Paper
2016-01-0044
Sung Yul Chu, Sung Eun Jo, Kyoungbok Lee, Kwang Chul Oh, Jong Rim Lee
Abstract On-board diagnostics (OBD) of diesel vehicles require various sensors to detect system malfunctions. The Particulate Matter (PM) sensor is one of OBD devices which gather information which could be critical in determining a crack in the diesel particulate filters (DPFs). The PM sensor detects PM which penetrates cracked DPFs and converts the amount of PM into electrical values. The PM sensor control unit (SCU) receives those analog signals and converts them to digital values through hardware and software solutions. A capacitive sensing method would be a stable solution because it detects not raw analog signals but electrical charges or a time constant going through the capacitive load. Therefore, amount of PM would be converted reasonable value of capacitance even though there is a little amount of PM.
2016-04-05
Technical Paper
2016-01-0575
Konstantinos Siokos, Rohit Koli, Robert Prucka, Jason Schwanke, Shyam Jade
Abstract Low pressure (LP) and cooled EGR systems are capable of increasing fuel efficiency of turbocharged gasoline engines, however they introduce control challenges. Accurate exhaust pressure modeling is of particular importance for real-time feedforward control of these EGR systems since they operate under low pressure differentials. To provide a solution that does not depend on physical sensors in the exhaust and also does not require extensive calibration, a coupled temperature and pressure physics-based model is proposed. The exhaust pipe is split into two different lumped sections based on flow conditions in order to calculate turbine-outlet pressure, which is the driving force for LP-EGR. The temperature model uses the turbine-outlet temperature as an input, which is known through existing engine control models, to determine heat transfer losses through the exhaust.
2016-04-05
Technical Paper
2016-01-0576
Chad Koci, Kenth Svensson, Christopher Gehrke
Abstract A two-zone NOx model intended for 1-D engine simulations was developed and used to model NOx emissions from a 2.5 L single-cylinder engine. The intent of the present work is to understand key aspects of a simple NOx model that are needed for predictive accuracy, including NOx formation and destruction phenomena in a DI Diesel combustion system. The presented two-zone model is fundamentally based on the heat release rate and thermodynamic incylinder data, and uses the Extended Zeldovich mechanism to model NO. Results show that the model responded very well to changes in speed, load, injection timing, and EGR level. It matched measured tail pipe NOx levels within 20%, using a single tuning setup. When the model was applied to varied injection rate shapes, it showed correct sensitivity to speed, load, injection timing, and EGR level, but the absolute level was well outside the target accuracy. The same limitation was seen when applying the Plee NOx model.
2016-04-05
Technical Paper
2016-01-0580
Joohan Kim, Namho Kim, Kyoungdoug Min
Abstract The soot emission in direct-injection spark-ignition engines under various operating conditions was numerically investigated in the present study. A detailed soot model was used to resolve the physical soot process that consists of polycyclic aromatics hydrocarbon (PAH) formation and soot particle dynamics. The primary propagating flame in partially-premixed field was described by G-equation model, and the concentrations of burned species as well as PAH behind of the flame front were determined from the laminar flamelet library that incorporates the PAH chemical mechanism. The particle dynamics in post-flame region include nucleation, surface growth, coagulation, and oxidation were modeled by method of moments. To improve the model predictability, a gasoline surrogate model was proposed to match the real fuel properties, and the input of droplet size distribution of fuel spray was obtained from Phase-Doppler Particle Analyzer.
2016-04-05
Technical Paper
2016-01-0590
Alexandros Hatzipanagiotou, Paul Wenzel, Christian Krueger, Raul Payri, Jose M. Garcia-Oliver, Walter Vera-Tudela, Thomas Koch
Abstract In this work a detailed soot model based on stationary flamelets is used to simulate soot emissions of a reactive Diesel spray. In order to represent soot formation and oxidation processes properly, a calibration of the soot reaction rates has to be performed. This model calibration is usually performed on basis of engine out soot measurements. Contrary to this, in this work the soot model is calibrated on local soot concentrations along the spray axis obtained from laser extinction chamber measurements. The measurements are performed with B7 certification Diesel and a series production multihole injector to obtain engine similar boundary conditions. In order to ensure that the flow and mixture field is captured well by the CFD-simulation, the simulated liquid penetration lengths and flame lift-off lengths are compared to chamber measurements.
2016-04-05
Technical Paper
2016-01-0409
Fatih Unal, Cem Sorusbay
Abstract In an effort to support design and testing activities at product development lifecycle of the engine, proper duty cycle is required. However, to collect data and develop accurate duty cycles, there are not any vehicles equipped with prototype engines at customers. Therefore, in this paper, discrete duty cycle development methodology is studied to generate trailer truck engine usage profile which represents driving conditions in Turkey for engines in development phase. Cycles are generated using several vehicles equipped with prototype engines and professional drivers that can mimic customer usage. Methodology is based on defining real-world customer driving profile, discretizing real-world drives into separate events, collecting vehicle data from each discrete drive, determining the weight of events by conducting customer surveys and creating a representative reference usage profile with data analysis.
2016-04-05
Technical Paper
2016-01-1251
Thomas Bradley, Clinton Knackstedt, Eric jambor
Abstract As the rigor of vehicle pollution regulations increase there is an increasing need to come up with unique and innovative ways of reducing the effective emissions of all vehicles. In this paper, we will describe our development of a carbon capture and sequestration system that can be used in-tandem with existing exhaust treatment used in convention vehicles or be used as a full replacement. This system is based on work done by researchers from NASA who were developing a next generation life support system and has been adapted here for use in a convention vehicle with minimal changes to the existing architecture. A prototype of this system was constructed and data will be presented showing the changes observed in the effective vehicle emissions to the atmosphere. This system has the potential to extract a significant portion of tailpipe emissions and convert them into a form that allows for safe, clean disposal without causing any harm to the environment.
2016-04-05
Technical Paper
2016-01-1247
Kevin L. Snyder, Jerry Ku
Abstract The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
2016-04-05
Technical Paper
2016-01-1264
Tarun Mehra, Naveen Kumar, Salman Javed, Ashish Jaiswal, Farhan javed
Abstract Non-edible vegetable oils have a huge potential for biodiesel production and also known as second generation feedstock’s. Biodiesel can be obtained from edible, non-edible, waste cooking oil and from animal fats also. This paper focuses on production of biodiesel obtained from mixture of sesame (Sesamum indicum L.) oil and neem (Azadirachta indica) oil which are easily accessible in India and other parts of world. Neem oil has higher FFA content than sesame oil. Biodiesel production from neem oil requires pretreatment neutralization procedure before alkali catalyzed Trans esterification process also it takes large reaction time to achieve biodiesel of feasible yield. Neem oil which has very high FFA and sesame oil which has low FFA content are mixed and this mixture is Trans esterified with no pre-treatment process using molar ratio of 6:1.Fuel properties of methyl ester were close to diesel fuel and satisfied ASTM 6751 and EN 14214 standards.
2016-04-05
Technical Paper
2016-01-1262
Muzammil Khan, Reza Tafreshi, Ahmad J. Mokahal, Mohamed Tarek Mohamed, Mohab Yasser Hanbal, Jayson Elturk
Abstract Two different types of fuel sources, namely conventional diesel and GTL diesel, were used to conduct a study of their effects on engine emissions and performance. Varying loads were applied to obtain concise data when contrasting the aforementioned fuels. Key parameters such as net power output, torque, engine speed and efficiency were measured. The engine and the dynamometer were operated via an automated closed-loop control system. On-road study found that the volumetric fuel consumption of GTL diesel was higher by up to 3.3% when compared to conventional diesel; there were drastic reductions in the levels of regulated emissions when using GTL by 36% for CO, 4.2% for CO2, 47% for THC (total hydrocarbons) and 35% for NOx, compared to conventional diesel.
2016-04-05
Journal Article
2016-01-1265
Senthilkumar Masimalai, Sasikumar Nandagopal
Abstract This work aims at studying the combined effect of oxygen enrichment and emulsification techniques on engine performance behavior of a compression ignition engine fuelled with WCO (waste cooking oil) as fuel. Used sunflower oil collected from a restaurant was chosen as fuel. A single cylinder, water cooled, agricultural oriented, diesel engine was used for the experiments. Initially tests were performed using neat diesel and neat WCO as fuels. Performance, emission, and combustion parameters were obtained. In the second phase of work, WCO was converted into its emulsion by emulsification process using water and ethanol and tested. In the third phase, the engine intake system was modified to admit excess oxygen along with air to test the engine with WCO and WCO emulsion as fuels under oxygen enriched environment. A comparative study was made at 100% and 40% of the maximum load (i.e. 3.7 kW power output) at the rated engine speed of 1500 rpm.
2016-04-05
Technical Paper
2016-01-0662
Mark Stuhldreher
Abstract As part of the midterm evaluation of the 2022-2025 light-duty GHG emissions rule, the Environmental Protection Agency (EPA) has been evaluating fuel efficiency data from tests on newer model engines and vehicles. The data is used as inputs to an EPA vehicle simulation model created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. The Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) model is a physics-based, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies and showing realistic vehicle behavior and auditing of all internal energy flows in the model. Under the new light-duty fuel economy standards vehicle powertrains must become significantly more efficient. Cylinder deactivation engine technology is capable of deactivating one or more of its combustion cylinders when not needed to meet power demand.
2016-04-05
Technical Paper
2016-01-0752
Pranab Das, Mayur Selokar, P.M.V. Subbarao, J.P. Subrahmanyam
Abstract A single cylinder direct injection (DI) diesel engine is modified to run in HCCI-DI mode using a novel in-cylinder dual injection strategy. In this present investigation effect of 2nd injection timing, premixed equivalence ratio and exhaust gas recirculation (EGR) on combustion and emission behavior is studied. Based on the characteristics of combustion, performance and emission behavior, 2nd injection timing is optimized at a constant split ratio (80%) and engine speed (1500 rev/min). Premixed equivalence ratio was varied (up to 0.38) at the optimized 2nd injection timing condition. It is identified that 2nd injection timing and premixed equivalence ratio play an important role in controlling the occurrences of all combustion parameters of HCCI-DI combustion. EGR was introduced in the cylinder to understand its effect on various combustion parameters and emission behavior.
2016-04-05
Technical Paper
2016-01-0758
Hui Liu, Zhi Wang, Yan Long, Shouzhi Xiang, Jianxin Wang
Abstract Particle Number (PN) have already been a big issue for developing high efficiency internal combustion engines (ICEs). In this study, controlled spark-assisted stratified compression ignition (SSCI) with moderate end-gas auto-ignition was used for reducing PN in a high compression ratio gasoline direct injection (GDI) engine. Under wide open throttle (WOT) and Maximum Brake Torque timing (MBT) condition, high external cooled exhaust gas recirculation (EGR) was filled in the cylinder, while two-stage direct injection was used to form desired stoichiometric but stratified mixture. SSCI combustion mode exhibits two-stage heat release, where the first stage is associated with flame propagation induced by spark ignition and the second stage is the result of moderate end-gas auto-ignition without pressure oscillation at the middle or late stage of the combustion process.
2016-04-05
Technical Paper
2016-01-0751
Robert Szolak, Eric Alexander Morales Wiemer, Ivica Kraljevic, Alexander Susdorf, Hüseyin Karadeniz, Boris Epple, Florian Rümmele, Achim Schaadt
Abstract The following study describes an on-board fuel tailoring process based on a novel and compact catalytic fuel evaporator, capable of optimizing Homogenous Charge Compression Ignition (HCCI) combustion. Evaporation tests with conventional diesel were performed revealing a significant amount of long-chain alkane cracking. As a consequence of these cracking reactions, the presented experiments demonstrate that the produced fuel vapor has altered combustion properties as compared to the feeding diesel stream. Further tests using a constant volume chamber at 30 bar, over the temperature range 500 to 1120 K, indicated that ignition delay time and auto ignition temperature of this fuel vapor can be shifted from diesel to gasoline. Thus, by performing dynamic on-board adjustment of the fuel properties, it is possible therefore to increase HCCI combustion to high loads.
2016-04-05
Technical Paper
2016-01-0747
Vicente Bermudez, Raul Payri, J. Javier Lopez, Daniel Campos, Gilles Coma, Frederic Justet
Abstract Nowadays the main part of investigations in controlled auto-ignition (CAI) engines are centered on performance or some engine processes simulation, leaving aside particle number (PN) emission. The present work is focused on this last topic: PN emission analysis using two different injectors in a 2-stroke CAI engine, and a global comparison of PN emission of this engine with its homonymous 4-stroke engines at two operating conditions. The study was performed in a single-cylinder gasoline engine with 0.3 l displacement, equipped with an air-assisted direct-injection (DI) fuel injection system. Concerning the injectors evaluated, significant differences in PN emission have been found. When the I160X injector (narrow spray angle) was used, PN emissions were reduced. The spray cone angle during the injection event appears to be a key factor for PN emission reduction.
2016-04-05
Journal Article
2016-01-0775
Zhanteng Chang, Chao Yu, Haiyan Zhang, Shuojin Ren, Zhi Wang, Boyuan Wang, Jianxin Wang
Abstract Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
2016-04-05
Technical Paper
2016-01-0767
Changle Li, Lianhao Yin, Sam Shamun, Martin Tuner, Bengt Johansson, Rickard Solsjo, Xue-Song Bai
Abstract An experiment was conducted to investigate the effect of charge stratification on the combustion phasing in a single cylinder, heavy duty (HD) compression ignition (CI) engine. To do this the start of injection (SOI) was changed from -180° after top dead centre (ATDC) to near top dead centre (TDC) during which CA50 (the crank angle at which 50% of the fuel energy is released) was kept constant by changing the intake temperature. At each SOI, the response of CA50 to a slight increase or decrease of either intake temperature or SOI were also investigated. Afterwards, the experiment was repeated with a different intake oxygen concentration. The results show that, for the whole SOI period, the required intake temperature to keep constant CA50 has a “spoon” shape with the handle on the -180° side.
2016-04-05
Journal Article
2016-01-0724
Tadanori Yanai, Christopher Aversa, Shouvik Dev, Graham Reader, Ming Zheng
Abstract In this study, impacts of neat n-butanol fuel injection parameters on direct injection (DI) compression ignition (CI) engine performance were investigated to gain knowledge for understanding the fuel injection strategies for n-butanol. The engine tests were conducted on a four-stroke single-cylinder DI CI engine with a compression ratio of 18.2:1. The effects of fuel injection pressure (40, 60 and 90 MPa) and injection timing in a single injection strategy were investigated. The results showed that an increase in injection pressure significantly reduced nitrogen oxides (NOx) emissions which is the opposite trend seen in conventional diesel combustion. The parallel use of a higher injection pressure and retarded injection timing was a proposed method to reduce NOx and cylinder pressure rise rate simultaneously. NOx was further reduced by using exhaust gas recirculation (EGR) while keeping near zero soot emissions.
2016-04-05
Technical Paper
2016-01-0733
Valentin Soloiu, Tyler Naes, Martin Muinos, Spencer Harp, Jose Moncada, Remi Gaubert, Gustavo Molina
Abstract This study investigates combustion and emissions of Jet-A in an indirect injection (IDI) compression ignition engine and a direct injection (DI) compression ignition engine at 4.5 bar IMEP and 2000 RPM. The Jet-A was blended with ULSD that resulted in 75%Jet-A and 25% ULSD#2 by mass. Both engines were instrumented with Kistler pressure sensors in the main chamber and the IDI engine had a second pressure sensor in the pre-chamber. Combustion properties and emissions from both engines using the 75% jet-A blend (75Jet-A) were compared to a baseline test of Ultra Low Sulfur Diesel #2 (ULSD). The ignition delay was shorter when running on 75Jet-A compared to ULSD in the DI engine. For ULSD, the ignition delay was 1.8 ms and it reduced to 1.7 ms when operating on 75Jet-A (difference of 6%). In the IDI engine the ignition delay for both fuels was 2.3 ms based off the gross heat release in the Pre-Chamber.
2016-04-05
Technical Paper
2016-01-0735
J. Javier Lopez, Jaime Martin, Antonio Garcia, David Villalta, Alok Warey, Vicent Domenech
Abstract Engine-out soot emissions are the result of a complex balance between in-cylinder soot formation and oxidation. Soot is formed in the diffusion flame, just after the lift-off length (LOL). Size and mass of soot particles increase through the diffusion flame and finally they are partially oxidized at the flame front. Therefore, engine-out soot emissions depend on the amount of soot formed and oxidized inside the combustion chamber. There is a considerable amount of work in the literature on characterization of soot formation. However, there is a clear lack of published research related to the characterization of soot oxidation. Thus, the main objective of the current research is to provide more knowledge and insight into the soot oxidation processes. For this purpose, a combination of theoretical and experimental tools were used. In particular, in-cylinder optical thickness (KL) was quantified with an optoelectronic sensor that uses two-color pyrometry.
2016-04-05
Technical Paper
2016-01-0737
Yilu Lin, Timothy Lee, Karthik Nithyanandan, Jiaxiang Zhang, Yuqiang Li, Chia-Fon Lee
Abstract The performance and emission of an AVL 5402 single-cylinder engine fueled with acetone-butanol-ethanol (ABE) / diesel blends were experimentally investigated at various load conditions and injection timings. The fuels tested in the experiments were ABE10 (10% ABE, 90% diesel), ABE20 and diesel as baseline. Thermodynamics analyses of pressure traces acquired in experiments were performed to show the impact of ABE concentration to the overall combustion characteristics of the fuel mixtures. Cumulative heat release analysis showed that ABE mixtures generally retarded the overall combustion phasing, ignition delays of ABE-containing fuels were significantly extended, however, combustion rate during CA10∼CA50 were accelerated at different extent. Pressure rise rate of ABE-containing fuels further implicated that the premixed combustion were more dominant than that of diesel. Polytropic indices of both expansion and compression strokes were calculated from p-V diagram.
2016-04-05
Technical Paper
2016-01-0726
Jonathan Martin, Chenxi Sun, Andre Boehman, Jacqueline O'Connor
Abstract This experimental study involves optimization of the scheduling of diesel post injections to reduce soot emissions from a light-duty diesel engine. Previous work has shown that certain post injection schedules can reduce engine-out soot emissions when compared to conventional injection schedules for the same engine load. The purpose of this study is to investigate the impact of post injection scheduling for a range of engine conditions on a light duty multicylinder turbodiesel engine (1.9L GM ZDTH). For each engine operating condition, a test grid was developed so that only two variables (post injection duration and the commanded dwell time between main injection and post injection) were varied, with all other conditions held constant, in order to isolate the effects of the post injection schedule. Results have identified two distinct regimes of post injection schedules that reduce soot emissions.
2016-04-05
Technical Paper
2016-01-0727
Cody William Squibb, Harold Schock, Ravi Vedula, Thomas Stuecken
Abstract In-cylinder visualization experiments were completed using an International VT275-based optical DI Diesel engine operating under high simulated exhaust gas recirculation combustion conditions. Experiments were run at four load conditions to examine variations in fuel spray, combustion, and soot production. Mass fraction burned analyses of pressure data were used to investigate the combustion processes of the various operating conditions. An infrared camera was used to visualize fuel spray events and exothermic combustion gases. A visible, high-speed camera was used to image natural luminosity produced by soot. The recorded images were post-processed to analyze the fuel spray, the projected exothermic areas produced by combustion, as well as soot production of different load conditions. Probability maps of combustion and fuel spray occurrence in the cylinder are presented for insight into the combustion processes of the different conditions.
2016-04-05
Technical Paper
2016-01-0833
Lei Meng, Yuqiang Li, Karthik Nithyanandan, Timothy Lee, Chunnian Zeng, Chia-Fon Lee
Abstract To face the challenges of fossil fuel shortage and air pollution problems, there is growing interest in the potential usage of alternative fuels such as bio-ethanol and bio-butanol in internal combustion engines. The literature shows that the acetone in the Acetone-Butanol-Ethanol (ABE) blends plays an important part in improving the combustion performance and emissions, owing to its higher volatility. In order to study the effects of acetone addition into commercial gasoline, this study focuses on the differences in combustion, performance and emission characteristics of a port-injection spark-ignition engine fueled with pure gasoline (G100), ethanol-containing gasoline (E30) and acetone-ethanol-gasoline blends (AE30 at A:E volumetric ratio of 3:1). The tests were conducted at 1200RPM with the default calibration (for gasoline), at 3 bar and 5 bar BMEP under various equivalence ratios.
2016-04-05
Technical Paper
2016-01-0838
Yinhui Wang, Rong Zheng, Shi-Jin Shuai, Yanhong Qin, Jianfei Peng, He Niu, Mengren Li, Yusheng Wu, Sihua Lu, Min Hu
An experimental study of particulate matter and volatile organic compounds (VOCs) emissions was conducted on a direct injection gasoline (DIG) engine and a port fuel injection (PFI) engine which both were produced by Chinese original equipment manufacturers (OEMs) to investigate the impact of fuel properties from Chinese market on particulate and VOCs emissions from modern gasoline vehicles. The study in this paper is just the first step of the work which is to investigate the impact of gasoline fuel properties and light duty vehicle technologies on the primary and secondary emissions, which are the sources of particulate matter 2.5 (PM2.5) in the atmosphere in China. It is expected through the whole work to provide some suggestions and guidelines on how to improve air quality and mediate severe haze pollution in China through fuel quality control and vehicle technology advances.
2016-04-05
Technical Paper
2016-01-0825
William Fedor, Joseph Kazour, James Haller, Kenneth Dauer, Daniel Kabasin
Abstract LEV-3 regulation changes require 100% SULEV30 fleet average by 2025. While present applications meeting SULEV30 are predominately small displacement 4-cylinder engines, LEV-3 standards will require larger displacement engines to also meet SULEV30. One concept previously investigated to reduce the cold start engine-out HC emissions was to heat the fuel injected during the cold start and initial engine idle period. Improved atomization and increased vaporization of heated fuel decreased wall wetting and unburned fuel. This resulted in more fuel available to take part in combustion, thus reducing the required injected fuel mass and HC emissions. Single cylinder engine testing with experimental heated Gasoline Direct Injection (GDi) injectors was conducted at 40°C engine coolant and oil temperature conditions. The operating mode simulated cold start idle operating conditions, with split injection for improved Catalyst Light-Off (CATLO) times.
2016-04-05
Technical Paper
2016-01-0826
Arumugam Sakunthalai Ramadhas, Hongming Xu
Abstract Ambient temperature has significant impact on engine start ability and cold start emissions from diesel engines. These cold start emissions are accounted for substantial amount of the overall regulatory driving cycle emissions like NEDC or FTP. It is likely to implement the low temperature emissions tests for diesel vehicles, which is currently applicable only for gasoline vehicles. This paper investigates the potential of the intake heating strategy on reducing the driving cycle emissions from the latest generation of turbocharged common rail direct injection diesel engines at low ambient temperature conditions. For this investigation an air heater was installed upstream of the intake manifold and New European Driving Cycle (NEDC) tests were conducted at -7°C ambient temperature conditions for the different intake air temperatures. Intake air heating reduced the cranking time and improved the fuel economy at low ambient temperatures.
2016-04-05
Technical Paper
2016-01-0822
Jongwon Chung, Namho Kim, Hoimyung Choi, Kyoungdoug Min
Abstract Due to the direct injection of fuel into a combustion chamber, particulate emission is a challenge in DISI engines. Specifically, a significant amount of particulate emission is produced under the cold start condition. In this research, the main interest was to investigate particulate emission characteristics under the catalyst heating condition because it is one of the significant particulate-emissionproducing stages under the cold start condition. A single-cylinder optically accessible engine was used to investigate the effect of injection strategies on particulate emission characteristics under the catalyst heating condition. The split injection strategy was applied during intake stroke with various injection pressures and injection timings. Using luminosity analysis of the soot radiation during combustion, the particulate formation characteristics of each injection strategy were studied.
2016-04-05
Technical Paper
2016-01-0823
Jason Miwa, Darius Mehta, Chad Koci
Abstract Increasingly stringent emissions regulations require that modern diesel aftertreatment systems must warm up and begin controlling emissions shortly after startup. While several new aftertreatment technologies have been introduced that focus on lowering the aftertreatment activation temperature, the engine system still needs to provide thermal energy to the exhaust for cold start. A study was conducted to evaluate several engine technologies that focus on improving the thermal energy that the engine system provides to the aftertreatment system while minimizing the impact on fuel economy and emissions. Studies were conducted on a modern common rail 3L diesel engine with a custom dual loop EGR system. The engine was calibrated for low engine-out NOx using various combustion strategies depending on the speed/load operating condition.
Viewing 121 to 150 of 23233

Filter