Display:

Results

Viewing 91 to 120 of 24644
2017-09-23
Technical Paper
2017-01-1953
Manfei Bai, Lu Xiong, Zhiqiang Fu, Renxie Zhang
Abstract In this paper, a speed tracking controller is designed for the All-terrain vehicles. The method of feedforward with state variable feedback based on conditional integrators is adopted by the proposed control algorithm. The feedforward is designed considering the influence of the road slope on the longitudinal dynamics, which makes the All-terrain vehicles satisfy the acceleration demand of the upper controller when it tracks the desired speed on the road with slope varying greatly. The road slope is estimated based on a combined kinematic and dynamic model. This method solves the problem that road slope estimation requires an accurate vehicle dynamic model and are susceptible to acceleration sensor bias. Based on the vehicle dynamic model and the nonlinear tire model, the method of conditional integration is used in the state variable feedback, which considers the saturation constraint of the actuator with the intention of preventing the divergent integral operation.
2017-09-23
Technical Paper
2017-01-1988
XueFei Deng, Lu Che, Lei Zhang, Rong Sun
Abstract The problem of this paper can be described as: An oil company has a number of distribution centers in a region, these distribution centers have a number of the same type of multi- compartment vehicles, The optimization goal of the problem is that the distribution costs and carbon emissions considering the oil transportation process, through the model of rational allocation of each distribution center planning and tanker route, so that the cost and carbon emissions throughout the distribution process reached the minimum or at the same time the results of low. This paper studies a low-carbon oil distribution route optimization problem with the targets of minimizing the transport costs and carbon emissions. Firstly, the mathematical model is proposed to describe the problem. According to the characteristics of the model We propose a kind of improved multi-objective SA-TS hybrid optimization algorithm to solve this model.
2017-09-23
Technical Paper
2017-01-2011
Suyash Singh, Ankur Mathur, Sandeep Das, Purnendu Sinha, Vinay Singh
Abstract In the Smart Cities, main objective is to promote cities that provide core infrastructure and give a decent quality of life to its citizens, a clean and sustainable environment and application of ‘Smart’ Solutions. The process said for utilization of available resources is the best fit for our concept. Our concept is to convert and refurbish the old and scrap vehicles which will increase their longevity and can be used in any smart city in India or abroad. The ultimate aim to provide this technology for the development of any new smart city in India is the utilization of available resources and reduction in the junk materials and environmental pollution. Refurbishing the old and scrap vehicles with replacement of IC engines doesn’t mean that they will be kept as a scrap and be thrown away, our idea is to utilize maximum of all the available resources. The IC engines taken out of these vehicles will be re-used appropriately.
2017-09-19
Article
The International Catalist SuperTruck employed lightweighting strategies to help improve efficiency, and Navistar's focus on weight reduction continues unabated for its SuperTruck II program.
2017-09-19
Article
The project, partially funded by the U.K. government, features a mini-turbine range extender.
2017-09-19
Article
Nissan's Leaf has been the world's best-selling electric car since it debuted in 2010.
2017-09-19
Technical Paper
2017-01-2136
Almuddin Rustum Sayyad, Pratik Salunke, Sangram Jadhav
Abstract The objective of this work is to optimize the operating parameters of the Direct Injection Single Cylinder (5.2 kw) CI engine with respect to Brake Thermal Efficiency (BTE), Hydrocarbons (HC) and Carbon dioxide (CO2). For this investigation, we used Simarouba Biodiesel as an alternate fuel for diesel fuel which possesses low cetane number which is not sufficient to operate existing diesel engine. However, this could be combined with the diesel fuel in the form of blends. For this investigation four levels and four parameters were selected viz. Injection Pressure (IP), Fuel Fraction (FF), Compression Ratio (CR) and Injection Timing (Before TDC). Taguchi Method is used for minimizing the number of experiments and Multiple Regression Analysis is used to find the optimum condition. Three outputs variables such as; Brake Thermal Efficiency (BTE), content of HC particles and CO2 in the emission are measured and considered its influence on CI Engine performance.
2017-09-19
Technical Paper
2017-01-2137
Dnyaneshwar V. Kadam, Sangram D. Jadhav
Abstract Vibration is the most considerable factor in dynamics of machinery. Vibration causes an adverse effect on engine components and may reduce the life of the engine. The conventional fossil fuel sources are limited in the world. The dependency on diesel should be reduced by using biodiesel as an alternative fuel in next few years. The input parameters are affected on engine performance and emission. The present study mainly focuses on an optimization of vibrations, performance and emission using Taguchi and multiple regression analysis for biodiesel as a fuel. The test was performed on a single cylinder, four-stroke, diesel engine with VCR. Taguchi method is used to prepare the design of experiment of the L16 array to minimize the number of experiments and multiple regression analysis used for finding the best relationship between the input and output parameters. The selected input parameters are- fuel fraction, compression ratio, injection pressure and injection timing.
2017-09-19
Technical Paper
2017-01-2141
Fengmei Li, Peng Ke
Abstract For the ice protection of the engine air induction part manufactured with low thermal conductivity composite material, the combined heating method using interior impingement and exterior air film has certain advantages. To study the influence of the external jet air film on the impingement characteristics of droplets, the numerical simulation method of three dimensional water droplet impingement based on Eulerian method was developed and verified by experimental data from references. The droplets impingement characteristics under three different blowing ratios and two different velocities were then investigated based on the configuration of 3D cylinder with two parallel jet holes.
2017-09-19
Technical Paper
2017-01-2143
Narayanan Komerath, Dhwanil Shukla, Shravan Hariharan, Sahaj Patel, Nandeesh Hiremath
Abstract A direct solution to Global Warming would be to reflect a part of sunlight back into Space. A system tradeoff study is being developed with three of the concepts that are being evaluated as long-endurance high-altitude reflectors. The first concept is a high aspect ratio solar powered flying wing towing reflector sheets. This concept is named “Flying Carpet”. Second is a centrifugally stretched high altitude solar reflector (CSHASR). The CSHASR has 4 rotors made of reflector sheets with a hub stretching to 60 percent of the radius, held together by an ultralight quad-rotor structure. Each rotor is powered by a solar-electric motor. A variation on this concept, forced by nighttime descent rate concerns, is powered by tip-mounted solar panels and propellers with some battery storage augmenting rotational inertia as well as energy storage. The third concept is an Aerostatically Balanced Reflector (ABR) sheet, held up by hydrogen balloons.
2017-09-19
Technical Paper
2017-01-2026
Narayanan Komerath, Shravan Hariharan, Dhwanil Shukla, Sahaj Patel, Vishnu Rajendran, Emily Hale
Abstract Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
2017-09-19
Technical Paper
2017-01-2124
Violet Leavers
Abstract Within the aviation industry analysis of wear debris particles recovered from magnetic plugs and lubricating fluids is an essential condition monitoring tool. However, in large organisations, high staff turnover in remote work environments often leaves dangerous gaps in on-site support and background knowledge. The current work develops interactive software for wear debris particle classification, root cause diagnosis and serviceability prognostics. During the research several hundred wear debris particle images were collected, analysed and classified by a number of experts. At each stage of the analysis the experts were questioned about the knowledge and experience used to make their diagnoses and prognoses. The end result is an extensive knowledge base representing the combined expertise of a number of highly trained engineers, each with decades of hands-on experience.
2017-09-19
Technical Paper
2017-01-2123
Violet Leavers
Abstract The need to maintain aircraft in remote, harsh environments poses significant challenges. For example, in desert assignments or on-board carrier vessels where frequent rotation of staff with variable levels of skill and experience requires condition monitoring equipment that is not only robust and portable but also user friendly and requiring a minimum of training and skill to set up and use correctly. The mainstays of any on-site aircraft maintenance program are various fluid and particulate condition monitoring tests that convey information about the current mechanical state of the system. In the front line of these is the collection and analysis of wear debris particles retrieved from a component’s lubricating or power transmission fluid or from magnetic plugs. It is standard practice within the specialist laboratory environment to view and image wear debris using a microscope.
2017-09-17
Technical Paper
2017-01-2535
Yongbing Xu, Binyu Mei, Longjie Xiao, Wanyang XIA, Gangfeng Tan
Abstract The continuous braking for the brake drum will cause the brake thermal decay when the heavy truck is driving down the long slope in the mountain areas. It reduces the heavy truck’s braking performance and the braking safety. The engine braking and the hydraulic retarder braking both consume the kinetic energy of the heavy truck and can assist the truck driving in the mountain areas. This research proposes a combined hill descent braking strategy for heavy truck based on the recorded information of the slopes to ensure the braking safety of the heavy truck. The vehicle dynamic model and the brake drum temperature rising model are established to analyze the drum’s temperature variation during the downhill progress of the heavy truck. Then based on the slope information, the combined braking temperature variation is analyzed considering the characteristics of the engine braking, the drum braking and the hydraulic retarder braking.
2017-09-11
Technical Paper
2017-01-5008
Glenn W. Passavant
As part of an effort to shift focus from the emissions performance of pre-production prototypes in certification to the emissions performance of in-use vehicles, the US Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) instituted the “CAP 2000” program. As part of that program, manufacturers are required to retrieve customer-operated in-use vehicles and test their emissions. The EPA and CARB rules contain specific sample size and mileage criteria. The program has been in place for over 15 model years. This paper examines the in-use performance results for 3115 refueling tests, 3844 hot soak+2-day diurnal evaporative emission tests covering five sets of regulatory emission standards, and evaluates several related regulatory issues such as in-use durability and the effectiveness of evaporative on-board diagnostic (OBD) systems.
2017-09-08
Article
The platform concept was created to be capable of supporting multiple vehicle types and multiple wheelbases - with longer range.
2017-09-08
Article
A 1.6-L "Ecotec" diesel is offered as an option, rated at 52 mpg highway on Cruze, 39 mpg highway for Equinox. A rear-facing timing chain and 10-step solenoid injectors contribute to low-noise design.
2017-09-08
Article
Jaguar unveils its autonomous Future-Type and details pure electric technology for classic E-Type
2017-09-08
Article
Automakers are looking to harness the sun's energy to power electrical components in new vehicles
2017-09-06
Article
New Holland is ramping up its focus on vehicles that burn alternative fuels, unveiling the prototype for a methane-powered tractor set for introduction in the 2020 time frame. The engine slashes operating costs, reduces emissions and cuts noise.
2017-09-06
WIP Standard
J2185
This SAE Standard applies to lead-acid 12 V heavy-duty storage batteries as described in SAE J537 and SAE J930 for uses in starting, lighting and ignition (SLI) applications on motor vehicles and/or off-road machines. These applications have some of the following characteristics: a. High levels of power are required to start the vehicle’s internal combustion engine. The need to supply this power limits the maximum depth of discharge to a fraction of the total capacity of the battery. The battery must be maintained at a charge level sufficient to perform this primary function by vehicle’s voltage-regulated charging system. b. The vehicle’s engine powers a voltage regulated charging system that limits the charging voltage when spinning at sufficient speed and when total loads do not exceed its output limits. c.
2017-09-04
Technical Paper
2017-24-0009
Federico Millo, Giulio Boccardo, Andrea Piano, Luigi Arnone, Stefano Manelli, Giuseppe Tutore, Andrea Marinoni
Abstract To comply with Stage IV emission standard for off-road engines, Kohler Engines has developed the 100kW rated KDI 3.4 liters diesel engine, equipped with DOC and SCR. Based on this engine, a research project in collaboration between Kohler Engines, Ricardo, Denso and Politecnico di Torino was carried out to exploit the potential of new technologies to meet the Stage IV and beyond emission standards. The prototype engine was equipped with a low pressure cooled EGR system, two stage turbocharger, high pressure fuel injection system capable of very high injection pressure and DOC+DPF aftertreatment system. Since the Stage IV emission standard sets a 0.4 g/kWh NOx limit for the steady state test cycle (NRSC), that includes full load operating conditions, the engine must be operated with very high EGR rates (above 30%) at very high load.
2017-09-04
Technical Paper
2017-24-0011
Giulio Boccardo, Federico Millo, Andrea Piano, Luigi Arnone, Stefano Manelli, Cristian Capiluppi
Abstract Nowadays stringent emission regulations are pushing towards new air management strategies like LP-EGR and HP/LP mix both for passenger car and heavy duty applications, increasing the engine control complexity. Within a project in collaboration between Kohler Engines EMEA, Politecnico di Torino, Ricardo and Denso to exploit the potential of EGR-Only technologies, a 3.4 liters KDI 3404 was equipped with a two stage turbocharging system, an extremely high pressure FIS and a low pressure EGR system. The LP-EGR system works in a closed loop control with an intake oxygen sensor actuating two valves: an EGR valve placed downstream of the EGR cooler that regulates the flow area of the bypass between the exhaust line and the intake line, and an exhaust flap to generate enough backpressure to recirculate the needed EGR rate to cut the NOx emission without a specific aftertreatment device.
2017-09-04
Technical Paper
2017-24-0036
S Krishna Addepalli, Om Prakash Saw, J M Mallikarjuna
Abstract Mixture distribution in the combustion chamber of gasoline direct injection (GDI) engines significantly affects combustion, performance and emission characteristics. The mixture distribution in the engine cylinder, in turn, depends on many parameters viz., fuel injector hole diameter and orientation, fuel injection pressure, the start of fuel injection, in-cylinder fluid dynamics etc. In these engines, the mixture distribution is broadly classified as homogeneous and stratified. However, with currently available engine parameters, it is difficult to objectively classify the type of mixture distribution. In this study, an attempt is made to objectively classify the mixture distribution in GDI engines using a parameter called the “stratification index”. The analysis is carried out on a four-stroke wall-guided GDI engine using computational fluid dynamics (CFD).
2017-09-04
Technical Paper
2017-24-0034
Michele Battistoni, Carlo N. Grimaldi, Valentino Cruccolini, Gabriele Discepoli, Matteo De Cesare
Abstract Water injection in highly boosted gasoline direct injection (GDI) engines has become an attractive area over the last few years as a way of increasing efficiency, enhancing performance and reducing emissions. The technology and its effects are not new, but current gasoline engine trends for passenger vehicles have several motivations for adopting this technology today. Water injection enables higher compression ratios, optimal spark timing and elimination of fuel enrichment at high load, and possibly replacement of EGR. Physically, water reduces charge temperature by evaporation, dilutes combustion, and varies the specific heat ratio of the working fluid, with complex effects. Several of these mutually intertwined aspects are investigated in this paper through computational fluid dynamics (CFD) simulations, focusing on a turbo-charged GDI engine with port water injection (PWI). Different strategies for water injection timing, pressure and spray targeting are investigated.
2017-09-04
Technical Paper
2017-24-0022
Alessio Dulbecco, Gregory Font
Abstract Diesel engine pollutant emissions legislation is becoming more and more stringent. New driving cycles, including increasingly severe transient engine operating conditions and low ambient-temperature conditions, extend considerably the engine operating domain to be optimized to attain the expected engine performance. Technological innovations, such as high pressure injection systems, Exhaust Gas Recirculation (EGR) loops and intake pressure boosting systems allow significant improvement of engine performance. Nevertheless, because of the high number of calibration parameters, combustion optimization becomes expensive in terms of resources. System simulation is a promising tool to perform virtual experiments and consequently to reduce costs, however models must account for relevant in-cylinder physics to be sensitive to the impact of technology on combustion and pollutant formation.
2017-09-04
Technical Paper
2017-24-0027
Nearchos Stylianidis, Ulugbek Azimov, Nobuyuki Kawahara, Eiji Tomita
Abstract A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. We have confirmed the statements of other authors that HO2+OH=H2O+O2, H2O2+M=OH+OH+M and H2O2+H=H2+HO2 reactions showed very high sensitivity during high-pressure ignition delay times and had considerable uncertainty.
2017-09-04
Technical Paper
2017-24-0046
Richard Stone, Ben Williams, Paul Ewart
Abstract The increased efficiency and specific output with Gasoline Direct Injection (GDI) engines are well known, but so too are the higher levels of Particulate Matter emissions compared with Port Fuel Injection (PFI) engines. To minimise Particulate Matter emissions, then it is necessary to understand and control the mixture preparation process, and important insights into GDI engine mixture preparation and combustion can be obtained from optical access engines. Such data is also crucial for validating models that predict flows, sprays and air fuel ratio distributions. The purpose of this paper is to review a number of optical techniques; the interpretation of the results is engine specific so will not be covered here. Mie scattering can be used for semi-quantitative measurements of the fuel spray and this can be followed with Planar Laser Induced Fluorescence (PLIF) for determining the air fuel ratio and temperature distributions.
2017-09-04
Technical Paper
2017-24-0048
Jose V. Pastor, Jose M. Garcia-Oliver, Antonio Garcia, Mattia Pinotti
Abstract In the past few years’ various studies have shown how the application of a highly premixed dual fuel combustion for CI engines leads a strong reduction for both pollutant emissions and fuel consumption. In particular a drastic soot and NOx reduction were achieved. In spite of the most common strategy for dual fueling has been represented by using two different injection systems, various authors are considering the advantages of using a single injection system to directly inject blends in the chamber. In this scenario, a characterization of the behavior of such dual-fuel blend spray became necessary, both in terms of inert and reactive ambient conditions. In this work, a light extinction imaging (LEI) has been performed in order to obtain two-dimensional soot distribution information within a spray flame of different diesel/gasoline commercial fuel blends. All the measurements were conducted in an optically accessible two-stroke engine equipped with a single-hole injector.
2017-09-04
Technical Paper
2017-24-0066
Maria Cristina Cameretti, Roberta De Robbio, Raffaele Tuccillo
Abstract The present study deals with the simulation of a Diesel engine fuelled by natural gas/diesel in dual fuel mode to optimize the engine behaviour in terms of performance and emissions. In dual fuel mode, the natural gas is introduced into the engine’s intake system. Near the end of the compression stroke, diesel fuel is injected and ignites, causing the natural gas to burn. The engine itself is virtually unaltered, but for the addition of a gas injection system. The CO2 emissions are considerably reduced because of the lower carbon content of the fuel. Furthermore, potential advantages of dual-fuel engines include diesel-like efficiency and brake mean effective pressure with much lower emissions of oxides of nitrogen and particulate matter. In previous papers, the authors have presented some CFD results obtained by two 3D codes by varying the diesel/NG ratio and the diesel pilot injection timing at different loads.
Viewing 91 to 120 of 24644

Filter