Display:

Results

Viewing 121 to 150 of 22875
2015-04-14
Technical Paper
2015-01-1019
Changpu Zhao, Man Bai, Junwei Yang, Fang Shang, Gang Yu
Abstract The main objective of this paper was to investigate the pressure drop characteristics of ACT (asymmetric cell technology) design filter with various inlet mass flow rates, soot loads and ash loads by utilizing 1-D computational Fluid Dynamics (CFD) method. The model was established by AVL Boost code. Different ratios of inlet to outlet channel width inside the DPF (Diesel Particulate Filter) were investigated to determine the optimal structure in practical applications, as well as the effect of soot and ash interaction on pressure loss. The results proved that pressure drop sensitivity of different inlet/outlet channel width ratios increases with the increased inlet mass flow rate and soot load. The pressure drop increases with the increased channel width ratio at the same mass flow rate. When there is little soot deposits inside DPF, the pressure drop increases with the bigger inlet.
2015-04-14
Technical Paper
2015-01-1031
Nic van Vuuren, Gabriele Brizi, Giacomo Buitoni, Lucio Postrioti, Carmine Ungaro
Abstract The recent implementation of new rounds of stringent nitrogen oxides (NOx) emissions reduction legislation in Europe and North America is driving the expanded use of exhaust aftertreatment systems, including those that treat NOx under the high-oxygen conditions typical of lean-burn engines. One of the favored aftertreatment solutions is referred to as Selective Catalytic Reduction (SCR), which comprises a catalyst that facilitates the reactions of ammonia (NH3) with the exhaust nitrogen oxides (NOx). It is customary with these systems to generate the NH3 by injecting a liquid aqueous urea solution, typically at a 32% concentration of urea (CO(NH2)2). The solution is referred to as AUS-32, and is also known under its commercial name of AdBlue® in Europe, and DEF - Diesel Exhaust Fluid - in the USA. The urea solution is injected into the exhaust and transformed to NH3 by various mechanisms for the SCR reactions.
2015-04-14
Technical Paper
2015-01-1024
Hisao Haga, Hiroyuki Kojima, Naoko Fukushi, Naoki Ohya, Takuya Mito
Abstract A diesel engine is possible solution for carbon dioxide (CO2) reduction from automobiles. However, it is necessary for a diesel engine vehicle to reduce nitrogen oxide (NOx) emission. Therefore, this research focused on a Urea-selective catalytic reduction (urea-SCR) system as an after-treatment system to convert NOx and proposes the control method of the urea-SCR system based on the output of an ammonia (NH3) sensor. By maximizing NH3 storage rate of the SCR, conversion performance is maximized. To maximize the NH3 storage rate, an NH3 sensor is installed downstream of the SCR. The amount of urea-solution is controlled to keep NH3 slip detected by the sensor. Thus, the NH3 storage amount in the SCR or the SCRF (SCR on filter) can be maximized. The estimation and the control of NH3 storage amount is also used to cause NH3 slip immediately. NH3 storage capacity changes with catalyst temperature. In a transient state, temperature distribution occurs in the SCR catalyst.
2015-04-14
Technical Paper
2015-01-1003
Tomohito Kakema, Yukio Suehiro, Yoshiaki Matsuzono, Takeshi Narishige, Masanori Hashimoto
Abstract This research is aimed at development of the catalyst for gasoline automobiles which uses only palladium (Pd) among platinum group metals (PGMs). And the conformity emission category aimed at LEV III-SULEV30. For evaluation, the improvement effect was verified for 2013 model year (MY) ACCORD (LEV II-SULEV) as the reference. As compared with Pd-rhodium (Rh) catalyst, a Pd-only catalyst had the low purification performance of nitrogen oxides (NOx), and there was a problem in the drop in dispersion of Pd by sintering, and phosphorus (P) poisoning.
2015-04-14
Technical Paper
2015-01-1000
Anna Fathali, Fredrik Wallin, Annika Kristoffersson, Mats Laurell
Abstract The objective of this study was to investigate which of the artificial aging cycles available in the automotive industry that causes major deactivation of three-way catalysts (TWCs) and can be used to obtain an aged catalyst similar to the road aged converter (160 000km). Standard bench cycle (SBC) aging with secondary air injection (SAI) covered aging with various mass flows - a flow from three cylinders into one catalyst system and a flow from three cylinders into two parallel connected catalysts. For rapid catalyst bench aging, secondary air injection is a very efficient tool to create exotherms. Furthermore, the effect on catalytic activity of SAI aging with poisons from oil and fuel dopants (P, Ca, Zn) was investigated. The catalysts were thoroughly characterized in light-off and oxygen storage capacity measurements, emission conversion as a function of lambda and load variation was determined.
2015-04-14
Technical Paper
2015-01-1001
Shinichiro Otsuka, Yukio Suehiro, Hiroshi Koyama, Yoshiaki Matsuzono, Cameron Tanner, David Bronfenbrenner, Tinghong Tao, Kenneth Twiggs
Abstract With the increasing number of automobiles, the worldwide problem of air pollution is becoming more serious. The necessity of reducing tail-pipe emissions is as high as ever, and in countries all over the world the regulations are becoming stricter. The emissions at times such as after engine cold start, when the three-way catalyst (TWC) has not warmed up, accounts for the majority of the emissions of these pollutants from vehicles. This is caused by the characteristic of the TWC that if a specific temperature is not exceeded, TWC cannot purify the emissions. In other words, if the catalyst could be warmed up at an early stage after engine start, this would provide a major contribution to reducing the emissions. Therefore, this research is focused on the substrate weight and investigated carrying out major weight reduction by making the porosity of the substrate larger than that of conventional products.
2015-04-14
Technical Paper
2015-01-1011
Kazutake Ogyu, Toyoki Ogasawara, Yuichi Nagatsu, Yuya Yamamoto, Tatsuhiro Higuchi, Kazushige Ohno
Abstract The Particle Number (PN) emission limit is implemented for Direct Injection (DI) gasoline from EU6 regulation in European region. The wall-flow type ceramic filter technology is an essential component for Diesel PN emission control, and will be one potential solution to be investigated for the future Gasoline DI PN emission control demand. Especially the requirement of lower pressure loss with smaller filter volume is very strong for the filter substrate for Gasoline DI compared to DPF, not to lose better fuel economy benefit of Gasoline DI engine. Re-crystallized SiC (R-SiC) has high strength as its own property, and enable for Gasoline Particulate Filter (GPF) design to make the wall thickness thinner and the porosity higher compared to the other ceramic materials.
2015-04-14
Technical Paper
2015-01-1015
Guanyu Zheng, Jianhua Zhang, Fengshuang Wang, Kaihua Zhao
Multiple suppliers have developed new cordierite 10.5″ OD substrates in China market. One key issue is to evaluate the feasibility of their applications to diesel SCR markets. To this end, test procedures were conceived and performed towards multiple substrate characteristics. Besides typical parameters such as product dimensions, structures, and material strength, thermo-mechanical properties were characterized by hot vibration, thermal shock and thermal cycle tests. Flow performance before and after tests was characterized by a hot flow bench. Four suppliers were selected to provide product samples which went through these developed rigorous test procedures. Comparisons of multiple properties were made. Conclusions regarding their applicability and recommendations for future work are provided at the end.
2015-04-14
Technical Paper
2015-01-1013
Shankar Ramadas, Sunil Prasanth Suseelan, Thiyagarajan Paramadhayalan, Ambalavanan Annamalai, Rahul Mital
Abstract Emission compliance at the production level has been a challenge for vehicle manufacturers. Diesel oxidation catalyst (DOC) plays a very important role in controlling the emissions for the diesel vehicles. Vehicle manufacturers tend to ‘over design’ the diesel oxidation catalyst to ‘absorb’ the production variations which seems an easier and faster solution. However this approach increases the DOC cost phenomenally which impacts the overall vehicle cost. The main objective of this paper is to address the high variation in CO tail pipe emissions which were observed on a diesel passenger car during development. This variation was posing a challenge in consistently meeting the internal product requirement/specification.
2015-04-14
Technical Paper
2015-01-1008
Vitaly Y. Prikhodko, Josh A. Pihl, Todd J. Toops, John F. Thomas, James E. Parks, Brian H. West
Abstract Ethanol is a very effective reductant for nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environments. With the widespread availability of ethanol/gasoline-blended fuel in the U.S., lean gasoline engines equipped with Ag/Al2O3 catalysts have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for evaluation of catalyst performance.
2015-04-14
Technical Paper
2015-01-1009
Cameron W. Tanner, Kenneth Twiggs, Tinghong Tao, David Bronfenbrenner, Yoshiaki Matsuzono, Shinichiro Otsuka, Yukio Suehiro, Hiroshi Koyama
Abstract Regulations that limit emissions of pollutants from gasoline-powered cars and trucks continue to tighten. More than 75% of emissions through an FTP-75 regulatory test are released in the first few seconds after cold-start. A factor that controls the time to catalytic light-off is the heat capacity of the catalytic converter substrate. Historically, substrates with thinner walls and lower heat capacity have been developed to improve cold-start performance. Another approach is to increase porosity of the substrate. A new material and process technology has been developed to significantly raise the porosity of thin wall substrates (2-3 mil) from 27-35% to 55% while maintaining strength. The heat capacity of the material is 30-38% lower than existing substrates. The reduction in substrate heat capacity enables faster thermal response and lower tailpipe emissions. The reliance on costly precious metals in the washcoat is demonstrated to be lessened.
2015-04-14
Technical Paper
2015-01-1068
Rong Yang, Diming Lou, Piqiang Tan, Zhiyuan Hu, Hongjuan Ren
Abstract Previous studies have indicated that longer torque increase time benefits the reduction of emissions during transient process for a diesel engine. However, quantitative conclusions on reduction of emissions and effects on fuel economy have not been made clear so far. The aim of this study was to evaluate the transient process of diesel engine under different torque increase time, and to find the quantitative statement between torque increase time, fuel economy and engine-out emissions. To do this, experiment was carried out on a 7L common rail diesel engine used for commercial vehicles. Three engine speeds (1100r·min−1, 1300r·min−1 and 1500r·min−1) were chosen to represent an engine working range. For each speed, the engine torque is increased within different time (0.5s, 1s, 2s and 5s). It was shown that, in the transient process mentioned above, engine torque increase time effects fuel economy, smoke opacity and CO emission.
2015-04-14
Technical Paper
2015-01-1069
Philipp Baumann, Matthias Schroeder, Harald Kurz, Thomas Maier, Wolfgang Thiel, Udo Strehl
Abstract The variety of increasingly complex powertrains including Plug-In Hybrid Electric Vehicles (PHEVs) is associated with a number of challenges to measure exhaust gas emissions: Although the conventional constant volume sampling (CVS) and exhaust gas measurement systems remain a high precision emission measurement concept new questions occur that need to be answered, such as mass transport, catalyst cooling during ICE-off and emission measurement accuracy. Mass transport of exhaust emissions from the transfer tube into the dilution tunnel during engine-off complicates phase assignment. This includes the investigation of the physical processes that are diffusion on basis of concentration differences, extraction due to the CVS underpressure and convection because of density diversities. Catalyst cooling will be investigated using a temperature sensor positioned at the oxy catalyst of a Diesel-PHEV.
2015-04-14
Technical Paper
2015-01-1073
Yoshitaka Ito, Takehide Shimoda, Takashi Aoki, Kazuya Yuuki, Hirofumi Sakamoto, Kyohei Kato, Dominic Thier, Philipp Kattouah, Etsuji Ohara, Claus Vogt
Abstract A Particle Number (PN) limit for Gasoline Direct Injection (GDI) vehicles was introduced in Europe from September 2014 (Euro 6b). In addition, further certification to Real Driving Emissions (RDE) is planned [1] [2], which requires low and stable emissions in a wide range of engine operation, which must be durable for at least 160,000 km. To achieve such stringent targets, a ceramic wall-flow Gasoline Particulate Filter (GPF) is one potential emission control device. This paper focuses on a catalyzed GPF, combining particle trapping and catalytic conversion into a single device. The main parameters to be considered when introducing this technology are filtration efficiency, pressure drop and catalytic conversion. This paper portrays a detailed study starting from the choice of material recipe, design optimization, engine bench evaluation, and final validation inside a standard vehicle from the market during an extensive field test up to 160,000 km on public roads.
2015-04-14
Technical Paper
2015-01-1074
Michael A. Robinson, Chris Cremeens, Z. Gerald Liu
Abstract Diesel engines have been identified as contributing to more than half of the transport sectors black carbon (BC) emissions in the US. This large contribution to atmospheric BC concentrations has raised concern about source specific emission rates, including off-highway engines. The European Union has recently implemented more stringent particulate regulations in the form of particle number via the Particle Measurement Programme (PMP) methodology. The PMP method counts the non-volatile fraction of particulate matter (PM) above 23 nm and below 2.5 μm via a condensation particle counter. This study evaluates a surrogate black carbon method which uses the PMP particle count method with a correlation factor to the BC fraction. The transient capable Magee Scientific Aethalometer (AE-33) 880 nm wavelength channel was used to determine the BC fraction.
2015-04-14
Technical Paper
2015-01-1075
Muhammad Ahmar Zuber, Wan Mohd Faizal Wan Mahmood, Zambri Harun, Zulkhairi Zainol Abidin, Antonino La Rocca, Paul Shayler, Fabrizio Bonatesta
Abstract The focus of this study is to analyse changes in soot particle size along the predicted pathlines as they pass through different in-cylinder combustion histories obtained from Kiva-3v CFD simulation with a series of Matlab routines. 3500 locations representing soot particles were selected inside the cylinder at 8° CA ATDC as soot was formed in high concentration at this CA. The dominant soot particle size was recorded within the size range of 20-50 nm at earlier CA and shifted to 10-20 nm after 20° CA ATDC. Soot particle quantities reduce sharply until 20° CA ATDC after which they remain steady at around 1500 particles. Soot particles inside the bowl region tend to stick to the bowl walls and those remaining in the bowl experience an increase in size. Soot particles that move to the upper bowl and squish regions were observed to experience a decrease in size.
2015-04-14
Technical Paper
2015-01-1076
Tak W. Chan
Abstract This study reported black carbon (BC) mass and solid particle number emissions from a gasoline direct injection (GDI) vehicle and a port fuel injection (PFI) vehicle on splash blended E10 and iB16 fuels over the FTP-75 and US06 drive cycles at standard and cold ambient temperatures. For the FTP-75 drive cycle, the GDI vehicle had lower solid particle number and BC mass emissions from E10 (5.1×1012 particles/mile; 4.2 mg/mile) and iB16 (5.2×1012 particles/mile; 3.9 mg/mile) compared to E0 (7.2×1012 particles/mile; 7.0 mg/mi). Most of the reductions were attributed to the statistically significant reductions during the phases 1 and 2 of the FTP-75 drive cycle. iB16 was also observed to have statistically significant reduction on BC emissions when compared to E0 at cold ambient temperature but E10 did not show such BC reduction. For the PFI vehicle, most of the solid particle number and BC mass emissions were emitted primarily during phase 1 of the FTP-75 drive cycle.
2015-04-14
Technical Paper
2015-01-1079
Jan Czerwinski, Pierre Comte, Adrian Wichser, Andreas Mayer, Jacques Lemaire
Abstract The invisible nanoparticles (NP)*) from combustion processes penetrate easily into the human body through the respiratory and olfactory pathways and carry numerous harmful health effects potentials. NP count concentrations are limited in EU for Diesel passenger cars since 2013 and for gasoline cars with direct injection (GDI) since 2014. The limit for GDI was temporary extended to 6 × 1012 #/km, (regulation No. 459/2012/EU). Nuclei of metals as well as organics are suspected to significantly contribute especially to the ultrafine particle size fractions, and thus to the particle number concentration. In the project GasOMeP (Gasoline Organic & Metal Particulates) metal-nanoparticles (including sub 20nm) from gasoline cars are investigated for different engine technologies. In the present paper some results of investigations of nanoparticles from four gasoline cars - an older one with MPI and three newer with DI - are represented.
2015-04-14
Technical Paper
2015-01-1080
Eduardo J. Barrientos, Matti M. Maricq, Andre L. Boehman, James E. Anderson
Abstract A study and analysis of the relation of biodiesel chemical structures to the resulting soot characteristics and soot oxidative reactivity is presented. Soot samples generated from combustion of various methyl esters, alkanes, biodiesel and diesel fuels in laminar co-flow diffusion flames are analyzed to evaluate the impact of fuel-bound oxygen in fatty acid esters on soot oxidation behavior. Thermogravimetric analysis (TGA) of soot samples collected from diffusion flames show that chemical variations in biodiesel ester compounds have an impact on soot oxidative reactivity and soot characteristics in contrast to findings reported previously in the literature. Soot derived from methyl esters with shorter alkyl chains, such as methyl butyrate and methyl hexanoate, exhibit higher reactivity than those with longer carbon chain lengths, such as methyl oleate, which are more representative of biodiesel fuels.
2015-04-14
Technical Paper
2015-01-1082
Xin Wang, Yunshan Ge, Linlin Liu, Huiming Gong
Abstract As a probable solution to both energy and environmental crisis, methanol and methanol gasoline have been used as gasoline surrogates in several provinces of China. Most recently, the Ministry of Environmental Protection of China is drafting a special emission standard for methanol-fueled light-duty vehicles. Given the scarcity of available data, this paper evaluated regulated emissions, carbonyl compounds and particulate matter from a China-5 certificated gasoline/methanol dual-fuel vehicle over New European Driving Cycle (NEDC). The results elucidated that in context with gasoline mode, CO emitted in methanol mode decreased 11.2%, while no evident changes of THC and NOx emissions were noticed with different fueling regimes. The total carbonyls and formaldehyde have increased by 39.5% and 19.8% respectively after switching from gasoline to methanol. A remarkable decrease of 65.6% in particulate matter was observed in methanol mode.
2015-04-14
Technical Paper
2015-01-1064
Ahmad Khalfan, Hu Li, Gordon Andrews
Abstract The tailpipe exhaust emissions were measured under real world urban driving conditions by using a EURO4 emissions compliant SI car equipped with an on-board heated FTIR for speciated gaseous emission measurements, a differential GPS for travel profiles, thermocouples for temperatures, and a MAX fuel meter for transient fuel consumption. Emissions species were measured at 0.5 Hz. The tests were designed to enable cold start to occur into congested traffic, typical of the situation of people living alongside congested roads into a large city. The cold start was monitored through temperature measurements of the TWC front and rear face temperatures and lubricating oil temperatures. The emissions are presented to the end of the cold start, defined when the downstream TWC face temperature is hotter than the front face which occurred at ∼350-400oC. Journeys at various times of the day were conducted to investigate traffic flow impacts on the cold start.
2015-04-14
Technical Paper
2015-01-1626
Qingning Zhang, Andrew Pennycott, Richard Burke, Sam Akehurst, Chris Brace
Abstract Nitrogen oxides emissions are an important aspect of engine design and calibration due to increasingly strict legislation. As a consequence, accurate modeling of nitrogen oxides emissions from Diesel engines could play a crucial role during the design and development phases of vehicle powertrain systems. A key step in future engine calibration will be the need to capture the nonlinear behavior of the engine with respect to nitrogen oxides emissions within a rapid-calculating mathematical model. These models will then be used in optimization routines or on-board control features. In this paper, an artificial neural network structure incorporating a number of engine variables as inputs including torque, speed, oil temperature and variables related to fuel injection is developed as a method of predicting the production of nitrogen oxides based on measured test data. A multi-layer perceptron model is identified and validated using data from dynamometry tests.
2015-04-14
Technical Paper
2015-01-1616
Lindita Bushi, Timothy Skszek, David Wagner
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. The Regulation requirements such as the 2020 CAFE (Corporate Average Fuel Economy) standard, growing public demand, and increased fuel prices are pushing auto manufacturers worldwide to increase fuel economy through incorporation of lightweight materials in newly-designed vehicle structures.
2015-04-14
Technical Paper
2015-01-0503
Hefeng Zhan, Gangfeng Tan, Haobo Xu, Xin Li, Zhaohua Wang, Can Wang
Abstract Plenty of dust particles which are generated when a sweeping vehicle is dumping harm to workers' health. In the study, the designed vacuum dust control system could effectively capture easily raised dust particles in the air in the premise of not impacting the dumping process so as to improve the unloading work environment. Firstly, longitudinal motion trajectory model of dust particles in the dumping process is established. Based on the side collision probability model of dust particles, lateral velocity distribution of dust particles is obtained. What's more, the scope of lateral dust particles is determined. Taking into account coupling of the dust control system and the working state of the vehicle, the suction mouth is arranged at the edge on the outside of hatch cover. Centrifugal horizontal dust removal system designed in the research is fixed in the middle of the filter cover part and discharging hatch cover area.
2015-04-14
Technical Paper
2015-01-1264
Junseok Chang, Yoann Viollet, Abdullah Alzubail, Amir Faizal Naidu Abdul-Manan, Abdullah Al Arfaj
Abstract This paper explores the potential for reducing transport-related greenhouse gas (GHG) emissions by introducing high-efficiency spark-ignition engines with a dual-fuel injection system to customize the octane of the fuels based on real-time engine requirements. It is assumed that a vehicle was equipped with two fuel tanks and two injection systems; one port fuel injection and one direct injection line separately. Each tank carried low octane and high octane fuel so that real-time octane blending was occurred in the combustion chamber when needed (Octane On-Demand: OOD). A refinery naphtha was selected for low octane fuel (RON=61), because of its similarity to gasoline properties but a less processed, easier to produce without changing a refinery configuration. Three oxygenates were used for high octane knock-resistant fuels in a direct injection line: methanol, MTBE, and ETBE.
2015-04-14
Technical Paper
2015-01-1304
G Karthik, K V Balaji, Rao Venkateshwara, Bagul Rahul
Abstract This paper describes the suitability of recycled polyethylene terephthalate (RPET) material for canopy strip in a commercial vehicle. The material described in this paper is a PET compound recycled from used PET bottles and reinforced with glass fibers so as to meet the product's functional requirements. The application described in this paper is a Canopy strip which is a structural exterior plastic part. Canopy strip acts as a structural frame to hold the Vinyl canopy in both sides of the vehicle. Functionally, the part demands a material with adequate mechanical and thermal properties. Generally, PET bottles are thrown after use thereby creating land pollution. PET being inert takes an extremely long time to degrade thereby occupying huge amount of space in landfills and directly affecting rain water percolation. This work focused on recycling the PET bottles and compounding them suitably so as convert them into useful automotive parts.
2015-04-14
Technical Paper
2015-01-1298
Sangram Jadhav
Abstract The depletion of resources, increased cost of fossil fuel and increased environmental awareness reaching the critical condition. Development of viable alternative fuels from renewable resources is gaining the international attention and acceptance. The vegetable oils have the potential of alternative fuel for compression ignition engines by converting it into biodiesel. The mangifera indica oil is a nonedible vegetable oil, available in large quantities in mango cultivating countries including India. Very little research has been done on utilization of oil in general and optimization of transesterification process for biodiesel production. In the present study, transesterification process with use of homogeneous catalyst has been optimized.
2015-04-14
Technical Paper
2015-01-1299
Rod Emery
Abstract - Sustainable Manufacturing: Beyond Turning the Lights Off There is increasing pressure for manufacturers to go “green.” Automotive OEMs are improving their own sustainability practices and demanding environmental accountability from their vendors. Sustainable manufacturing is defined by the U.S. Department of Commerce as the creation of manufactured products using processes that: 1 Minimize negative environmental impacts2 Conserve energy and natural resources3 Are safe for employees, communities and consumers4 Are economically sound Installing low-energy lighting and adding recycling bins have had a positive effect, but manufacturers must take a comprehensive view of sustainability to have a continuing impact. This white paper will address some “out of the box” methods to improve sustainability of automotive assembly.
2015-04-14
Technical Paper
2015-01-1251
Fabien Redon, Arunandan Sharma, John Headley
Abstract In a recent paper, Opposed-Piston 2-Stroke Multi-Cylinder Engine Dynamometer Demonstration [1] published at the SAE SIAT in India in January 2015, Achates Power presented work related to the first ever opposed piston multi-cylinder engine fuel economy demonstration while meeting US 2010 emissions. The results showed that the research 4.9L three cylinder engine was able to achieve 43% brake thermal efficiency at the best point and almost 42% on average over the 12 modes of the SET cycle. The results from this test confirmed the modelling predictions and carved a very robust path to a 48% best BTE and 46.6% average over the cycle for a production design of this engine. With the steady state performance and emissions results achieved, it was time to explore other attributes.
2015-04-14
Technical Paper
2015-01-0999
Jan Schoenhaber, Joerg Michael Richter, Joel Despres, Marcus Schmidt, Stephanie Spiess, Martin Roesch
Abstract The new emission regulations in Europe, EU 6 will promulgate more realistic driving conditions with more stringent HC, CO, NOx and particulate emissions. This legislation will also include the WLTP (Worldwide harmonized Light vehicles Test Procedure) cycle for CO2 measurements and a new requirement called “Real-Driving-Emissions” (RDE) as well. The RDE requirement is to ensure modern vehicles comply with the legislation under all conditions of normal driving. More robust aftertreatment solutions are needed to meet these new requirements. This work introduces an improved three-way catalyst (TWC) for gasoline engines for these new regulations. It is tested under static and dynamic conditions and on several engines and vehicles with various drive cycles. It offers better thermal stability combined with lower backpressure than former TWC generations.
Viewing 121 to 150 of 22875

Filter