Display:

Results

Viewing 121 to 150 of 24445
2017-03-28
Journal Article
2017-01-1277
Jakobus Groenewald, Thomas Grandjean, James Marco, Widanalage Widanage
Abstract Increasingly international academic and industrial communities desire to better understand, implement and improve the sustainability of vehicles that contain embedded electrochemical energy storage. Underpinning a number of studies that evaluate different circular economy strategies for the electric vehicle (EV) battery system are implicit assumptions about the retained capacity or State-of-Health (SoH) of the battery. International standards and best-practice guides exist that address the performance evaluation of both EV and HEV battery systems. However, a common theme in performance testing is that the test duration can be excessive and last for a number of hours. The aim of this research is to assess whether energy capacity and internal resistance measurements of Li-ion based modules can be optimized, reducing the test duration to a value that may facilitate further End-of-Life (EoL) options.
2017-03-28
Journal Article
2017-01-1278
Keisuke Isomura
Abstract In the automobile industry, interest in the prevention of global warming has always been high. The development of eco cars (HV, EV etc.), aimed at reducing CO2 emissions during operation, has been progressing. In the announcement of its "Toyota Environmental Challenge 2050", Toyota declared its commitment to creating a future in which people, cars, and nature coexist in harmony. In this declaration, Toyota committed to reducing CO2 emissions not only during operation but also over the entire life cycle of vehicles, and to using resources effectively based on a 4 R’s approach (refuse, reduce, reuse, and recycle). Although eco cars decrease CO2 emissions during operation, most of them increase CO2 emissions during manufacturing. For example, the rare-earths (Nd, Dy etc.) used in the magnets of driving motors are extracted through processes that produce a significant amount of CO2 emissions.
2017-03-28
Technical Paper
2017-01-0163
Gursaran D. Mathur
The author has developed a model that can be used to predict build-up of cabin carbon dioxide levels for automobiles based on many variables. There are a number of parameters including number of occupants that dictates generation of CO2 within the control volume, cabin leakage (infiltration or exfiltration) characteristics, cabin volume, blower position or airflow rate; vehicle age, etc. Details of the analysis is presented in the paper. Finally, the developed model has been validated with experimental data. The simulated data follows the same trend and matches fairly well with the experimental data.
2017-03-28
Technical Paper
2017-01-1275
David Hobbs, Charles Ossenkop, Andy Latham
Abstract Global sales of electric and hybrid vehicles continue to grow as emission legislation forces vehicle manufacturers to build cleaner vehicles, with some 8 million already in service. Hybrid and Electric vehicles contain some of the most complex systems ever used in the automotive field, sophisticated and unique electric hybrid systems are added to modern motor vehicles which are already quite complex. As these vehicles reach the end of their lives they will be processed by the global vehicle recycling industry and the high voltage components will be reused, recycled or re-purposed. This paper explores safe working practices for businesses involved in a global marketplace who are completing battery disabling, removal, disassembly, storage and shipping; includes the various technologies and safe working practices along with some of the legal restrictions on dismantling, storage and shipping of high voltage batteries around the world.
2017-03-28
Journal Article
2017-01-1639
Gerard W. Malaczynski, Gregory Roth
Abstract Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
2017-03-28
Technical Paper
2017-01-0944
Ryuji Ando, Takashi Hihara, Yasuyuki Banno, Makoto Nagata, Tomoaki Ishitsuka, Nobuyuki Matsubayashi, Toshihisa Tomie
Abstract Modern diesel emission control systems often use Urea Selective Catalytic Reduction (Urea-SCR) for NOx control. One of the most active SCR catalysts is based on Cu-zeolite, specifically Cu-Chabazite (Cu-CHA), also known as Cu-SSZ-13. The Cu-SCR catalyst exhibits high NOx control performance and has a high thermal durability. However, its catalytic performance deteriorates upon long-term exposure to sulfur. This work describes our efforts to investigate the detailed mechanism of poisoning of the catalyst by sulfur, the optimum conditions required for de-sulfation, and the recovery of catalytic activity. Density functional theory (DFT) calculations were performed to locate the sulfur adsorption site within the Cu-zeolite structure. Analytical characterization of the sulfur-poisoned catalyst was performed using Extreme Ultraviolet Photoelectron Spectroscopy (EUPS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS).
2017-03-28
Technical Paper
2017-01-0938
Gillis Hommen, Frank Kupper, Xander Seykens
Abstract This article describes a NOx sensor based urea dosing control strategy for heavy-duty diesel aftertreatment systems using Selective Catalytic Reduction. The dosing control strategy comprises of a fast-response, model-based ammonia storage control system in combination with a long-timescale tailpipe-feedback module that adjusts the dosing quantity according to current aftertreatment conditions. This results in a control system that is robust to system disturbances such as biased NOx sensors and variations in AdBlue concentrations. The cross-sensitivity of the tailpipe NOx sensor to ammonia is handled by a novel, smart signal filter that can reliably identify the contributions of NOx and NH3 in the tailpipe sensor signal, without requiring an artificial perturbation of the dosing signal.
2017-03-28
Technical Paper
2017-01-1004
Jan Czerwinski, Pierre Comte, Norbert Heeb, Andreas Mayer, Volker Hensel
Abstract In the present paper some results of investigations of nanoparticles from five DI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, five variants of “vehicle - GPF” were investigated. These results originate from the project GasOMeP (Gasoline Organic & Metal Particulates), which focused on metal-nanoparticles (including sub 20nm) from gasoline cars with different engine technologies. The PN-emission level of the investigated GDI cars in WLTC without GPF is in the same range of magnitude very near to the actual limit value of 6.0 × 1012 #/km. With the GPF’s with better filtration quality, it is possible to lower the emissions below the future limit value of 6.0 × 1011 #/km. There is no visible nuclei mode and the ultrafine particle concentrations below 10mm are insignificant. Some of the vehicles show at constant speed operation a periodical fluctuation of the NP-emissions, as an effect of the electronic control.
2017-03-28
Technical Paper
2017-01-0968
Anand Srinivasan, Saurabh Joshi, Yadan Tang, Di Wang, Neal Currier, Aleksey Yezerets
Abstract Commercial Cu-Zeolite SCR catalyst can store and subsequently release significant amount of H2O. The process is accompanied by large heat effects. It is critical to model this phenomenon to design aftertreatment systems and to provide robust tuning strategies to meet cold start emissions and low temperature operation. The complex reaction mechanism of water adsorption and desorption over a Cu-exchanged SAPO-34 catalyst at low temperature was studied through steady state and transient experiments. Steady state isotherms were generated using a gravimetric method and then utilized to predict water storage interactions with respect to feed concentration and catalyst temperature. Transient temperature programmed desorption (TPD) experiments provided the kinetic information required to develop a global kinetic model from the experimental data. The model captures fundamental characteristics of water adsorption and desorption accompanied by the heat effects.
2017-03-28
Journal Article
2017-01-1322
Kunihiko Yoshitake, Hiroyuki Tateyama, Atsushi Ogawa
Abstract Vehicles are required durability in various environments all over the world. Especially water resistance on flooded roads is one of the important issues. To solve this kind of problem, a CFD technology was established in order to predict the water resistance performance of the vehicle at the early development stage. By comparison with vehicle tests on flooded roads, it is clarified the following key factors are required for accurate prediction; the vehicle velocity change, the vehicle height change and the air intake flow rate. Moreover, these three key factors should be appropriately determined from vehicle and engine specification to predict water intrusion for flooded roads at the early stage of development. In this paper, a methodology which determines appropriate analysis conditions mentioned above for flooding simulation from vehicle and engine specification is described. The methodology enables us to determine whether the vehicle provides sufficient waterproofness.
2017-03-28
Technical Paper
2017-01-0634
Schoeffmann Wolfgang, Helfried Sorger, Siegfried Loesch, Wolfgang Unzeitig, Thomas Huettner, Alois Fuerhapter
Abstract In order to achieve future CO2 targets - in particular under real driving conditions - different powertrain technologies will have to be introduced. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the internal combustion engine. In addition to further optimization of the combustion processes and the reduction of mechanical losses in the thermal- and energetic systems, the introduction of Variable Compression Ratio (VCR) is probably the measure with the highest potential for fuel economy improvement. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The basic principle of the AVL VCR system described in this paper is a 2-stage variation of the conrod length and thus the Compression Ratio (CR).
2017-03-28
Journal Article
2017-01-0925
Tatsuro Sugino, Eriko Tanaka, Huong Tran, Norihiko Aono
Abstract Diesel particulate filters (DPFs) are an essential aftertreatment component for reducing the PM emissions of diesel engine vehicles. Installation of a DPF can achieve high filtration efficiency, but PM filtration also causes a high pressure drop due to deep bed filtration. Consequently, periodic PM regeneration is necessary to keep a low pressure drop, but this causes significant deterioration in fuel efficiency. Improving the efficiency of PM regeneration and keeping the pressure drop low are major challenges faced by DPF manufacturers in meeting future CO2 emissions regulations. This paper presents a novel morphological catalyst layer for DPFs, which is located in the surface of the inlet DPF channels and has been formed into a highly porous and three-dimensional meshwork shape. These features enhanced not only the prevention of deep bed filtration to reduce the pressure drop, but also the soot-catalyst contact for a faster PM regeneration rate.
2017-03-28
Journal Article
2017-01-0926
Kentaro Iwasaki
Abstract The diesel particulate filter (DPF) has been used in the automobile industry for around a decade. As a key technology for emissions control the DPF design needs to be increasingly optimized to expand its function to deal with any emission not just particulate matter (PM). NOx emission regulations need to be met as well as CO2 targets through minimizing any fuel penalty. Cost is extremely important to deliver an effective after-treatment catalyst. Aluminum titanate and cordierite-based material DPFs are very cost effective in part because their properties allow monolith-manufacturing. Furthermore, geometrical design of the DPF channel structure can contribute to multi-functionalization of the DPF to provide further advantages. Square and asymmetric square-designed channel structures have been utilized on current after-treatment DPF systems.
2017-03-28
Technical Paper
2017-01-0921
Bharadwaj Sathiamoorthy, Alex Graper, Andrew McIntosh, William Kaminski
Abstract The automotive aftermarket industry is an extremely cost competitive market to say the least. Aftermarket manufacturers are sought by customers primarily for their ability to replace an OES (Original Equipment Supplier) for a fraction of the cost. This forces the manufacturers to yield on performance abilities to get a share in the market place. The TWC system in gasoline vehicles not only acts as an emissions reduction device but is an integral part of the overall vehicle performance itself, especially since the introduction of OBD (On-Board Diagnostics) II systems in 1995. An inefficient catalyst not only leads to excessive tailpipe emissions but also acts detrimental to vehicle fueling and hence overall performance. The aftermarket catalyst industry which is regulated by EPA (United States Environmental Protection Agency) and CARB (California Air Resource Board) for gasoline engines is subject to meeting a mandatory performance standard for the same reason.
2017-03-28
Journal Article
2017-01-0935
Christoph Boerensen, Dirk Roemer, Christian Nederlof, Evgeny Smirnov, Frank Linzen, Felix Goebel, Brendan Carberry
Abstract The most significant challenge in emission control for compression ignited internal combustion engines is the suppression of NOx. In the US, NOx-levels have faced a progressive reduction for several years, but recently the introduction of the Real Driving Emissions legislation (RDE) in Europe has not only significantly increased the severity of the required emission reduction but now is in the advent of stretching technology to its limits. Emission control is based on engine-internal optimization to reduce the engine-out emissions in conjunction with aftertreatment technologies, that are either Selective Catalytic Reduction (SCR) or Lean NOx Trap (LNT) based systems. Due to its ability to control high amounts of NOx, SCR is widely used in heavy-duty applications and is becoming more popular in light-duty and passenger car applications as well.
2017-03-28
Technical Paper
2017-01-0933
Yunhua Zhang, Diming Lou, Piqiang Tan, Zhiyuan Hu, Qian Feng
Abstract Biodiesel as a renewable energy is becoming increasingly attractive due to the growing scarcity of conventional fossil fuels. Meanwhile, the development of after-treatment technologies for the diesel engine brings new insight concerning emissions especially the particulate matter pollutants. In order to study the coupling effects of biodiesel blend and CCRT (Catalyzed Continuously Regeneration Trap) on the particulate matter emissions, the particulate matter emissions from an urban bus with and without CCRT burning BD0 and BD10 respectively was tested and analyzed using electrical low pressure impactor (ELPI). The operation conditions included steady state conditions and transient conditions. Results showed that the particulate number-size distribution of BD10 and BD0 both had two peaks in nuclei mode and accumulation mode at the conditions of idle, low speed and medium speed while at high speed condition the particulate number-size distribution only had one peak.
2017-03-28
Technical Paper
2017-01-0936
Pavel Krejza, Jaroslav Pekar, Jiri Figura, Lukas Lansky, Dirk von Wissel, Tianran Zhang
Abstract The paper provides an overview of a developed methodology and a toolchain for modeling and control of a complex aftertreatment system for passenger cars. The primary objective of this work is to show how the use of this methodology allows to streamline the development process and to reduce the development time thanks to a model based semi-automatic control design methodology combined with piece-wise optimal control. Major improvements in passenger car tailpipe NOx removal need to be achieved to fulfil the upcoming post EURO 6 norms and Real Driving Emissions (RDE) limits. Multi-brick systems employing combinations of multiple Selective Catalytic Reduction (SCR) catalysts with an Ammonia Oxidation Catalysts, known also as Ammonia Clean-Up Catalyst (CUC), are proposed to cover operation over a wide temperature range. However, control of multi-brick systems is complex due to lack of available sensors in the production configurations.
2017-03-28
Technical Paper
2017-01-0932
Nehemiah S I Alozie, George Fern, David Peirce, Lionel Ganippa
Abstract The use of diesel particulate filter [DPF] has become a standard in modern diesel engine after treatment technology. However pressure drop develops across the filter as PM accumulates and this requires quick periodic burn-out without incurring thermal runaway temperatures that could compromise DPF integrity during operation. Adequate understanding of soot oxidation is needed for design and manufacture of efficient filter traps for the engine system. In this study, we have examined the impact of blending biodiesel on oxidation of PM generated from a high speed direct injection [HSDI] diesel engine, which was operated with 20% [B20] and 40% [B40] blends of two biodiesel fuels. The PM samples were collected from the engine exhaust using a Pall Tissuquartz filter, the oxidation characteristics of the samples were carried out using thermogravimetric analyzer [TGA]. The biodiesel oxidation data obtained from pure petrodiesel was compared against the fuel blends.
2017-03-28
Collection
The papers included in this collection cover modeling (zero-D, 1D, 2D, 3D CFD) and experimental papers on: combustion chamber, systems (lubrication, cooling, fuel, EGR); components (oil pumps, coolant pump, fuel injectors, compressors, turbines, turbochargers, torque converters, gear box, fans, bearings, valves, ports, manifolds, turbine housing); heat exchangers (radiators, oil coolers); aftertreatment (SCR, DOC, DOF, exhaust gas cooling); battery cooling (HEV, EV, motor/generator) and controls (passive and active).
2017-03-28
Journal Article
2017-01-0899
Paul Dekraker, John Kargul, Andrew Moskalik, Kevin Newman, Mark Doorlag, Daniel Barba
Abstract The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of internal energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been updated utilizing newly acquired data from model year 2013-2016 engines and vehicles. Simulations conducted with ALPHA provide data on the effectiveness of various GHG reduction technologies, and reveal synergies that exist between technologies. The ALPHA model has been validated against a variety of vehicles with different powertrain configurations and GHG reduction technologies.
2017-03-28
Technical Paper
2017-01-0907
Timothy Johnson, Ameya Joshi
Abstract This review paper summarizes major and representative developments in vehicle engine efficiency and emissions regulations and technologies from 2016. The paper starts with the key regulatory developments in the field, including newly proposed European RDE (real driving emissions) particle number regulations, and Euro 6 type regulations for China and India in the 2020 timeframe. China will be tightening 30-40% relative to Euro 6 in 2023. The California heavy duty (HD) low-NOx regulation is advancing and the US EPA is anticipating developing a harmonized proposal for implementation in 2023+. The US also finalized the next round of HD GHG (greenhouse gas) regulations for 2021-27, requiring 5% engine CO2 reductions. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations.
2017-03-28
Technical Paper
2017-01-0141
Ray Host, Peter Moilanen, Marcus Fried, Bhageerath Bogi
Abstract Future vehicle North American emissions standards (e.g., North American Tier 3 Bin 30 or LEVIII SULEV 30) require the exhaust catalyst to be greater than 80% efficient by 20 seconds after the engine has been started in the Federal Test Procedure. Turbocharged engines are especially challenged to deliver fast catalyst light-off since the presence of the turbocharger in the exhaust flow path significantly increases exhaust system heat losses. A solution to delivering cost effective SULEV 30 emissions in turbocharged engines is to achieve fast catalyst light-off by reducing exhaust system heat losses in cold start, without increasing catalyst thermal degradation during high load operation. A CAE methodology to assess the thermal performance of exhaust system hardware options, from the exhaust port to the catalyst brick face is described, which enables compliance with future emissions regulations.
2017-03-28
Journal Article
2017-01-0388
Haeyoon Jung, MiYeon Song, Sanghak Kim
Abstract CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
2017-03-28
Journal Article
2017-01-0586
Hayato Shirai, Hayato Nakada, Akio Matsunaga, Hiroyuki Tominaga
Abstract In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits.
2017-03-28
Journal Article
2017-01-0583
Farraen Mohd Azmin, Phil Mortimer, Justin Seabrook
Abstract With the introduction in Europe of drive cycles such as RDE and WLTC, transient emissions prediction is more challenging than before for passenger car applications. Transient predictions are used in the calibration optimization process to determine the cumulative cycle emissions for the purpose of meeting objectives and constraints. Predicting emissions such as soot accurately is the most difficult area, because soot emissions rise very steeply during certain transients. The method described in this paper is an evolution of prediction using a steady state global model. A dynamic model can provide the instantaneous prediction of boost and EGR that a static model cannot. Meanwhile, a static model is more accurate for steady state engine emissions. Combining these two model types allows more accurate prediction of emissions against time. A global dynamic model combines a dynamic model of the engine air path with a static DoE (Design of Experiment) emission model.
2017-03-28
Journal Article
2017-01-0596
Vittorio Ravaglioli, Federico Stola, Matteo De Cesare, Fabrizio Ponti, Stefano Sgatti
Abstract Upcoming more stringent emission regulations throughout the world pose a real challenge, especially in regard to Diesel systems for passenger cars, where the need of additional after-treatment has a big impact in terms of additional system costs and available packaging space. Therefore, the need for strategies that allow managing combustion towards lower emissions, that require a precise control of the combustion outputs, is definitely increasing. Acoustic emission of internal combustion engines contains a large amount of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. In particular, recent research from the same authors of this paper demonstrated that combustion noise can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy.
2017-03-28
Journal Article
2017-01-0587
Cetin Gurel, Elif Ozmen, Metin Yilmaz, Didem Aydin, Kerem Koprubasi
Abstract Emissions and fuel economy optimization of internal combustion engines is becoming more challenging as the stringency of worldwide emission regulations are constantly increasing. Aggressive transient characteristics of new emission test cycles result in transient operation where the majority of soot is produced for turbocharged diesel engines. Therefore soot optimization has become a central component of the engine calibration development process. Steady state approach for air-fuel ratio limitation calibration development is insufficient to capture the dynamic behavior of soot formation and torque build-up during transient engine operation. This paper presents a novel methodology which uses transient maneuvers to optimize the air-fuel ratio limitation calibration, focusing on the trade-off between vehicle performance and engine-out soot emissions. The proposed methodology features a procedure for determining candidate limitation curves with smoothness criteria considerations.
2017-03-28
Journal Article
2017-01-0581
Stephen C. Burke, Matthew Ratcliff, Robert McCormick, Robert Rhoads, Bret Windom
Abstract In some studies, a relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from vehicles equipped with spark ignition engines. The fundamental cause of the PM increase seen for moderate ethanol concentrations is not well understood. Ethanol features a greater heat of vaporization (HOV) than gasoline and also influences vaporization by altering the liquid and vapor composition throughout the distillation process. A droplet vaporization model was developed to explore ethanol’s effect on the evaporation of aromatic compounds known to be PM precursors. The evolving droplet composition is modeled as a distillation process, with non-ideal interactions between oxygenates and hydrocarbons accounted for using UNIFAC group contribution theory. Predicted composition and distillation curves were validated by experiments.
2017-03-28
Journal Article
2017-01-0605
Anthony D'Amato, Yan Wang, Dimitar Filev, Enrique Remes
Abstract Government regulations for fuel economy and emission standards have driven the development of technologies that improve engine performance and efficiency. These technologies are enabled by an increased number of actuators and increasingly sophisticated control algorithms. As a consequence, engine control calibration time, which entails sweeping all actuators at each speed-load point to determine the actuator combination that meets constraints and delivers ideal performance, has increased significantly. In this work we present two adaptive optimization methods, both based on an indirect adaptive control framework, which improve calibration efficiency by searching for the optimal process inputs without visiting all input combinations explicitly. The difference between the methods is implementation of the algorithm in steady-state vs dynamic operating conditions.
2017-03-28
Journal Article
2017-01-0607
Nahid Pervez, Ace Koua Kue, Adarsh Appukuttan, John Bogema, Michael Van Nieuwstadt
Abstract Designing a control system that can robustly detect faulted emission control devices under all environmental and driving conditions is a challenging task for OEMs. In order to gain confidence in the control strategy and the values of tunable parameters, the test vehicles need to be subjected to their limits during the development process. Complexity of modern powertrain systems along with the On-Board Diagnostic (OBD) monitors with multidimensional thresholds make it difficult to anticipate all the possible scenarios. Finding optimal solutions to these problems using traditional calibration processes can be time and resource intensive. A possible solution is to take a data driven calibration approach. In this method, a large amount of data is collected by collaboration of different groups working on the same powertrain. Later, the data is mined to find the optimum values of tunable parameters for the respective vehicle functions.
Viewing 121 to 150 of 24445

Filter