Display:

Results

Viewing 91 to 120 of 22530
2014-10-13
Technical Paper
2014-01-2617
Michael Storch, Lars Zigan, Michael Wensing, Stefan Will
Abstract Modern direct injection spark ignition (DISI) engine concepts have the drawback of higher particulate matter emission as compared to port fuel injection concepts. Especially, when driven with biofuels, the operation of DISI engines requires a deeper insight into particulate formation processes. In this study a modern optical accessible DISI engine is used. Pure isooctane, ethanol, E20 (20vol% of ethanol in isooctane) and E85 were investigated as fuels. Simultaneous OH*-chemiluminescence and soot radiation imaging was conducted by a high-speed camera system in order to separate premixed combustion with the sooting combustion. Furthermore, a laser-induced incandescence (LII) sensor was used to measure exhaust elementary carbon mass concentration. Systematically, operation points were chosen, which correspondent to the main sooting mechanisms, poolfire, mixture inhomogeneities and global low air-fuel ratio.
2014-10-13
Journal Article
2014-01-2605
Cyrille Frottier, Marc Sens, Michael Rieß, Malte Wigger, Andreas Benz, Noriyuki Maekawa, Koji Onishi, Kazuhiro Oryoji, Kenichi Machida
Abstract In the near future, emissions legislation will become more and more restrictive for direct injection SI engines by adopting a stringent limitation of particulate number emissions in late 2017. In order to cope with the combustion system related challenges coming along with the introduction of this new standard, Hitachi Automotive Systems Ltd., Hitachi Europe GmbH and IAV GmbH work collaboratively on demonstrating technology that allows to satisfy EU6c emissions limitations by application of Hitachi components dedicated to high pressure injection (1). This paper sets out to describe both the capabilities of a new high pressure fuel system improving droplet atomization and consequently mixture homogeneity as well as the process of utilizing the technology during the development of a demonstrator vehicle called DemoCar. The Hitachi system consists of a fuel pump and injectors operating under a fuel pressure of 30 MPa.
2014-10-13
Technical Paper
2014-01-2608
Zhengyang Ling, Alexey Burluka, Ulugbek Azimov
Abstract Replacing the conventional fossil fuel totally or partially with alcohols or ethers in spark-ignition (SI) engine is a promising way to reduce pollutant emissions. A large number of studies on alcohol-containing blends in SI engines could be found in the literature. Nonetheless, investigations of ether-containing blends are by far much less numerous, especially for modern boosted engines. Blending with ether compounds might change the burning rate at high pressure, which consequently changes the anti-knock properties of these fuels and leads to a deterioration in the vehicle drivability. This work reports experiments carried out in two one-cylinder engines: one is a naturally aspirated, variable compression ratio engine, and the other is a strongly charged optical engine.
2014-10-13
Technical Paper
2014-01-2729
Paul Hellier, Nicos Ladommatos, Tom Headen, Stephen Bennington
Abstract Improvements in the efficiency of internal combustion engines and the development of renewable liquid fuels have both been deployed to reduce exhaust emissions of CO2. An additional approach is to scrub CO2 from the combustion gases, and one potential means by which this might be achieved is the reaction of combustions gases with sodium borohydride to form sodium carbonate. This paper presents experimental studies carried out on a modern direct injection diesel engine supplied with a solution of dissolved sodium borohydride so as to investigate the effects of sodium borohydride on combustion and emissions. Sodium borohydride was dissolved in the ether diglyme at concentrations of 0.1 and 2 % (wt/wt), and tested alongside pure diglyme and a reference fossil diesel. The sodium borohydride solutions and pure diglyme were supplied to the fuel injector under an inert atmosphere and tested at a constant injection timing and constant engine indicated mean effective pressure (IMEP).
2014-10-13
Technical Paper
2014-01-2730
Lei Zhu, Wugao zhang, Zhen Huang, Junhua Fang
Abstract Because of its cleanness and renewability, biodiesel has a great potential as the alternative of diesel fuel to confront with the increasing energy crisis and environment pollution. In this study, diesel oxidation catalyst (DOC) was used to reduce the typical regulated emission and particulate emission. The combined method of fuel design concept with diesel oxidation catalyst was applied in this study. DOC with Pt catalyst was equipped in the engine test bench in this study. The effects of DOC on diesel engine particulate emission fueled with Euro V diesel fuel, biodiesel and ethanol-biodiesel blends were investigated in this study. It was found that DOC seemed have no effects on NOx emission, while it could improve the oxidation reaction from NO to NO2. In the section of particulate emission, DOC could reduce the particulate mass and number concentration, especially in the range of smaller diameter particles. The SOF could be reduced effectively with DOC.
2014-10-13
Technical Paper
2014-01-2728
Romaeo Dallanegra, Rinaldo Caprotti
Abstract Internal Diesel Injector Deposits (IDIDs) have been known for some time. With the latest powertrains becoming ever more sophisticated and reliant on efficient fuel delivery, the necessity for a continued focus on limiting their formation remains. Initial studies probed both carbonaceous based/ashless polymeric and sodium salt based IDIDs. The reported occurrence of the latter variety of IDID has declined in recent years as a result of the removal of certain additives from the diesel distribution system. Conversely, ashless polymeric based deposits remain problematic and a regular occurrence in the field.
2014-10-13
Technical Paper
2014-01-2724
Pramod S. Mehta, Thangaraja Jeyaseelan
Abstract Biodiesel is an emerging alternative to fossil diesel for use in compression ignition engines. From environmental standpoint, an increase in nitric oxide (NO) emission from biodiesel fueled engine has been a major concern. Several investigations suggest the role of unsaturated methyl ester as a contributor to biodiesel-NO penalty. The chemical simplicity of biodiesel compared to fossil diesel makes their composition effects amenable to a systematic analysis. In this study, the effects of saturated palm and unsaturated karanja (Pongamia pinnata) biodiesels and their blends (Bio-mix) on compression ignition engine performance, combustion and NO emission are investigated. The combustion and emission characteristics of these fuels are compared with fossil diesel that the neat biodiesel fuels result in improved exhaust emissions except NO with a penalty in fuel economy.
2014-10-13
Technical Paper
2014-01-2727
Hu Li, Laura Campbell, Seyed Hadavi, Job Gava
Abstract Direct use of straight vegetable oil based biofuels in diesel engines without trans-esterification can deliver more carbon reductions compared to its counterpart biodiesel. However, the use of high blends of straight vegetable oils especially used cooking oil based fuels in diesel engines needs to ensure compatible fuel economy with PD (Petroleum Diesel) and satisfactory operational performance. There are two ways to use high blends of SVO (Straight Vegetable Oil) in diesel engines: fixed blending ratio feeding to the engine and variable blending ratio feeding to the engine. This paper employed the latter using an on-board blending system-Bioltec system, which is capable of heating the vegetable oils and feeding the engine with neat PD or different blends of vegetable oils depending on engine load and temperature.
2014-10-13
Journal Article
2014-01-2720
Jim Barker, Jacqueline Reid, Colin Snape, David Scurr, William Meredith
Abstract Since 2009, there has been a rise in deposits of various types found in diesel fuel injection systems. They have been identified in the filter, the injector tip and recently inside the injector. The latter internal diesel injector deposits (IDIDs) have been the subject of a number of recent publications, and are the subject of investigations by CRC (Central Research Council Diesel Performance Group-Deposit Panel Bench/ Rig Investigation sub panel) in the US and CEN (Committee European de Normalisation TC19/WG24 Injector Deposit Task Force) and CEC (Coordinating European Council TDFG-110 engine test) in Europe. In the literature one of the internal injector deposit types, amide lacquers, has been associated with a poorly characterised noncommercial low molecular weight polyisobutylene succinimide detergent which also lacked provenance.
2014-10-13
Journal Article
2014-01-2719
Alex Harrison, Roger Cracknell, Jens Krueger-Venus, Lev Sarkisov
Abstract Carbonaceous deposits can accumulate on various surfaces of the internal combustion engine and affect its performance. The porous nature of these deposits means that they act like a “sponge”, adsorbing fuel components and changing both the composition and the amount of fuel in the combustion chamber. Here we use a previously developed and validated model of engine deposits to predict adsorption of normal heptane, isooctane, toluene and their mixtures in deposits of different origin within a port fuel injected spark ignition engine (Combustion Chamber Deposits, or CCDs, and Intake Valve Deposits, or IVDs) and under different conditions. We explore the influence of molecular structure of adsorbing species, composition of the bulk mixture and temperature on the uptake and selectivity behaviour of the deposits. While deposits generally show high capacity toward all three components, we observe that selectivity behaviour is a more subtle and complex property.
2014-10-13
Technical Paper
2014-01-2714
Cheng Tan, Hongming Xu, He Ma, Jianyi Tian, Akbar Ghafourian
Abstract Automotive engines especially turbocharged diesel engines produce higher level of emissions during transient operation than in steady state. In order to improve understanding of the engine transients and develop advanced technologies to reduce the transient emissions, the engine researchers require accurate data acquisition and appropriate post-processing techniques which are capable of dealing with noise and synchronization issues. Four alternative automated methods namely FFT (Fast Fourier Transform), low-pass, linear and zero-phase filters were implemented on in-cylinder pressure. The data of each individual cycle was compared and analyzed for the suitability of combustion diagnostic. FFT filtering was the best suited method since it eliminated most pressure fluctuation and provided smooth rate of heat release profiles for each cycle.
2014-10-13
Technical Paper
2014-01-2712
Dai Liu, Hongming Xu, Ramadhas Arumugam Sakunthalai, Jianyi Tian
Abstract Cold start is a critical operating condition for diesel engines because of the pollutant emissions produced by the unstable combustion and non-performance of after-treatment at lower temperatures. In this research investigation, a light-duty turbocharged diesel engine equipped with a common rail injection system was tested on a transient engine testing bed to study the starting process in terms of engine performance and emissions. The engine (including engine coolant, engine oil and fuel) was soaked in a cold cell at −7°C for at least 8 hours before starting the test. The engine operating parameters such as engine speed, air/fuel ratio, and EGR rate were recorded during the tests. Pollutant emissions (Hydrocarbon (HC), NOx, and particles both in mode of nucleation and accumulation) were measured before and after the Diesel Oxidation Catalyst (DOC).
2014-10-13
Journal Article
2014-01-2713
Jianyi Tian, Hongming Xu, Ramadhas Arumugam Sakunthalai, Dai Liu, Cheng Tan, Akbar Ghafourian
Abstract Engine transient operation has attracted a lot of attention from researchers due to its high frequency of occurrence during daily vehicle operation. More emissions are expected compared to steady state operating conditions as a result of the turbo-lag problem. Ambient temperature has significant influences on engine transients especially at engine start. The effects of ambient temperature on engine-out emissions under the New European Driving Cycle (NEDC) are investigated in this study. The transient engine scenarios were carried out on a modern 3.0 L, V6 turbocharged common rail diesel engine fuelled with winter diesel in a cold cell within the different ambient temperature ranging between +20 °C and −7 °C. The engine with fuel, coolant, combustion air and lubricating oil were soaked and maintained at the desired test temperatures during the transient scenarios.
2014-10-13
Technical Paper
2014-01-2709
Xianjing Li, Liguang Li
Abstract Gasoline Direct Injection (GDI) engines have attracted interest as automotive power-plants because of their potential advantages in down-sizing, fuel efficiency and in emissions reduction. However, GDI engines suffer from elevated unburned hydrocarbon (HC) emissions during start up process, which are sometimes worsened by misfires and partial burns. Moreover, as the engine is cranked to idle speed quickly in HEVs (Hybrid Electric Vehicle), the transients of quick starts are more dramatically than that in traditional vehicle, which challenge the optimization of combustion and emissions. In this study, test bench had been set up to investigate the GDI engine performances for ISG (Integrated Starter and Generator) HEVs during start up process. Based on the test system, cycle-controlled of the fuel injection mass, fuel injection timing and ignition timing can be obtained, as well as the cycle-resolved measurement of the HC concentrations and NO emissions.
2014-10-13
Journal Article
2014-01-2697
Kiyoshi Kawasaki, Soichiro Kubo, Koji Yamane, Chihiro Kondo
Abstract The main aim of this study is to investigate the effect of NO and NO2 on the combustion characteristics such as pressure development and combustion phasing in natural gas HCCI engine. A secondary aim is to demonstrate a method of obtaining a significant sensitizing effect on methane oxidation reaction from small amounts of NOx. Experiments were conducted using a rapid compression-expansion machine that was constructed from a single-cylinder diesel engine. First, the sensitizing effect of NO and NO2 on the HCCI combustion of natural gas was investigated in a case where NOx was uniformly mixed into a charge. Obtained results show that the auto-ignition timing is significantly advanced and an acute heat release is promoted by adding either NO or NO2.
2014-10-13
Technical Paper
2014-01-2689
Mohand Said Lounici, Khaled Loubar, Mohand Tazerout, Mourad Balistrou, Lyes Tarabet
Abstract The crude oil depletion, as well as aspects related to environmental pollution and global warming has caused researchers to seek alternative fuels. Biogas is one of the most attractive available fuels. It is of great interest both economically and ecologically. However, it faces problems that may compromise its industrial use. The dual-fuel engines have been investigated as a technique for the recovery of these gases and finding solutions to these problems. In the present work, performance and emissions of a direct injection diesel engine were first evaluated in conventional mode and dual fuel mode. The effect of biogas composition, based on methane content, is then examined. Also, dual fuel operation with regard to knock is investigated. The results show that, up to 95% of engine full load, the brake thermal efficiency (BTE) is lower in dual fuel mode.
2014-10-13
Technical Paper
2014-01-2693
Weifeng Li, Zhongchang Liu, Zhongshu Wang, Chao Li, Lianchao Duan, Hongbin Zuo
Abstract In recent years, strict emission regulations, the environmental awareness, and the high price of conventional fuels have led to the creation of incentive to promote alternative fuels. Among the alternative fuels, natural gas is very promising and highly attractive for its abundant resources, clean nature of combustion and low encouraging prices. But nitrogen oxides (NOx) emissions are still a problem in natural gas engines. In order to reduce NOx emissions, carbon dioxide (CO2), nitrogen (N2) and argon (Ar) were respectively introduced to dilute fuel-air mixtures in the cylinder. To this aim a 6.62 L, 6-cylinder, turbocharged, electronic controlled large-powered NG engine was subjected to a basic performance test to observe the effects of CO2, N2 and Ar on fuel economy and NOx emissions. During the test, the engine speed and torque were separately kept at 1450 r/min and 350 Nm.
2014-10-13
Technical Paper
2014-01-2681
Zufeng Bao, Xiaobei Cheng, Liang Qiu, Xingcun Luan
The performance of Partially Premixed Combustion (PPC) relies heavily on the proper mixing between the injected fuel and the in-cylinder gas mixture. This pre-mixing aims to eliminate over-rich regions where the mixture forms soot, and at the same time to avoid the NOX formation region by lowering the combustion temperature by introduction of a large amount of EGR The main effort of this paper focuses on investigating the characteristic of PPC combustion and a suitable injection strategy for achieving the PPC combustion mode. Two injection strategies (i.e. double and single injection) were investigated on a four-cylinder heavy-duty diesel engine operating at low, medium and high load conditions.
2014-10-13
Technical Paper
2014-01-2675
Xiaobei Cheng, Shuai LI, Jin Yang, Shijun Dong, Zufeng Bao
PPCI in diesel engine is a combustion mode between conventional diesel combustion and homogeneous charge compression ignition (HCCI) combustion, which has the potential to simultaneously reduce NOX and soot emissions and improve thermal efficiency. N-butanol as a kind of clean and renewable biofuel can effectively prolong ignition delay and enhance fuel/air mixing because of their low cetane number, high volatility fuel characteristics, which make it a better alternative fuel to achieve PPCI. In this paper, PPCI combustion in a boosted four-cylinder diesel engine fueled with n-butanol-diesel blends is realized by adjusting injection timing and EGR rate based on single injection. The results show that both early and late injection have long premixed duration, which is helpful to form more homogeneous mixture, and no diffusion combustion is found in heat release rate curve. Premixed combustion and low temperature combustion are the key factors to reduce PM and NOX.
2014-10-13
Journal Article
2014-01-2676
Takayuki Fuyuto, Masahiro Taki, Reiko Ueda, Yoshiaki Hattori, Hiroshi Kuzuyama, Tsutomu Umehara
Abstract An author's previous studies addressed a combustion system which reduces emissions, noise, and fuel consumption by using PCCI with the split injection of fuel. This concept relies on the premixed combustion of the first injected fuel and accelerated oxidation by the second injected fuel. Although this combustion system requires the optimization of the timing of the second injection, the details of how noise and emissions are reduced have not been elucidated. In this paper, the authors explain the mechanism whereby emissions and noise are reduced by the second injection. In-cylinder visualizations and numerical simulations both showed an increase in smoke and CO as the second injection timing was advanced, as induced by the inhibited oxidation of the rich flame. When the second injection timing is excessively retarded, the amount of soot forming around the near-nozzle increased.
2014-10-13
Technical Paper
2014-01-2678
Buyu Wang, Shi-Jin Shuai, Hong-Qiang Yang, Zhi Wang, Jian-Xin Wang, Hongming Xu
Abstract A study of Multiple Premixed Compression Ignition (MPCI) with heavy naphtha is performed on a light-duty single cylinder diesel engine. The engine is operated at a speed of 1600rpm with the net indicated mean effective pressure (IMEP) from 0.5MPa to 0.9MPa. Commercial diesel is also tested with the single injection for reference. The combustion and emissions characteristics of the heavy naphtha are investigated by sweeping the first (−200 ∼ −20 deg ATDC) and the second injection timing (−5 ∼ 15 deg ATDC) with an injection split ratio of 50/50. The results show that compared with diesel combustion, the naphtha MPCI can reduce NOx, soot emissions and particle number simultaneously while maintaining or achieving even higher indicated thermal efficiency. A low pressure rise rate can be achieved due to the two-stage combustion character of the MPCI mode but with the penalty of high HC and CO emissions, especially at 0.5MPa IMEP.
2014-10-13
Technical Paper
2014-01-2671
Wuqiang Long, Qiang Zhang, Jiangping Tian, Yicong Wang, Xiangyu Meng
Abstract To directly control the premixed combustion phasing, a novel method called Jet Controlled Compression Ignition (JCCI) is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine at 3000 r/min without EGR. Numerical model was validated by pressure and heat release rate curves at a fixed spark timing. The simulation results showed that the reacting active radical species with high temperature issued from ignition chamber played an important role on the onset of combustion in JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from ignition chamber. Consequently, the experiments of spark timing sweep were conducted to verify the above deduction. The results showed a good linear relationship between spark timing and CA10 and CA50, which validated the ability for direct combustion phasing control in diesel premixed combustion.
2014-10-13
Technical Paper
2014-01-2674
Gerardo Valentino, Stefano Iannuzzi
The use of biodiesel or oxygenated fuels from renewable sources in diesel engines is of particular interest because of the low environmental impact that can be achieved. The present paper reports results of an experimental investigation performed on a light duty diesel engine fuelled with biodiesel, gasoline and butanol mixed, at different volume fractions, with mineral diesel. The investigation was performed on a turbocharged DI four cylinder diesel engine for automotive applications equipped with a common rail injection system. Engine tests were carried out at 2500 rpm, 0.8 MPa of brake mean effective pressure selecting a single injection strategy and performing a parametric analysis on the effect of combustion phasing and oxygen concentration at intake on engine performance and exhaust emissions. The experiments demonstrated that the fuel properties have a strong impact on soot emissions.
2014-10-13
Technical Paper
2014-01-2769
Paul Schaberg, Mark Wattrus
Abstract A study was performed to quantify the impact of blending Fatty Acid Methyl Ester (FAME) with Gas-to-Liquids (GTL) diesel fuel on engine exhaust emissions. Fuels that were considered in the study included blends of GTL and EN590 diesel containing 0, 7, and 20 volume % of Soy and Rapeseed Methyl Ester (SME and RME). Part of the study focused on European engine technology, and tests were performed on a Euro 3 passenger car engine and a Euro V heavy-duty engine. A limited study was performed using a heavy-duty engine meeting the US 2004 emission standards, in which case comparisons between the GTL diesel and FAME blends were made with US 2D and California Air Resources Board (CARB) reference fuels. The results showed particulate mass (PM) reductions to varying degrees with all of the GTL/FAME blends.
2014-10-13
Technical Paper
2014-01-2768
George Karavalakis, Daniel Short, Vincent Chen, Carlos Espinoza, Tyler Berte, Thomas Durbin, Akua Asa-Awuku, Heejung Jung, Leonidas Ntziachristos, Stavros Amanatidis, Alexander Bergmann
Abstract The relationship between ethanol and iso-butanol fuel concentrations and vehicle particulate matter emissions was investigated. This study utilized a gasoline direct injection (GDI) flexible fuel vehicle (FFV) with wall-guided fueling system tested with four fuels, including E10, E51, E83, and an iso-butanol blend at a proportion of 55% by volume. Emission measurements were conducted over the Federal Test Procedure (FTP) driving cycle on a chassis dynamometer with an emphasis on the physical and chemical characterization of particulate matter (PM) emissions. The results indicated that the addition of higher ethanol blends and the iso-butanol blend resulted in large reductions in PM mass, soot, and total and solid particle number emissions. PM emissions for the baseline E10 fuel were characterized by a higher fraction of elemental carbon (EC), whereas the PM emissions for the higher ethanol blends were more organic carbon (OC) in nature.
2014-10-13
Technical Paper
2014-01-2766
Gian Marques, Lian Izquierdo, Camila Coutinho
Abstract Bioethanol and plant oil-derived biodiesel are generally considered first generation biofuels. More sustainable and cost effective new biofuels are being designed and produced using modern tools of metabolic engineering and synthetic biology. These new microbial fuels have great potential to become viable alternatives and supplements for petroleum-derived liquid transportation fuels. MAN Latin America has worked in cooperation with REG Life Sciences, a North American industrial biotechnological company, to help in the development of high quality fuels for automotive purposes. The aim of this paper is to present the test engine results of a novel microbially produced fatty acid methyl ester (FAME), under the banner of UltraClean™ Diesel, in a Proconve P7 (Euro V) MAN D0834, diesel engine. Described are a comprehensive performance and emissions evaluation as well as an interpretation of the primary fuel properties.
2014-10-13
Technical Paper
2014-01-2763
Somnuek Jaroonjitsathian, Peerawat Saisirirat, Komkrit Sivara, Manida Tongroon, Nuwong Chollacoop
Abstract Formerly, the Hydro-treated Vegetable Oil (HVO) blended fuels has been studied by running the New European Driving Cycle (NEDC) and found that the higher HVO blended fuel can suppress NOX, lowering the particulate matter (PM) while improving the vehicle fuel economy. The result also shown that the 20% HVO + 5%FAME blended with diesel fuel has been proven to compatible with the advance diesel engine technology via the severe engine durability tests and fuel injection system tests. Therefore, the effects of two paraffinic diesel fuels, which are Gas-to-Liquid (GTL) and Hydro-treated Vegetable Oil (HVO), on a common-rail DI diesel engine have been mainly focused in this work. The main objective of this work was to study the relationships between fuel properties and theirs combustion characteristics by analyzing cylinder pressure data and exhaust emissions intensively.
2014-10-13
Technical Paper
2014-01-2774
Juhani K. Laurikko, Nils-Olof Nylund, Paivi Aakko-Saksa, Sari Mannonen, Ville Vauhkonen, Piritta Roslund
Abstract The Finnish pulp and paper company, UPM, will start a biorefinery in Finland in 2014 to produce advanced renewable diesel in commercial scale. The fuel production is based on using crude tall oil (CTO), a wood-based residue of pulping process, as a raw material. The end product, CTO based renewable diesel called UPM BioVerno, is a novel high quality drop-in diesel fuel resembling fossil diesel. It reduces greenhouse gas emissions by up to 80 % when compared to fossil fuels. In this study, the CTO renewable diesel was studied as a blending component in regular mineral-oil based fossil diesel fuel in field testing. The functionality and performance of four (4) passenger cars was evaluated by comparing e.g. fuel consumption and exhaust emissions of CTO renewable diesel blend (R20UPM) with fossil reference fuel. The field test included 20.000 km on-road driving with each car by experienced drivers from VTT Technical Research Centre of Finland.
2014-10-13
Technical Paper
2014-01-2773
Vasu Kumar, Naveen Kumar, Vishvendra Tomar, Gagneet Kalsi
Abstract The world today is facing the effect of the dependence on fossil fuels. Also, the rate of consumption of Fossil derived fuels is alarming. The use of non-conventional energy sources is to be increased so as to tackle the global climatic changes, environmental pollution and also to lower down the rate of depletion of fossil fuels. The urgent need to replace the petroleum products having harmful emissions has leaded us to the Biodiesel. Biodiesel is a well-known alternative for diesel with an advantage over the later because of its biodegradable, less toxic nature, superior lubricity, better emission characteristics and in a way environment friendly. The present study focuses on the comparative study and analysis of performance and emission characteristics of a light duty diesel engine on blends of Fish oil Biodiesel in Diesel and Calophyllum Inophyllum Oil Biodiesel in Diesel.
2014-10-13
Technical Paper
2014-01-2770
Satoshi Kato, Yoshimitsu Kobashi, Yasumitsu Suzuki, Koji Tosa, Katsuyoshi Asaka, Alberto Macamo
Abstract Jatropha biofuel is promising renewal oil to produce biodiesel fuel through transesterification method which is shown in many papers. The ideal diesel alternative fuel obtained considering Jatropha as materials is Fatty Acid Methyl Ester (FAME). It is more desirable than the viewpoint of economical efficiency and CO2 control to operate a diesel engine with Jatropha crude (JC) oil. It is the purpose of this research to examine a possibility of using advantageous JC oil direct use as diesel engine fuel, in consideration of the sustainable production of the Jatropha biofuel in Mozambique. The adaptability to the diesel engine of diesel oil and the mixed fuel of JC was examined. Jatropha crude oil contains phorbol ester (PEs) which is a promoter of cancer. Measurement of the concentration of PEs in an exhaust gas was performed using High Performance Liquid Chromatography (HPLC).
Viewing 91 to 120 of 22530

Filter