Display:

Results

Viewing 91 to 120 of 22754
2015-04-14
Journal Article
2015-01-0840
Michael Bergin, David Wickman, Christopher Rutland, Rolf D. Reitz
Abstract A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
2015-04-14
Journal Article
2015-01-0841
David Klos, Daniel Janecek, Sage Kokjohn
The tradeoff between NOx emissions and combustion instability in an engine operating in the dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion mode was investigated using a combination of engine experiments and detailed CFD modeling. Experiments were performed on a single cylinder version of a General Motors/Fiat JTD 1.9L four-cylinder diesel engine. Gasoline was injected far upstream of the intake valve using an air assisted injector and fuel vaporization system and diesel was injected directly into the cylinder using a common rail injector. The timing of the diesel injection was swept from −70° ATDC to −20° ATDC while the gasoline percentage was adjusted to hold the average combustion phasing (CA50) and load (IMEPg) constant at 0.5° ATDC and 7 bar, respectively. At each operating point the variation in IMEP, peak PRR, and CA50 was calculated from the measured cylinder pressure trace and NOx, CO, soot and UHC were recorded.
2015-04-14
Journal Article
2015-01-0858
Xiaoye Han, Prasad Divekar, Graham Reader, Ming Zheng, Jimi Tjong
Abstract In this work, an active injection control strategy is developed for enabling clean and efficient combustion on an ethanol-diesel dual-fuel engine. The essence of this active injection control is the minimization of the diffusion burning and resultant emissions associated with the diesel injection while maintaining controllability over the ignition and combustion processes. A stand-alone injection bench is employed to characterize the rate of injection for the diesel injection events, and a regression model is established to describe the injection timings and injector delays. A new combustion control parameter is proposed to characterize the extent of diffusion burning on a cycle-to-cycle basis by comparing the modelled rate of diesel injection with the rate of heat release in real time. The test results show that the proposed parameter, compared with the traditional ignition delay, better correlates to the enabling of low NOx and low smoke combustion.
2015-04-14
Journal Article
2015-01-0890
Barbara Graziano, Florian Kremer, Stefan Pischinger, Karl Alexander Heufer, Hans Rohs
Abstract The current and future restrictions on pollutant emissions from internal combustion engines require a holistic investigation of the abilities of alternative fuels to optimize the combustion process and ensure cleaner combustion. In this regard, the Tailor-made Fuels from Biomass (TMFB) Cluster at Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University aims at designing production processes for biofuels as well as fuels optimal for use in internal combustion engines. The TMFB Cluster's scientific approach considers the molecular structure of the fuels as an additional degree of freedom for the optimization of both the production pathways and the combustion process of such novel biofuels. Thus, the model-based specification of target parameters is of the utmost importance to improve engine combustion performance and to send feedback information to the biofuel production process.
2015-04-14
Technical Paper
2015-01-0742
Apostolos Karvountzis-Kontakiotis, Leonidas Ntziachristos, Zissis Samaras, Athanasios Dimaratos, Mark Peckham
Abstract Cyclic combustion variability (CCV) is an undesirable characteristic of spark ignition (SI) engines, and originates from variations in gas motion and turbulence, as well as from differences in mixture composition and homogeneity in each cycle. In this work, the cycle to cycle variability on combustion and emissions is experimentally investigated on a high-speed, port fuel injected, spark ignition engine. Fast response analyzers were placed at the exhaust manifold, directly downstream of the exhaust valve of one cylinder, for the determination of the cycle-resolved carbon monoxide (CO) and nitric oxide (NO) emissions. A piezoelectric transducer, integrated in the spark-plug, was also used for cylinder pressure measurement. The impact of engine operating parameters, namely engine speed, load, equivalence ratio and ignition timing on combustion and emissions variability, was evaluated.
2015-04-14
Technical Paper
2015-01-0836
Behzad Rohani, Stephen Sungsan Park, Choongsik Bae
Abstract Low Temperature Combustion (LTC) is known to be feasible only in lower load ranges so in real world application of LTC, engine operation mode should frequently change back and forth between LTC mode in lower loads and conventional mode in higher loads. In this research, effect of injection strategy on smoothness and emissions during mode transition in a single cylinder heavy duty diesel engine is studied. The Exhaust Gas Recirculation (EGR) line was controlled by a servo-valve capable of opening or closing the EGR loop within only one engine cycle. Ten cycles after the EGR valve closure were taken as the transition period during which injection timing and quantity were shifted in various ways (i.e. injection strategies) and the effect on Indicated Mean Effective Pressure (IMEP) stability and emissions was studied.
2015-04-14
Technical Paper
2015-01-0789
Jongyoon Lee, Sangyul Lee, Jungho Kim, Duksang Kim
Abstract This paper shows development challenges for 6 liter heavy duty off-road diesel engines to meet the Tier4 final emission regulations with a base diesel engine compliant with Tier4 interim emission regulations. Even if an after-treatment system helps to reduce emissions, quite amount of particulate matters (PM) reduction is still necessary since a diesel particulate filter (DPF) system is supposed to be excluded in Tier4 final diesel engine. The objective of this research is to see if the base engine has a feasibility to meet Tier4 final emission regulations by a change of piston bowl geometry without DPF. Quite amount of PM can be reduced by piston bowl geometry because piston bowl geometry is a very important part that enhances air and fuel mixing process that help the combustion process.
2015-04-14
Technical Paper
2015-01-1024
Hisao Haga, Hiroyuki Kojima, Naoko Fukushi, Naoki Ohya, Takuya Mito
Abstract A diesel engine is possible solution for carbon dioxide (CO2) reduction from automobiles. However, it is necessary for a diesel engine vehicle to reduce nitrogen oxide (NOx) emission. Therefore, this research focused on a Urea-selective catalytic reduction (urea-SCR) system as an after-treatment system to convert NOx and proposes the control method of the urea-SCR system based on the output of an ammonia (NH3) sensor. By maximizing NH3 storage rate of the SCR, conversion performance is maximized. To maximize the NH3 storage rate, an NH3 sensor is installed downstream of the SCR. The amount of urea-solution is controlled to keep NH3 slip detected by the sensor. Thus, the NH3 storage amount in the SCR or the SCRF (SCR on filter) can be maximized. The estimation and the control of NH3 storage amount is also used to cause NH3 slip immediately. NH3 storage capacity changes with catalyst temperature. In a transient state, temperature distribution occurs in the SCR catalyst.
2015-04-14
Technical Paper
2015-01-1020
Joel Michelin, Philippe Nappez, Frederic Guilbaud, Christof Hinterberger, Eric Ottaviani, Catherine Gauthier, Philippe Maire, Thierry Couturier
Abstract Future Diesel emission standards for passenger cars, light and medium duty vehicles, require the combination of a more efficient NOx reduction performance, a significant reduction of fuel consumption along with the opportunity to reduce the complexity and the package requirements to facilitate it. Recent activities on catalytic products allows for the SCR active compounds to move from the ceramic substrate located in the underbody to the DPF substrate already located in a close coupled position to achieve the benefit of the highest temperature. This newly developed SCR-coated DPF has massively improved the potential of NOX reduction. As published in the SAE-2014-0132 “advanced compact mixer: BlueBox” [1] it is crucial to inject Adblue®/DEF with a very high mixing performance level.
2015-04-14
Technical Paper
2015-01-1155
Robert Steffan, Peter Hofmann, Bernhard Geringer
Abstract This paper focuses on the potentials of a Belt-Starter-Generator (BSG) in the context of an ultra-light vehicle prototype with a target curb weight of only 600 kg. Therefore, two hybrid approaches with a voltage level below 60 V are described and their potentials regarding electrical driving and CO2 reduction are analysed in detail. Introducing the ‘Cars Ultra-Light Technology’ (CULT) project, the holistic lightweight approach is described as a main requirement for the further hybrid investigations. In addition, a P2-hybrid structure with a 12 V BSG on the transmission input shaft enabled unique features despite the low voltage level and limited electrical power resources. The CO2 reduction for this powertrain combination is described and compared to a conventional stop start configuration. The validation process on a dynamic test rig is presented as well.
2015-04-14
Technical Paper
2015-01-1008
Vitaly Y. Prikhodko, Josh A. Pihl, Todd J. Toops, John F. Thomas, James E. Parks, Brian H. West
Abstract Ethanol is a very effective reductant for nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environments. With the widespread availability of ethanol/gasoline-blended fuel in the U.S., lean gasoline engines equipped with Ag/Al2O3 catalysts have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for evaluation of catalyst performance.
2015-04-14
Journal Article
2015-01-1002
Yuichiro Murata, Tomoko Morita, Katsuji Wada, Hiroshi Ohno
Abstract A new concept for trapping NOx and HC during cold start, the NOx Trap Three-Way Catalyst (N-TWC), is proposed. N-TWC adsorbs NOx at room temperature, and upon reaching activation temperature under suitable air-fuel ratio conditions, it reduces the adsorbed NOx. This allows a reduction in NOx emissions during cold start. N-TWC's reduction mechanism relies on NOx adsorption sites which are shown to be highly dispersed palladium on acid sites in the zeolite. Testing on an actual vehicle equipped with N-TWC confirmed that N-TWC is able to reduce emissions of NOx and HC during cold start, which is a challenge for conventional TWCs.
2015-04-14
Technical Paper
2015-01-1066
Frank Adam, Jan Schoenhaber, Armin Wagner
Abstract The introduction of vehicle emission and fuel economy standards (CO2) accelerates the introduction of new platform and powertrain combinations into the market place. All of these combinations will require unique exhaust gas aftertreatment systems that comply with the current emission legislation. The optimization of each unique aftertreatment solution requires the proper application of catalyst technologies at the lowest PGM concentrations. The optimization process needs to be fast, reliable, realistic and cost attractive. It is arguable that performing the aftertreatment optimization on a chassis dynamometer is variable, time consuming and expensive. This work demonstrates how a synthetic gas bench (SGB) can be used to simulate stoichiometric engine emissions and aftertreatment performance. The SGB procedure duplicates the vehicle NEDC engine-out emissions and catalyst heat-up profiles.
2015-04-14
Technical Paper
2015-01-1026
Padmanabha Reddy Ettireddy, Adam Kotrba, Thirupathi Boningari, Panagiotis Smirniotis
Abstract The main objective of this work is to develop a low-temperature SCR catalyst for the reduction of nitrogen oxides at cold start, low-idle and low-load conditions. A series of metal oxide- incorporated beta zeolite catalysts were prepared by adopting incipient wetness technique, cation-exchange, deposition-precipitation and other synthesis techniques. The resulting catalysts were characterized and tested for reduction of NOx in a fixed bed continuous flow quartz micro-reactor using ammonia as the reductant gas. Initial catalyst formulations have been exhibited good NOx reduction activity at low-temperatures. These catalyst formulations showed a maximum NOx conversion in the temperature range of 100 - 350°C. Besides, more experiments were performed with the aim of optimizing these formulations with respect to the metal atomic ratio, preparation method, active components and supported metal type.
2015-04-14
Technical Paper
2015-01-1054
Henrik Smith, Markus Zöchbauer, Thomas Lauer
Abstract A fast preparation of the liquid urea water solution (UWS) is necessary to ensure high conversion rates in exhaust aftertreatment systems based on Selective Catalytic Reduction (SCR). Droplet wall interaction is of major importance during this process, in particular droplet breakup and the Leidenfrost effect. A deeper understanding of the underlying mechanisms is a basic requirement to calibrate CFD models in order to improve their prediction accuracy. This paper presents a detailed literature study and discussion about the major impact factors on droplet wall interaction. Measurements of the Leidenfrost temperature were conducted and the corresponding regimes classified based on optical observations. The pre- and post-impingement spray was analysed using the laser diffraction method. Further, the validity of spray initialisation based on measurements at room temperature was verified.
2015-04-14
Technical Paper
2015-01-1616
Lindita Bushi, Timothy Skszek, David Wagner
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. The Regulation requirements such as the 2020 CAFE (Corporate Average Fuel Economy) standard, growing public demand, and increased fuel prices are pushing auto manufacturers worldwide to increase fuel economy through incorporation of lightweight materials in newly-designed vehicle structures.
2015-04-14
Journal Article
2015-01-1035
Yanxiang Yang, Bingqian Tan, Changwen Liu, Ping Zhang, Daguang Xi
Abstract A versatile liquid dosing device along with its metering theory, which can be applied to both SCR dosing system and DPF regeneration system of IC engine after-treatment system, is presented in this paper. The device is composed of a solenoid driven plunger pump, a nozzle and a pressure tube, and is pump-end controlled by PWM signals. Both electrically resistive and conductive liquids including DEF for SCR system, fuel for DPF regeneration, and gasoline for spark ignition engine, can be dispensed quantitatively with this device. A metering theory determining the liquid discharged per injection is developed by studying the system using a physical-mathematical model. The study shows that the liquid discharge can be well correlated with a measurable variable T3, which is associated with the net output energy. Experimental investigations verified that the metering results were independent of the state changes.
2015-04-14
Collection
Papers cover exhaust aftertreatment system models, as well as their validation and application. Technologies encompassed include DOC, HC Trap, DPF, GPF, LNT, TWC, SCR, SCRF, ammonia oxidation catalysts, hybrid or combined catalysts, urea-water solution spray dynamics, and mixture non-uniformity. Modeling aspects range from fundamental, 3D models of individual components to system level simulation, optimization, variation, degradation, and control.
2015-04-14
Technical Paper
2015-01-0383
Changpu Zhao, Gang Yu, Junwei Yang, Man Bai, Fang Shang
Abstract Diesel engines generally tend to produce a very low level of NOx and soot through the application of Miller Cycle, which is mainly due to the low temperature combustion (LTC) atmosphere resulting from the Miller Cycle utilization. A CFD model was established and calibrated against the experimental data for a part load operation at 3000 r/min. A designed set of Miller-LTC combustion modes were analyzed. It is found that a higher boost pressure coupled with EGR can further tap the potential of Miller-LTC cycle, improving and expanding the Miller-LTC operation condition. The simulated results indicated that the variation of Miller timings can decrease the regions of high temperatures and then improve the levels and trade-off relationship of NOx and soot. The in-cylinder peak pressure and NOx emissions were increased dramatically though the problem of insufficient intake charge was resolved by the enhanced intake pressure that is equivalent to dual-stage turbo-charging.
2015-04-14
Journal Article
2015-01-0744
Terrence Alger, Raphael Gukelberger, Jess Gingrich, Barrett Mangold
Abstract The use of cooled EGR as a knock suppression tool is gaining more acceptance worldwide. As cooled EGR become more prevalent, some challenges are presented for engine designers. In this study, the impact of cooled EGR on peak cylinder pressure was evaluated. A 1.6 L, 4-cylinder engine was operated with and without cooled EGR at several operating conditions. The impact of adding cooled EGR to the engine on peak cylinder pressure was then evaluated with an attempt to separate the effect due to advanced combustion phasing from the effect of increased manifold pressure. The results show that cooled EGR's impact on peak cylinder pressure is primarily due to the knock suppression effect, with the result that an EGR rate of 25% leads to an almost 50% increase in peak cylinder pressure at a mid-load condition if the combustion phasing is advanced to Knock Limited Spark Advance (KLSA). When combustion phasing was held constant, increasing the EGR rate had almost no effect on PCP.
2015-04-14
Journal Article
2015-01-0734
Yasuhiko Saijo, Mitsuhiko Ueki, Hirokazu Watanabe, Yoichiro Tejima
Abstract Honda developed a technology to quantify automotive steel corrosion from the rust reduction current detected by a proprietary developed sensor. The values calculated based on Faraday's law did not match the actual measured values for the mass loss of iron due to the added resistance of rust formed between electrodes on the sensor. It was determined that the resistance of rust depends on the environment, and this issue was resolved by setting the correction values for that influence. As a result of this research it was found that the values calculated from the sensor measurements matched those from the mass loss of test specimen on a vehicle. Honda is utilizing this newly developed technology for corrosion research and field data collection.
2015-04-14
Technical Paper
2015-01-0752
Zhi Wang, Yunliang Qi, Hui Liu, Yan Long, Jian-Xin Wang
Abstract Occurrence of sporadic super-knock is the main obstacle to the development of advanced gasoline engines. One of the possible inducements of super-knock, agglomerated soot particle induced pre-ignition, was studied for high boosted gasoline direct injection (GDI) engines. The correlation between soot emissions and super-knock frequency was investigated in a four-cylinder gasoline direct injection production engine. The test results indicate that higher in-cylinder soot emission correlate with more pre-ignition and super-knock cycles in a GDI production engine. To study the soot/carbon particles trigger super-knock, a single-cylinder research engine for super-knock study was developed. The carbon particles with different temperatures and sizes were introduced into the combustion chamber to trigger pre-ignition and super-knock.
2015-04-14
Technical Paper
2015-01-0776
Gerben Doornbos, Stina Hemdal, Daniel Dahl
Abstract This study investigated how the amount of dilution applied can be extended while maintaining normal engine operation in a GDI engine. Adding exhaust gases or air to a stoichiometric air/fuel mixture yields several advantages regarding fuel consumption and engine out emissions. The aim of this paper is to reduce fuel consumption by means of diluted combustion, an advanced ignition system and adjusted valve timing. Tests were performed on a Volvo four-cylinder engine equipped with a dual coil ignition system. This system made it possible to extend the ignition duration and current. Furthermore, a sweep was performed in valve timing and type of dilution, i.e., air or exhaust gases. While maintaining a CoV in IMEP < 5%, the DCI system was able to extend the maximum lambda value by 0.1 - 0.15. Minimizing valve overlap increased lambda by an additional 0.1.
2015-04-14
Technical Paper
2015-01-0843
Anand Nageswaran Bharath, Yangdongfang Yang, Rolf D. Reitz, Christopher Rutland
Abstract While Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) exhibit high thermal efficiency and produce low NOx and soot emissions, low load operation is still a significant challenge due to high unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions, which occur as a result of poor combustion efficiencies at these operating points. Furthermore, the exhaust gas temperatures are insufficient to light-off the Diesel Oxidation Catalyst (DOC), thereby resulting in poor UHC and CO conversion efficiencies by the aftertreatment system. To achieve exhaust gas temperature values sufficient for DOC light-off, combustion can be appropriately phased by changing the ratio of gasoline to diesel in the cylinder, or by burning additional fuel injected during the expansion stroke through post-injection.
2015-04-14
Journal Article
2015-01-1034
Homayoun Ahari, Michael Smith, Michael Zammit, Kenneth Price, Jason Jacques, Thomas Pauly, Lin Wang
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III/Tier III Emissions Standards for Light Duty Diesel (LDD) passenger vehicles. As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, durability and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR). The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) provided as Diesel Exhaust Fluid (DEF), which is an aqueous urea solution 32.5% concentration in weight with water (CO(NH2)2 + H2O), optimum operating temperatures, and optimum nitrogen dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is most influenced by Precious Group Metals (PGM) containing catalysts upstream of the SCR catalyst.
2015-04-14
Technical Paper
2015-01-1030
Ashok Kumar, Krishna Kamasamudram, Neal Currier, Aleksey Yezerets
Abstract The high global warming potential of nitrous oxide (N2O) led to its inclusion in the list of regulated greenhouse gas (GHG) pollutants [1, 2]. The mitigation of N2O on aftertreatment catalysts was shown to be ineffective as its formation and decomposition temperatures do not overlap. Therefore, the root causes for N2O formation were investigated to enable the catalyst architectures and controls development for minimizing its formation. In a typical heavy-duty diesel exhaust aftertreatment system based on selective catalytic reduction of NOx by ammonia derived from urea (SCR), the main contributors to tailpipe N2O are expected to be the undesired reaction between NOx and NH3 over SCR catalyst and NH3 slip in to ammonia slip catalyst (ASC), part of which gets oxidized to N2O.
2015-04-14
Journal Article
2015-01-1022
Jinyong Luo, Hongmei An, Krishna Kamasamudram, Neal Currier, Aleksey Yezerets, Thomas Watkins, Larry Allard
Abstract In this contribution, nuanced changes of a commercial Cu-SSZ-13 catalyst with hydrothermal aging, which have not been previously reported, as well as their corresponding impact on SCR functions, are described. In particular, a sample of Cu-SSZ-13 was progressively aged between 550 to 900°C and the changes of performance in NH3 storage, oxidation functionality and NOx conversion of the catalyst were measured after hydrothermal exposure at each temperature. The catalysts thus aged were further characterized by NH3-TPD, XRD and DRIFTS techniques for structural changes. Based on the corresponding performance and structural characteristics, three different regimes of hydrothermal aging were identified, and tentatively as assigned to “mild”, “severe” and “extreme” aging. Progressive hydrothermal aging up to 750°C decreased NOx conversion to a small degree, as well as NH3 storage and oxidation functions.
2015-04-14
Technical Paper
2015-01-1007
Steve Golden, Zahra Nazarpoor, Maxime Launois
Abstract In the context of evolving market conditions the Three-Way Catalyst (TWC) is entering an exciting new phase. It remains the main emission control strategy for gasoline powered vehicles but a period of rapidly evolving engine development, tighter tailpipe regulations and material supply issues present a unique challenge to catalyst developers. This paper presents an initial study outlining the development of spinel mixed metal oxides for application in modern TWC and addresses some specific challenges underlying this application. Lab and flow reactor data in the study showed how the spinel structure has significant potential in various aspects of the TWC with the necessary improvement in thermal stability. Some initial engine data show three-way performance at or near stoichiometric in a PGM and rare earth free spinel coating and a synergy effect when combined with PGM.
2015-04-14
Journal Article
2015-01-1006
Joseph R. Theis, Jeong Kim, Giovanni Cavataio
Abstract A laboratory study was performed to assess the potential capability of TWC+LNT/SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. It was assumed that the exhaust system would need a close-coupled (CC) TWC, an underbody (U/B) TWC, and a third U/B LNT/SCR converter to satisfy the emission standards on the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established. Sizing studies were performed to determine the minimum LNT/SCR volume needed to satisfy the NOx target. The ability of the TWC to oxidize the HC during rich operation through steam reforming was crucial for satisfying the HC target.
2015-04-14
Technical Paper
2015-01-1250
Nisar Al-Hasan, Johannes Beer, Jan Ehrhard, Thomas Lorenz, Ludwig Stump
Abstract In the past few years the gasoline direct injection (GDI) downsizing approach was the dominating gasoline engine technology used to reduce CO2 emission and to guarantee excellent transient performance. Forecasts for the next several years indicate that the worldwide market share of GDI engines will grow further. By 2022 it is expected that the gasoline DI engine will be the most popular combustion engine for passenger car application. However in the future the gasoline engine will have to comply with more stringent emission and CO2 standards. The European legislation demands a fleet average CO2 emission of 95g/km latest by 2021. Therefore, CO2 emission improvement, without compromising driveability, is the major goal of powertrain development. The perspective of more stringent CO2 and emission legislation in highly loaded drive cycle necessitates major development efforts.
Viewing 91 to 120 of 22754

Filter