Criteria

Display:

Results

Viewing 121 to 150 of 22385
Article
2014-05-09
BMW is doubling down on its commitment to carbon fiber with major capacity increases at the plant that makes the material for its new i brand of lightweight electrified vehicles. The plant (located in Moses Lake, WA, and owned by a joint venture between BMW and SGL Group called SGL Automotive Carbon Fibers) currently operates two production lines, exclusively for BMW i, with annual output of about 3000 ton (2721 t).
Magazine
2014-05-08
Executive Viewpoints Off-highway industry executives write about some of the challenges and trends facing the industry over the next 20 years, and the innovation that will be required to stay competitive and sustainable. Annual product guide A product roundup showcasing the newest and most innovative supplier technologies in a variety of areas such as Powertrain & Energy, Electronics, Hydraulics, Materials, Testing & Simulation, Body and Chassis, and Interiors.
Technical Paper
2014-05-05
Lindsay J. Miller, Susan Sawyer-Beaulieu, Edwin Tam
Polyurethane (PU) foam is used for many automotive applications with the benefits of being lightweight, durable, and resistant to heat and noise. Applications of PU foams are increasing to include non-traditional purposes targeting consumer comfort. An example of this is the use of PU foam between the engine and engine cover of a vehicle for the purpose of noise abatement. This addition will provide a quieter ride for the consumer, however will have associated environmental impacts. The additional weight will cause an increase in fuel consumption and related emissions. More significant impacts may be realized at the end-of-life stage. Recycling PU foams presents several challenges; a lack of market for the recyclate, contamination of the foams, and lack of accessibility for removal of the material. PU foam pieces are likely to end up being landfilled after the vehicle is shredded, negating the benefit of choosing this material for its recyclability over another non-recyclable material.
Article
2014-05-04
A new electrolyte developed the U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) serves not only as an ion conductor, but also as a cathode supplement in batteries. Potential uses of the technology include remote keyless entry systems, cardiac pacemakers, sensors, and other applications "where replacing or recharging a battery is not possible or desirable."
Article
2014-05-04
Pennzoil Platinum and Pennzoil Ultra Platinum with PurePlus Technology are full synthetic motor oils formulated from natural gas.
Article
2014-05-01
The forklift is one of the few applications where less battery weight is not necessarily a good thing.
Article
2014-05-01
Conti's new 48-V hybrid system is a package-efficient module aimed at delivering much of the functionality of a 200- to 400-V hybrid system for a fraction of the cost. It will enter production in 2016 at two OEMs.
Standard
2014-05-01
This SAE Aerospace Recommended Practice (ARP) contains methods used to measure the optical performance of airborne electronic flat panel display (FPD) systems. The methods described are specific to the direct view, liquid crystal matrix (x-y addressable) display technology used on aircraft flight decks. The focus of this document is on active matrix, liquid crystal displays (LCD). The majority of the procedures can be applied to other display technologies, however, it is cautioned that some techniques need to be tailored to different display technologies. The document covers monochrome and color LCD operation in the transmissive mode within the visual spectrum (the wavelength range of 380 to 780 nm). These procedures are adaptable to reflective and transflective displays paying special attention to the source illumination geometry. Photometric and colorimetric measurement procedures for airborne direct view CRT (cathode ray tube) displays are found in ARP1782. Optical measurement procedures for airborne head up displays (HUDs) can be found in ARP5287.
Article
2014-04-28
3-D catalytic activity of new open-frame nanoparticles is twenty times that of existing formulations.
Article
2014-04-27
Average MY2012 vehicle CO2 emissions fell by 22 g/mi from MY2011, with a corresponding improvement in fuel economy, according to a new report by the U.S. EPA. The figures of 376 g/mi and 23.6 mpg figures are both records, the agency said.
Article
2014-04-21
Vehicle has 18 mi/30 km all-electric range from lithium-ion battery pack. Uses 2.0-l twin-scroll turbo engine with combination peak output of 270 hp/201 kW and 300 lb ft/407 N-m. Offers "predictive navigation" for high fuel efficiency, and can save battery capacity for areas that may require electric vehicle-only operation. European drive cycle ratings are 3.8 l/100 km (62 mpg) and just 89 grams CO₂/100 km.
Article
2014-04-16
Acoustic panels are installed almost everywhere including in front of the engine and on the rear hatch.
Article
2014-04-15
Written for those who have an interest in or need to understand automotive fuels, SAE International offers the third edition of its best-selling Automotive Fuels Reference Book.
Technical Paper
2014-04-15
Rakesh Kumar Maurya, Avinash Kumar Agarwal
Homogeneous charge compression ignition (HCCI) engines are attracting attention as next-generation internal combustion engines mainly because of very low NOx and PM emission potential and excellent thermal efficiency. Particulate emissions from HCCI engines have been usually considered negligible however recent studies suggest that PM number emissions from HCCI engines cannot be neglected. This study is therefore conducted on a modified four cylinder diesel engine to investigate this aspect of HCCI technology. One cylinder of the engine is modified to operate in HCCI mode for the experiments and port fuel injection technique is used for preparing homogenous charge in this cylinder. Experiments are conducted at 1200 and 2400 rpm engine speeds using gasoline, ethanol, methanol and butanol fuels. A partial flow dilution tunnel was employed to measure the mass of the particulates emitted on a pre-conditioned filter paper. The collected particulate matter (PM) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals (marker of toxicity) using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES).
Article
2014-04-14
The passenger-vehicle and commercial-vehicle industries are working to meet government regulations for emissions and fuel economy while ironing out potential unintended issues.
Standard
2014-04-14
These recommendations are provided to aid the international air transport industry by identifying a standard, minimum amount of safety instructions that should be given to sight-impaired passengers. This document is not meant to address problems associated with communicating safety information to sight- impaired passengers who are also hearing impaired or non- conversant in the language(s) used by the cabin crew to disseminate general safety information to passengers. Aircraft operators are encouraged to customize the safety instructions for their own operations in order to ensure that required safety information is provided to sight-impaired passengers.
Article
2014-04-09
Misfire detection is most difficult, SAE Congress panel tells attendees, and overall emissions diagnosis is harder than with passenger cars and light-duty trucks.
Article
2014-04-09
A lively panel discussion at the SAE 2014 World Congress explored the role of battery-equipped vehicles in a smart, vehicle-to-grid network.
Article
2014-04-01
Engineering boss Pierpaolo Antonini noted several technology developments that will help maintain the diesel's viability in the face of increasingly stringent global emission regulations.
Article
2014-04-01
The flywheel energy-storage technology that was used in, among other things, the Le Mans-winning Audi R18 e-tron quattro is being sold by Williams to GKN Land Systems for use mainly in mass-transit vehicles.
Article
2014-04-01
IMSA Tudor United SportsCar Championship promotes a variety of green technologies to link racing to the road.
Technical Paper
2014-04-01
Piotr Bielaczyc, Joseph Woodburn, Andrzej Szczotka
Direct injection gasoline engines have been gaining popularity for passenger car applications, particularly in the EU. It is well known that emissions of particulate matter are an inherent disadvantage of spark ignition engine with direct injection. Direct injection of gasoline can lead to the formation of substantial numbers of particulates, a proportion of which survive to be emitted from the vehicle's exhaust. EU legislation limits particle mass (PM) emissions; particle number (PN) is soon to be limited, although an opt-out means that dedicated filters will not be required immediately. A range of tests were conducted on a pool of Euro 5 passenger cars in BOSMAL's climate controlled emissions laboratory, using EU legislative test methodology. In addition, further measurements were performed (particle size distribution, tests at multiple ambient temperatures). Results were compared to legislative limits and order of magnitude comparisons were made with emissions from indirect injection gasoline and direct injection Diesel engines.
Technical Paper
2014-04-01
Qi Jiao, Rolf D. Reitz
Abstract 3-D Computational Fluid Dynamics (CFD) simulations have been performed to study particulate formation in a Spark-Ignition (SI) engine under premixed conditions. A semi-detailed soot model and a chemical kinetic model, including poly-aromatic hydrocarbon (PAH) formation, were coupled with a spark ignition model and the G equation flame propagation model for SI engine simulations and for predictions of soot mass and particulate number density. The simulation results for in-cylinder pressure and particle size distribution (PSDs) are compared to available experimental studies of equivalence ratio effects during premixed operation. Good predictions are observed with regard to cylinder pressure, combustion phasing and engine load. Qualitative agreements of in-cylinder particle distributions were also obtained and the results are helpful to understand particulate formation processes.
Technical Paper
2014-04-01
Kenneth Rose, Heather Hamje, Liesbeth Jansen, Corrado Fittavolini, Richard Clark, Maria Dolores Cardenas Almena, Dimitris Katsaounis, Christos Samaras, Savas Geivanidis, Zissis Samaras
Modern diesel vehicles utilize two technologies, one fuel based and one hardware based, that have been motivated by recent European legislation: diesel fuel blends containing Fatty Acid Methyl Esters (FAME) and Diesel Particulate Filters (DPF). Oxygenates, like FAME, are known to reduce PM formation in the combustion chamber and reduce the amount of soot that must be filtered from the engine exhaust by the DPF. This effect is also expected to lengthen the time between DPF regenerations and reduce the fuel consumption penalty that is associated with soot loading and regeneration. This study investigated the effect of FAME content, up to 50% v/v (B50), in diesel fuel on the DPF regeneration frequency by repeatedly running a Euro 5 multi-cylinder bench engine over the European regulatory cycle (NEDC) until a specified soot loading limit had been reached. The results verify the expected reduction of engine-out particulate mass (PM) emissions with increasing FAME content and the reduction in fuel economy penalty associated with reducing the frequency of DPF regenerations.
Technical Paper
2014-04-01
Gabriele Di Blasio, Mauro Viscardi, Michela Alfè, Valentina Gargiulo, Anna Ciajolo, Carlo Beatrice
Abstract Nowadays, alcohol fuels are of increasing interest as alternative transportation biofuels even in compression ignition engines because they are oxygenated and producible in a sustainable way. In this paper, the experimental research activity was conducted on a single cylinder research engine provided with a modern architecture and properly modified in a dual-fuel (DF) configuration. Looking at ethanol the as one of the future environmental friendly biofuels experimental campaign was aimed to evaluate in detail the effect of the use of the ethanol as port injected fuel in diesel engine on the size, morphology, reactivity and chemical features of the exhaust emitted soot particles. The engine tests were chosen properly in order to represent actual working conditions of an automotive light-duty diesel engine. A proper engine Dual-Fuel calibration was set-up respecting prefixed limits on in-cylinder peak firing pressure, cylinder pressure rise, fuel efficiency and gaseous emissions.
Technical Paper
2014-04-01
Donghui Qi, Chia-Fon Lee, Yilu Lin
Abstract Biodiesel is considered one of the most promising alternative fuels to petrol fuels. In this study, an attempt has been made to investigate and compare the effect of fuel injection pressure, injection timing, and exhaust gas recirculation (EGR) ratio on the particle size distributions and exhaust emissions of the diesel and biodiesel produced from waste cooking oil (WCO) used in a common rail direct injection (CRDI) diesel engine. The engine tests were conducted at two injection pressures (800 and 1600 bar), two injection timings (25 and 5 deg before top dead center (bTDC) and three EGR ratios (10%, 20% 30%) at a constant fuel injection energy per stroke and engine speed (1200 r/min). The results indicated that carbon monoxide (CO) and hydrocarbon (HC) emissions of biodiesel were slightly lower, but nitrogen oxide (NOx) emissions were slightly higher, than those of diesel fuel under most operating conditions. Biodiesel engine emitted lower soot particle concentration than diesel engine.
Technical Paper
2014-04-01
Justin E. Ketterer, James S. Wallace, Greg J. Evans
Abstract Biodiesel and other renewable fuels are of interest due to their impact on energy supplies as well as their potential for carbon emissions reductions. Waste animal fats from meat processing facilities, which would otherwise be sent to landfill, have been proposed as a feedstock for biodiesel production. Emissions from biodiesel fuels derived from vegetable oils have undergone intense study, but there remains a lack of data describing the emissions implications of using animal fats as a biodiesel feedstock. In this study, emissions of NOx, unburned hydrocarbons and particulate matter from a compression ignition engine were examined. The particulate matter emissions were characterized using gravimetric analysis, elemental carbon analysis and transmission electron microscopy. The emissions from an animal fat derived B20 blend were compared to those from petroleum diesel and a soy derived B20 blend. No statistically significant differences were observed between the fuels in the gaseous emissions.
Technical Paper
2014-04-01
Glenn Lucachick, Aaron Avenido, Winthrop Watts, David Kittelson, William Northrop
Abstract Diesel particulate filter (DPF) technology has proven performance and reliability. However, the addition of a DPF adds significant cost and packaging constraints leading some manufacturers to design engines that reduce particulate matter in-cylinder. Such engines utilize high fuel injection pressure, moderate exhaust gas recirculation and modified injection timing to mitigate soot formation. This study examines such an engine designed to meet US EPA Interim Tier 4 standards for off-highway applications without a DPF. The engine was operated at four steady state modes and aerosol measurements were made using a two-stage, ejector dilution system with a scanning mobility particle sizer (SMPS) equipped with a catalytic stripper (CS) to differentiate semi-volatile versus solid components in the exhaust. Gaseous emissions were measured using an FTIR analyzer and particulate matter mass emissions were estimated using SMPS data and an assumed particle density function. Though the tested engine is predicted to largely meet current US particle mass standards it has significantly higher particle number emissions compared to the Euro 6 solid particle number emissions standard.
Technical Paper
2014-04-01
Adam Dempsey, Scott Curran, John Storey, Mary Eibl, Josh Pihl, Vitaly Prikhodko, Robert Wagner, James Parks
Abstract Low temperature combustion (LTC) has been shown to yield higher brake thermal efficiencies with lower NOx and soot emissions, relative to conventional diesel combustion (CDC). However, while demonstrating low soot carbon emissions it has been shown that LTC operation does produce particulate matter whose composition appears to be much different than CDC. The particulate matter emissions from dual-fuel reactivity controlled compression ignition (RCCI) using gasoline and diesel fuel were investigated in this study. A four cylinder General Motors 1.9L ZDTH engine was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. RCCI operation was carried out using a certification grade 97 research octane gasoline and a certification grade diesel fuel. To study the particulate matter emissions from RCCI operation, particle size distributions were measured with a Scanning Mobility Particle Sizer (SMPS) and total particulate concentration in the exhaust was determined using membrane filters.
Technical Paper
2014-04-01
Yang Li, Jian Xue, Kent Johnson, Thomas Durbin, Mark Villela, Liem Pham, Seyedehsan Hosseini, Zhongqing Zheng, Daniel Short, George Karavalakis, Akua Asa-Awuku, Heejung Jung, Xiaoliang Wang, David Quiros, Shaohua Hu, Tao Huai, Alberto Ayala
Abstract This study provides one of the first evaluations of the integrated particle size distribution (IPSD) method in comparison with the current gravimetric method for measuring particulate matter (PM) emissions from light-duty vehicles. The IPSD method combines particle size distributions with size dependent particle effective density to determine mass concentrations of suspended particles. The method allows for simultaneous determination of particle mass, particle surface area, and particle number concentrations. It will provide a greater understanding of PM mass emissions at low levels, and therefore has the potential to complement the current gravimetric method at low PM emission levels. Six vehicles, including three gasoline direct injected (GDI) vehicles, two port fuel injected (PFI) vehicles, and one diesel vehicle, were tested over the Federal Test Procedure (FTP) driving cycle on a light-duty chassis dynamometer. PM mass emissions were determined by the gravimetric (MGravimetric) and IPSD (MIPSD) methods.
Viewing 121 to 150 of 22385

Filter

  • Article
    1052
  • Book
    74
  • Collection
    38
  • Magazine
    497
  • Technical Paper
    20113
  • Standard
    611
  • Article
    611