Display:

Results

Viewing 91 to 120 of 23244
2016-04-05
Journal Article
2016-01-0946
Jonas Jansson, Soran Shwan, Magnus Skoglundh
Abstract Emissions of nitrogen oxides (NOx) from heavy-duty diesel engines are subject to more stringent environmental legislation. Selective catalytic reduction (SCR) over metal ion-exchanged zeolites is in this connection an efficient method to reduce NOx. Understanding durability of the SCR catalyst is crucial for correct design of the aftertreatment system. In the present paper, thermal and chemical ageing of Fe-BEA as NH3-SCR catalyst is studied. Experimental results of hydrothermal ageing, and chemical ageing due to phosphorous and potassium exposure are presented. The catalyst is characterized by flow reactor experiments, nitrogen physisorption, DRIFTS, XRD, and XPS. Based on the experimental results, a multisite kinetic model is developed to describe the activity of the fresh Fe-BEA catalyst.
2016-04-05
Journal Article
2016-01-0947
Junhui Li, Neal Currier, Aleksey Yezerets, Hai-Ying Chen, Howard Hess, Shadab Mulla
Typical Lean NOx Trap (LNT) catalyst composition includes precious metal components (Pt, Pd, and/or Rh), responsible for NO oxidation during lean operation and NOx reduction during rich operation. It was found that redox history of commercial LNT catalyst plays a significant role on deciding its NOx conversion under Lean/Rich cyclic condition. Further test had shown that fully formulated LNT catalyst being pre-reduced had shown much better NO reduction activity during the temperature-programmed reduction (TPRx) of NO than the same LNT catalyst being oxidized. The following study with Rh-only and Pt-only catalyst had demonstrated that Rh plays a key role on the large variation of the NO reduction function due to oxidation state change over LNT catalyst.
2016-04-05
Technical Paper
2016-01-0945
Guanyu Zheng, Suying Zhang, Fengshuang Wang, Zhengrui Liu, Jianzhong Tao
Selective Catalytic Reduction (SCR) based on urea water solution (UWS) has become a promising technology to reduce Nitrogen Oxides (NOx) emissions for mobile applications. However, urea may undergo incomplete evaporations, resulting in formation of solid deposits on the inner surfaces including walls and mixers, limiting the transformation of urea to ammonia and chemical reaction between NOx and ammonia. Numerous design parameters of SCR system affect the formation of urea deposits [1] ; they are: exhaust condition, injector type, injector mounting angle, geometrical configurations of mixer, injection rate and etc. Research has been available in urea deposits, mixers, urea injection rates and others [2,4,5,6]. In this paper, focus is placed on improving mixing structure design from baseline design of EU IV to EU V. On-road tests indicate that deposits are highly likely to occur near locations where spray and exhaust gas interact most.
2016-04-05
Technical Paper
2016-01-0943
Paul Ragaller, Alexander Sappok, Leslie Bromberg, Natarajan Gunasekaran, Jason Warkins, Ryan Wilhelm
Abstract Efficient aftertreatment management requires accurate sensing of both particulate filter soot and ash levels for optimized feedback control. Currently a combination of pressure drop measurements and predictive models are used to indirectly estimate the loading state of the filter. Accurate determination of filter soot loading levels is challenging under certain operating conditions, particularly following partial regeneration events and at low flow rate (idle) conditions. This work applied radio frequency (RF)-based sensors to provide a direct measure of the particulate filter soot levels in situ. Direct measurements of the filter loading state enable advanced feedback controls to optimize the combined engine and aftertreatment system for improved DPF management. This study instrumented several cordierite and aluminum titanate diesel particulate filters with RF sensors.
2016-04-05
Journal Article
2016-01-0942
Nicholas Custer, Carl Justin Kamp, Alexander Sappok, James Pakko, Christine Lambert, Christoph Boerensen, Victor Wong
Abstract The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
2016-04-05
Technical Paper
2016-01-1052
Adwitiya Dube, A Ramesh
Abstract Direct injection of fuel has been seen as a potential method to reduce fuel short circuiting in two stroke engines. However, most work has been on low pressure injection. In this work, which employed high pressure direct injection in a small two stroke engine (2S-GDI), a detailed study of injection parameters affecting performance and combustion has been presented based on experiments for evaluating its potential. Influences of injection pressure (IP), injection timing (end of injection - EOI) and location of the spark plug at different operating conditions in a 199.3 cm3 automotive two stroke engine using a real time open engine controller were studied. Experiments were conducted at different throttle positions and equivalence ratios at a speed of 3000 rpm with various sets of injection parameters and spark plug locations. The same engine was also run in the manifold injection (2S-MI) mode under similar conditions for comparison.
2016-04-05
Technical Paper
2016-01-1016
Yolanda Bravo, Carmen Larrosa, Jose Lujan, Héctor Climent, Manuel Rivas
Abstract Spark ignition (SI) engines are increasing their popularity worldwide since compression ignition (CI) engines have been struggling to comply with new pollutant emission regulations. At the moment, downsizing is the main focus of research on SI engines, decreasing their displacement and using a turbocharging system to compensate this loss in engine size. Exhaust gas recirculation is becoming a popular strategy to address two main issues that arise in heavily downsized turbocharged engines at full load operation: knocking at low engines speeds and fuel enrichment at high engine speeds to protect the turbine. In this research work, a fuel consumption optimization for different operating conditions was performed to operate with a cooled EGR loop, with gasoline and E85. Thus, the benefits of exhaust gas recirculation are proven for a SI gasoline turbocharged direct injection engine.
2016-04-05
Technical Paper
2016-01-1015
Somendra Pratap Singh, Shikhar Asthana, Naveen Kumar
Abstract Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.
2016-04-05
Technical Paper
2016-01-1180
Trevor Crain, Thomas Gorgia, R. Jesse Alley
Abstract EcoCAR is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The EcoCAR Advanced Vehicle Technology Competition series is organized by Argonne National Laboratory, headline sponsored by the U.S. Department of Energy and General Motors, and sponsored by more than 30 industry and government leaders. In the last competition series, EcoCAR 2, fifteen university teams from across North America were challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. This paper examines the results of the EcoCAR 2 competition’s emissions and energy consumption (E&EC) on-road test results for several prototype plug-in hybrid electric vehicles (PHEVs). The official results for each vehicle are presented along with brief descriptions of the hybrid architectures.
2016-04-05
Journal Article
2016-01-1176
Karim Hamza, Ken Laberteaux
Abstract This work presents a modeling approach for estimation of the equivalent greenhouse gas (GHG) emissions of plugin hybrid electric vehicles (PHEVs) for real driving patterns and charging behaviors. In general, modeling of the equivalent GHG for a trip made by a PHEV not only depends on the trip trace in question, but also on the electric range of the vehicle and energy consumption in previous trips since the last charging event. This can significantly increase the necessary computational burden of estimating the GHG emissions using numerical simulation tools, which are already computationally-expensive. The proposed approach allows a trip numerical simulation starting with a fully charged battery to be re-used for GHG estimation of a trip that starts with any initial state of charge by re-allocating the appropriate amount electric energy to an equivalent gas consumption.
2016-04-05
Technical Paper
2016-01-1346
Tomoyuki Hosaka, Taisuke Sugii, Eiji Ishii, Kazuhiro Oryoji, Yoshihiro Sukegawa
Abstract We developed the numerical simulation tool by using OpenFOAM® and in-house simulation codes for Gasoline Direct Injection (GDI) engine in order to carry out the precise investigation of the throughout process from the internal nozzle flow to the fuel/air mixture in engines. For the piston/valve motions, a mapping approach is employed and implemented in this study. In the meantime, the spray atomization including the liquid-columnbreakup region and the secondary-breakup region are simulated by combining the different numerical approaches applied to each region. By connecting the result of liquid-column-breakup simulation to the secondary-breakup simulation, the regions which have different physical phenomena with different length scales are seamlessly jointed; i.e., the velocity and position of droplets predicted by the liquid-column-breakup simulation is used in the secondary breakup simulation so that the initial velocity and position of droplets are transferred.
2016-04-05
Technical Paper
2016-01-0010
Gopal Athani, Kapil Dongare, Srinivasa Raju Gavarraju, Shashi Kulkarni, Prasad Yerraguntla
Abstract Micro hybrid Systems are emerging as a promising solution to reduce the fuel consumption and greenhouse gas emissions in emerging markets, where the strict emission requirements are being enforced gradually. Micro hybrid Systems reduce the fuel consumption and greenhouse gas emissions in a conventional vehicle with 12 V electrical system, by optimizing the electrical energy generation, storage, and distribution, with functions like Intelligent Alternator Control, Engine Stop/Start, and Load Management. With the advent of Connected Car Systems, information about the vehicle is seamlessly provided to the customer not just through the Human Machine Interface systems within the vehicle, but to other mobile devices used by the customers.
2016-04-05
Technical Paper
2016-01-0044
Sung Yul Chu, Sung Eun Jo, Kyoungbok Lee, Kwang Chul Oh, Jong Rim Lee
Abstract On-board diagnostics (OBD) of diesel vehicles require various sensors to detect system malfunctions. The Particulate Matter (PM) sensor is one of OBD devices which gather information which could be critical in determining a crack in the diesel particulate filters (DPFs). The PM sensor detects PM which penetrates cracked DPFs and converts the amount of PM into electrical values. The PM sensor control unit (SCU) receives those analog signals and converts them to digital values through hardware and software solutions. A capacitive sensing method would be a stable solution because it detects not raw analog signals but electrical charges or a time constant going through the capacitive load. Therefore, amount of PM would be converted reasonable value of capacitance even though there is a little amount of PM.
2016-04-05
Technical Paper
2016-01-0088
Tervin Tan, Jin Seo Park, Patrick Leteinturier
Abstract The constant motivation for lower fuel consumption and emission levels has always been in the minds of most auto makers. Therefore, it is important to have precise control of the fuel being delivered into the engine. Gasoline Port fuel injection has been a matured system for many years and cars sold in emerging markets still favor such system due to its less system complexity and cost. This paper will explain injection control strategy of today during development, and especially the injector dead-time compensation strategy in detail and how further improvements could still be made. The injector current profile behavior will be discussed, and with the use of minimum hardware electronics, this paper will show the way for a new compensation strategy to be adopted.
2016-04-05
Technical Paper
2016-01-0254
Gursaran D. Mathur
Field tests were conducted on a late full sized sedan with the HVAC unit operating in both Recirculation and OSA modes to monitor build-up of the CO2 concentration inside the cabin and its influence on occupant’s fatigue and alertness. These tests were conducted during 2015 summer on interstate highways with test durations ranging from 4 to 7 hours. During the above tests, fatigue or tiredness of the occupants (including CO2 levels) was monitored and recorded at 30 min intervals. Based on this investigation it is determined that the measured cabin concentration levels reaches ASHRAE (Standard 62-1999) specified magnitudes (greater than 700 ppm over ambient levels) with three occupants in the vehicle. Further, the occupants did show fatigue when the HVAC unit was operated in recirculation mode in excess of 5 hours. Further details have been presented in the paper.
2016-04-05
Journal Article
2016-01-0282
Julio Carrera
Abstract Recent emissions standards have become more restrictive in terms of CO2 and NOx reduction. This has been translated into higher EGR rates at higher exhaust gas temperatures with lower coolant flow rates for much longer lifetimes. In consequence, thermal load for EGR coolers has been increasing and the interaction of boiling with thermal fatigue is now a critical issue during development. It is almost impossible to avoid localized boiling inside an EGR cooler and, in fact, it would not be strictly necessary when it is below the Critical Heat Flux (CHF). However when CHF is exceeded, film boiling occurs leading to the sudden drop of the heat transfer rate and metal temperature rise. In consequence, thermal stress increases even when film boiling is reached only in a small area inside the part. It is very difficult to accurately predict under which conditions CHF is reached and to establish the margins to avoid it.
2016-04-05
Technical Paper
2016-01-1340
Vikram Dang, Subhash Chander
Abstract This paper presents a CFD simulation methodology for solving complex physics of methane/air swirling turbulent flame impinging on a flat surface. Turbulent Flow in burner is simulated using Re-Normalized Group k-ε model while Stress-omega Reynolds Stress Model is used for flame structure. Methane/air combustion is simulated using global combustion reaction mechanism. To account for Turbulence-Chemistry Interaction of methane/air combustion, Eddy - Dissipation Model is used. The effect of varying plate distance to burner exit nozzle diameter is also investigated and comparisons of simulated results with experiments are discussed. Change in flame structure is observed with variation of plate distance from burner exit. A dip in the heat flux distribution is observed for all cases. This is due to the presence of central weak flow region created at and around the central axis due to swirl.
2016-04-05
Journal Article
2016-01-0775
Zhanteng Chang, Chao Yu, Haiyan Zhang, Shuojin Ren, Zhi Wang, Boyuan Wang, Jianxin Wang
Abstract Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
2016-04-05
Technical Paper
2016-01-0799
George Karavalakis, Yu Jiang, Jiacheng Yang, Maryam Hajbabaei, Kent Johnson, Thomas Durbin
Abstract We assessed gaseous and particulate matter (PM) emissions from a current technology stoichiometric natural gas waste hauler equipped with a 2011 model year 8.9L Cummins Westport ISL-G engine with cooled exhaust gas recirculation (EGR) and three-way catalyst (TWC). Testing was performed on five fuels with varying Wobbe and methane numbers over the William H. Martin Refuse Truck Cycle. The results showed lower nitrogen oxide (NOx) emissions for the low methane fuels (i.e., natural gas fuels with a relatively low methane content) for the transport and curbside cycles. Total hydrocarbon (THC) and methane (CH4) emissions did not show any consistent fuel trends. Non-methane hydrocarbon (NMHC) emissions showed a trend of higher emissions for the fuels containing higher levels of NMHCs. Carbon monoxide (CO) emissions showed a trend of higher emissions for the low methane fuels.
2016-04-05
Technical Paper
2016-01-0803
Konstantinos Michos, Georgios Bikas, Ioannis Vlaskos
Abstract A new global NOx emissions formation model, formulated by a single analytically derived algebraic equation, is developed with relevance to post-flame gases. The model originates from subsets of detailed kinetic schemes for thermal and N2O pathway NO formation, needs no calibration and is quick to implement and run. Due to its simplicity, the model can be readily used in both 1D and 3D-CFD simulation codes, as well as for direct post-processing of engine test data. Characteristic timescales that describe the kinetic nature of the involved NO formation routes, when they evolve in the post-flame gases independently the one from another, are introduced incorporating kinetic information from all relevant elementary reactions.
2016-04-05
Technical Paper
2016-01-0787
Valentin Soloiu, Martin Muinos, Spencer Harp, Tyler Naes, Remi Gaubert
Abstract In this study, Premixed Charge Compression Ignition (PCCI) was investigated with alternative fuels, S8 and n-butanol. The S8 fuel is a Fischer Tropsch (FT) synthetic paraffinic kerosene (SPK) produced from natural gas. PCCI was achieved with a dual-fuel combustion incorporating 65% (by mass) port fuel injection (PFI) of n-butanol and 35% (by mass) direct injection (DI) of S8 with 35% exhaust gas recirculation. The experiments were conducted at 1500 rpm and varied loads of 1-5 bar brake mean effective pressure (BMEP). The PCCI tests were compared to an ultra-low sulfur diesel no. 2 (ULSD#2) baseline in order to determine how the alternative fuels effects combustion, emissions, and efficiencies. At 3 and 5 bar BMEP, the heat release in the PCCI mode exhibited two regions of high temperature heat release, one occurring near top dead center (TDC) and corresponds to the ignition of S8 (CN 62), and a second stage occurring ATDC from n-butanol combustion (CN 28).
2016-04-05
Technical Paper
2016-01-0788
Xiangyu Meng, Karthik Nithyanandan, Timothy Lee, Yuqiang Li, Wuqiang Long, Chia-Fon Lee
Abstract In order to comply with the stringent emission regulations, many researchers have been focusing on diesel-compressed natural gas (CNG) dual fuel operation in compression ignition (CI) engines. The diesel-CNG dual fuel operation mode has the potential to reduce both the soot and NOx emissions; however, the thermal efficiency is generally lower than that of the pure diesel operation, especially under the low and medium load conditions. The current experimental work investigates the potential of using diesel-1-butanol blends as the pilot fuel to improve the engine performance and emissions. Fuel blends of B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with 70% CNG substitution were compared based on an equivalent input energy at an engine speed of 1200 RPM. The results indicated that the diesel-1-butanol pilot fuel can lead to a more homogeneous mixture due to the longer ignition delay.
2016-04-05
Journal Article
2016-01-0791
Midhat Talibi, Paul Hellier, Ramanarayanan Balachandran, Nicos Ladommatos
Abstract Development of new fuels and engine combustion strategies for future ultra-low emission engines requires a greater level of insight into the process of emissions formation than is afforded by the approach of engine exhaust measurement. The paper describes the development of an in-cylinder gas sampling system consisting of a fast-acting, percussion-based, poppet-type sampling valve, and a heated dilution tunnel; and the deployment of the system in a single cylinder engine. A control system was also developed for the sampling valve to allow gas samples to be extracted from the engine cylinder during combustion, at any desired crank angle in the engine cycle, while the valve motion was continuously monitored using a proximity sensor. The gas sampling system was utilised on a direct injection diesel engine co-combusting a range of hydrogen-diesel fuel and methane-diesel fuel mixtures.
2016-04-05
Technical Paper
2016-01-0792
Jeremy Rochussen, Jeff Yeo, Patrick Kirchen
Abstract Diesel-ignited dual-fuel (DIDF) combustion of natural gas (NG) is a promising strategy to progress the application of NG as a commercially viable compression ignition engine fuel. Port injection of gaseous NG applied in tandem with direct injection of liquid diesel fuel as an ignition source permits a high level of control over cylinder charge preparation, and therefore combustion. Across the broad spectrum of possible combustion conditions in DIDF operation, different fundamental mechanisms are expected to dominate the fuel conversion process. Previous investigations have advanced the understanding of which combustion mechanisms are likely present under certain sets of conditions, permitting the successful modeling of DIDF combustion for particular operating modes. A broader understanding of the transitions between different combustion modes across the spectrum of DIDF warrants further effort.
2016-04-05
Technical Paper
2016-01-0747
Vicente Bermudez, Raul Payri, J. Javier Lopez, Daniel Campos, Gilles Coma, Frederic Justet
Abstract Nowadays the main part of investigations in controlled auto-ignition (CAI) engines are centered on performance or some engine processes simulation, leaving aside particle number (PN) emission. The present work is focused on this last topic: PN emission analysis using two different injectors in a 2-stroke CAI engine, and a global comparison of PN emission of this engine with its homonymous 4-stroke engines at two operating conditions. The study was performed in a single-cylinder gasoline engine with 0.3 l displacement, equipped with an air-assisted direct-injection (DI) fuel injection system. Concerning the injectors evaluated, significant differences in PN emission have been found. When the I160X injector (narrow spray angle) was used, PN emissions were reduced. The spray cone angle during the injection event appears to be a key factor for PN emission reduction.
2016-04-05
Technical Paper
2016-01-0749
Kelvin Xie, Tadanori Yanai, Zhenyi Yang, Graham Reader, Ming Zheng
Abstract Advances in engine technology in recent years have led to significant reductions in the emission of pollutants and gains in efficiency. As a facet of investigations into clean, efficient combustion, the homogenous charge compression ignition (HCCI) mode of combustion can improve upon the thermal efficiency and nitrogen oxides emission of conventional spark ignition engines. With respect to conventional diesel engines, the low nitrogen oxides and particulate matter emissions reduce the requirements on the aftertreatment system to meet emission regulations. In this paper, n-butanol, an alcohol fuel with the potential to be derived from renewable sources, was used in a light-duty diesel research engine in the HCCI mode of combustion. Control of the combustion was implemented using the intake pressure and external exhaust gas recirculation. The moderate reactivity of butanol required the assistance of increased intake pressure for ignition at the lower engine load range.
2016-04-05
Technical Paper
2016-01-0752
Pranab Das, Mayur Selokar, P.M.V. Subbarao, J.P. Subrahmanyam
Abstract A single cylinder direct injection (DI) diesel engine is modified to run in HCCI-DI mode using a novel in-cylinder dual injection strategy. In this present investigation effect of 2nd injection timing, premixed equivalence ratio and exhaust gas recirculation (EGR) on combustion and emission behavior is studied. Based on the characteristics of combustion, performance and emission behavior, 2nd injection timing is optimized at a constant split ratio (80%) and engine speed (1500 rev/min). Premixed equivalence ratio was varied (up to 0.38) at the optimized 2nd injection timing condition. It is identified that 2nd injection timing and premixed equivalence ratio play an important role in controlling the occurrences of all combustion parameters of HCCI-DI combustion. EGR was introduced in the cylinder to understand its effect on various combustion parameters and emission behavior.
2016-04-05
Technical Paper
2016-01-0751
Robert Szolak, Eric Alexander Morales Wiemer, Ivica Kraljevic, Alexander Susdorf, Hüseyin Karadeniz, Boris Epple, Florian Rümmele, Achim Schaadt
Abstract The following study describes an on-board fuel tailoring process based on a novel and compact catalytic fuel evaporator, capable of optimizing Homogenous Charge Compression Ignition (HCCI) combustion. Evaporation tests with conventional diesel were performed revealing a significant amount of long-chain alkane cracking. As a consequence of these cracking reactions, the presented experiments demonstrate that the produced fuel vapor has altered combustion properties as compared to the feeding diesel stream. Further tests using a constant volume chamber at 30 bar, over the temperature range 500 to 1120 K, indicated that ignition delay time and auto ignition temperature of this fuel vapor can be shifted from diesel to gasoline. Thus, by performing dynamic on-board adjustment of the fuel properties, it is possible therefore to increase HCCI combustion to high loads.
2016-04-05
Technical Paper
2016-01-0737
Yilu Lin, Timothy Lee, Karthik Nithyanandan, Jiaxiang Zhang, Yuqiang Li, Chia-Fon Lee
Abstract The performance and emission of an AVL 5402 single-cylinder engine fueled with acetone-butanol-ethanol (ABE) / diesel blends were experimentally investigated at various load conditions and injection timings. The fuels tested in the experiments were ABE10 (10% ABE, 90% diesel), ABE20 and diesel as baseline. Thermodynamics analyses of pressure traces acquired in experiments were performed to show the impact of ABE concentration to the overall combustion characteristics of the fuel mixtures. Cumulative heat release analysis showed that ABE mixtures generally retarded the overall combustion phasing, ignition delays of ABE-containing fuels were significantly extended, however, combustion rate during CA10∼CA50 were accelerated at different extent. Pressure rise rate of ABE-containing fuels further implicated that the premixed combustion were more dominant than that of diesel. Polytropic indices of both expansion and compression strokes were calculated from p-V diagram.
2016-04-05
Technical Paper
2016-01-0767
Changle Li, Lianhao Yin, Sam Shamun, Martin Tuner, Bengt Johansson, Rickard Solsjo, Xue-Song Bai
Abstract An experiment was conducted to investigate the effect of charge stratification on the combustion phasing in a single cylinder, heavy duty (HD) compression ignition (CI) engine. To do this the start of injection (SOI) was changed from -180° after top dead centre (ATDC) to near top dead centre (TDC) during which CA50 (the crank angle at which 50% of the fuel energy is released) was kept constant by changing the intake temperature. At each SOI, the response of CA50 to a slight increase or decrease of either intake temperature or SOI were also investigated. Afterwards, the experiment was repeated with a different intake oxygen concentration. The results show that, for the whole SOI period, the required intake temperature to keep constant CA50 has a “spoon” shape with the handle on the -180° side.
Viewing 91 to 120 of 23244

Filter