Display:

Results

Viewing 61 to 90 of 24428
2017-03-28
Technical Paper
2017-01-1282
Ashish Jaiswal, Tarun Mehra, Monis Alam, Jatin Agarwal, Harshil Kathpalia
Abstract Dependency and increase in use of fossil fuels is leading to its depletion and raises serious environmental concerns. There are international obligations to reduce emissions and requirements to strengthen security of fuel supply which is pressuring the automobile industry to use cleaner and more sustainable fuels. Hydrogen fits these criteria as it is not just an abundant alternative but also a clean propellant and Hydrogen engines represent an economic alternative to fuel cells. In the present investigation, EGR has been used on hydrogen boosted SI engine running on gasoline-methanol and ethanol-gasoline blends to determine the additional advantages of the same compared to pure gasoline operation and gasoline-methanol and ethanol-gasoline blends without EGR.
2017-03-28
Technical Paper
2017-01-1444
Mitali Chakrabarti, Alfredo Perez Montiel, Israel Corrilo, Jing He, Angelo Patti, James Gebbie, Loren Lohmeyer, Bernd Dienhart, Klaus Schuermanns
CO2 is an alternative to replace the conventional refrigerant (R134a) for the air-conditioning system, due to the high Global Warming Potential (GWP) of R134a. There are concerns with the use of CO2 as a refrigerant due to health risks associated with exposure to CO2, if the concentration of CO2 is over the acceptable threshold. For applications with CO2 as the refrigerant, the risk of CO2 exposure is increased due to the possibility of CO2 leakage into the cabin through the duct system; this CO2 is in addition to the CO2 generated from the respiration of the occupants. The initiation of the leak could be due to a crash event or a malfunction of the refrigerant system. In an automobile, where the interior cabin is a closed volume (with minimal venting), the increase in concentration can be detrimental to the customer but is hard to detect.
2017-03-28
Technical Paper
2017-01-0975
Pankaj Kumar, Imad Makki
A three-way catalytic converter (TWC) is used for emissions control in a gasoline engine. The conversion efficiency of the catalyst, however, drops with age or customer usage and needs to be monitored on-line to meet the on board diagnostics (OBD II) regulations. In this work, a non-intrusive catalyst monitor is developed to track the remaining useful life of the catalyst based on measured in-vehicle signals. Using air mass and the air-fuel ratio (A/F) at the front (upstream) and rear (downstream) of the catalyst, the catalyst oxygen storage capacity is estimated. The catalyst capacity and operating exhaust temperature are used as an input features for developing a Support Vector Machine (SVM) algorithm based classifier to identify a threshold catalyst. In addition, the distance of the data points in hyperspace from the calibrated threshold plane is used to compute the remaining useful life left.
2017-03-28
Technical Paper
2017-01-0907
Timothy Johnson, Ameya Joshi
This review paper summarizes major and representative developments in vehicular emissions regulations and technologies from 2016. The paper starts with the key regulatory advancements in the field, including newly proposed Euro 6 type regulations for Beijing, China, and India in the 2017-20 timeframe. Europe finalized real driving emissions (RDE) standards with the conformity factors for light-duty diesel NOx and GDI PN ramping down to 1.5X by 2021. The California heavy duty (HD) low-NOx regulation is advancing and may be proposed in 2017/18 for implementation in 2023+. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations. LD gasoline concepts are achieving 45% BTE (brake thermal efficiency or net amount of fuel energy gong to the crankshaft) and closing the gap with diesel.
2017-03-28
Technical Paper
2017-01-0991
Sunil Kumar Pathak, Yograj Singh, Vineet sood, Salim Abbasbhai Channiwala
Presently, regulatory emission and fuel consumption values for new car are determined by a type-approval process. Several studies have shown that the type-approval data is not representative for real-world usage. The working group designated as Real Driving Emissions – Light Duty Vehicle (RDE-LDV) assessing the potential of two candidate testing procedures: Emission testing with random driving cycles in the laboratory, and on-road emissions testing with Portable Emissions Measuring Systems (PEMS) as real driving test procedure. The recent reports concluded that both PEMS and random cycle testing are technically feasible. The random cycle testing is more effective than emissions testing with the NEDC, but potentially cover a smaller range of driving conditions but it allows use of established, accurate analytical equipment, and enables the repetition and reproduction of individual emission tests under defined conditions.
2017-03-28
Technical Paper
2017-01-1721
Ho Teng, Ruigang Miao, Liming Cao, Xuwei Luo, Tingjun Hu, Min Wu
Abstract In order to improve low speed torques, turbocharged gasoline direct injection (TGDI) engines often employ scavenging with a help of variable valve timing (VVT) controlled by the cam phasers. Scavenging improves the compressor performance at low flows and boosts low-speed-end torques of the engines. Characteristics of the engine combustion in the scavenging zone were studied with a highly-boosted 1.5L TGDI engine experimentally. It was found that the scavenging zone was associated with the highest blowby rates on the engine map. The blowby recirculation was with heavy oil loading, causing considerable hydrocarbon fouling on the intake ports as well as on the stem and the back of the intake valves after the engine was operated in this zone for a certain period of time. The low-speed pre-ignition (LSPI) events observed in the engine tests fell mainly in the scavenging zone.
2017-03-28
Technical Paper
2017-01-0979
Changpu Zhao, Yayong Zhu, Yaohui Wang, Sirui Huang
Abstract Although diesel engines have higher output torque, lower fuel consumption, and lower HC pollutant emissions, larger amounts of NOx and PM are emitted, compared with equivalent gasoline engines. The diesel particulate filters (DPF) have proved one of the most promising aftertreatment technologies due to the more stringent particulate matters (PM) regulations. In this study, the computational fluid dynamics (CFD) model of DPF was built by utilizing AVL-Fire software code. The main objective of this paper was to investigate the pressure drop and soot regeneration characteristics of hexagonal and conventional square cell DPFs with various inlet mass flow rates, inlet temperatures, cell densities, soot loads and ash loads. Different cell geometry shapes of DPF were evaluated under various ash distribution types.
2017-03-28
Technical Paper
2017-01-0973
Naoko Uchiumi, Hiroshi Hirabayashi, Shinya Sato, Takafumi Yamauchi
Abstract Urea-SCR(selective catalytic reduction) system is widely used as a technology of NOx(Nitrogen Oxides) reduction from diesel engine exhaust gases. Emission regulations have becoming stricter all over the world, and high NOx reduction performance is necessary to meet the emission regulations. To get higher NOx reduction performance of the Urea-SCR system, it is important to understand detailed chemical reaction mechanisms of Urea-SCR catalysts. In this study, we focused on elucidation of the reaction mechanism of the Urea-SCR catalyst by numerical simulation approach. The chemical reaction models with detail chemical reactions were built for both Fe-catalyst and Cu-catalyst. Both of the catalytic reaction models can predict difference of the catalytic reaction performance between the Fe-catalyst and the Cu-catalyst. In addition, rate-determining reaction step of the Cu-catalyst was successfully identified by the numerical simulation results.
2017-03-28
Technical Paper
2017-01-0972
Jiri Figura, Jaroslav Pekar, Pavel Krejza, David Mracek, Dirk von Wissel, Tianran Zhang
Abstract Many control approaches for selective catalytic reduction (SCR) systems require knowledge of ammonia storage (NH3 storage) to dose urea accurately. Currently there are no technologies to directly measure internal NH3 storage in a vehicle, so it can only be inferred from hardware sensors located upstream, downstream, or in the catalyst. This paper describes an application of extended Kalman filter (EKF) state estimator used as a virtual sensor for urea injection control of a multi-brick aftertreatment system. The proposed estimator combines mean-value physics-based models of combined SCR and diesel particulate filter (SCR/DPF), SCR and clean-up catalyst (CUC). It uses hardware sensors at the inlet and outlet of the aftertreatment system, and includes no sensors between the catalysts. Performance of the proposed estimator was validated in simulations against a high-fidelity model of the aftertreatment system.
2017-03-28
Technical Paper
2017-01-0967
Xin Liu, Jeong Kim, Timothy Chanko, Christine Lambert, James Pakko
Abstract With an emerging need for gasoline particulate filters (GPFs) to lower particle emissions from gasoline direct injection (GDI) engines, studies are being conducted to optimize GPF designs in order to balance filtration efficiency, backpressure penalty, filter size, cost and other factors. Metal fiber filters could offer additional designs to the GPF portfolio, which is currently dominated by ceramic wall-flow filters. However, knowledge on their performance as GPFs is still limited. In this study, modeling on backpressure and filtration efficiency of fibrous media was carried out to determine the basic design criteria (filtration area, filter thickness and size) for different target efficiencies and backpressures at given gas flow conditions. Filter media with different fiber sizes (8 - 17 μm) and porosities (80% - 95%) were evaluated using modeling to determine the influence of fiber size and porosity.
2017-03-28
Technical Paper
2017-01-0999
Yuanzhou Xi, Nathan Ottinger, Z. Gerald Liu
Abstract Natural gas powered vehicles are attractive in certain applications due to their lower emissions in general than conventional diesel engines and the low cost of natural gas. For stoichiometric natural gas engines, the aftertreatment system typically consists only of a three-way catalyst (TWC). However, increasingly stringent NOx and methane regulations challenge current TWC technologies. In this work, a catalyst reactor system with variable lean/rich switching capability was developed for evaluating TWCs for stoichiometric natural gas engines. The effect of varying frequency and duty-cycle during lean/rich gas switching experiments was measured with a hot-wire anemometer (HWA) due to its high sensitivity to gas thermal properties. A theoretical reactor gas dispersion model was then developed and validated with the HWA measurements. The model is capable of predicting the actual lean/rich gas exposure to the TWC under different testing conditions.
2017-03-28
Technical Paper
2017-01-0998
Kurtis James Irwin, Jonathan Stewart, Roy Douglas, Andrew Woods, Richard O’Shaughnessy, Andrew Pedlow, Rose Mary Stalker
Abstract Accelerated aging of automotive catalysts has become a routine process for the development of new catalytic formulations and for homologation of vehicle emissions. In the standard approach, catalyst samples are subjected to temperatures in excess of 800°C on a predefined test cycle and aged for precise timescales representative of certain vehicle mileage. The high temperature feed gas is traditionally provided by a large gasoline engine but, increasingly, alternative bench-aging techniques are being applied as these offer more precise control and considerable cost savings, as well as offering more development possibilities. In the past few years, emissions control of light duty vehicles has become increasingly prominent as more stringent emissions legislations require more complex after-treatment systems. Aging of the catalysts are not fully understood as they are subjected to many varying environments, including temperature and gas concentrations.
2017-03-28
Technical Paper
2017-01-1006
Fadzli Ibrahim, Wan Mohd Faizal Wan Mahmood, Shahrir Abdullah, Mohd Radzi Abu Mansor
Abstract Application of computational method in studying soot formation and its characteristics has become more preferable in today’s automotive field. Current developments of computer programs with higher precision mathematical models enable simulation results to become closer to the real engine combustion phenomena. In the present study, investigation on soot has been performed using various soot models with different levels of complexity, from simple two-step Hiroyasu-NSC soot model to the detailed-kinetic soot model. Detailed soot models, Particulate Mimic (PM) which is based on methods of moment and Particulate Size Mimic (PSM) which is based on sectional method, are applied in this study. Result of soot mass from Hiroyasu-NSC model provides 120% error compare to experimental result, while both detailed models provide an acceptable error of 7%.
2017-03-28
Technical Paper
2017-01-1007
Piotr Bielaczyc, Andrzej Szczotka, Joseph Woodburn
Abstract This paper reports testing conducted on multiple vehicle types over two European legislative driving cycles (the current NEDC and the incoming WLTC), using a mixture of legislative and non-legislative measurement devices to characterise the particulate emissions and examine the impact of the test cycle and certain vehicle characteristics (engine/fuel type, idle stop system, inertia) on particulate emissions. European legislative measurement techniques were successfully used to quantify particle mass (PM) and number (PN); an AVL Microsoot sensor was also used. Overall, the two driving cycles used in this study had a relatively limited impact on particulate emissions from the test vehicles, but certain differences were visible and in some cases statistically significant.
2017-03-28
Technical Paper
2017-01-1012
Sunil Kumar Pathak, Vineet sood, Yograj Singh, Salim Abbasbhai Channiwala
Abstract In developing countries like India, large numbers of portable gensets are used as a power source due to the scarcity of grid power supply. The portable gensets, ranging from 0.5 kW to 5 kW are very popular in the residential areas, for example, small restaurants, and shopping complexes, etc. These gensets are using various fuels like gasoline, diesel, LPG, and kerosene in small internal combustion engines. Such engines are the significant source of air pollution, as these are running in the vicinity of populated areas and higher human exposure to these pollutants.Theses gensets are regulated by exhaust and noise emissions norms, set by statutory bodies like the ministry of environment and forest and central pollution control board of India.
2017-03-28
Technical Paper
2017-01-0985
Joachim Demuynck, Cecile Favre, Dirk Bosteels, Heather Hamje, Jon Andersson
Abstract The market share of Gasoline Direct Injection (GDI) vehicles has been increasing, promoted by its positive contribution to the overall fleet fuel economy improvement. It has however been reported that this type of engine is emitting more ultrafine particles than the Euro 6c Particle Number (PN) limit of 6·1011 particles/km that will be introduced in Europe as of September 2017 in parallel with the Real Driving Emission (RDE) procedure. The emissions performance of a Euro 6b GDI passenger car was measured, first in the OEM build without a Gasoline Particulate Filter (GPF) and then as a demonstrator with a coated GPF in the underfloor position. Regulated emissions were measured on the European regulatory test cycles NEDC and WLTC and in real-world conditions with Portable Emissions Measurement Systems (PEMS) according to the published European RDE procedure (Commission Regulation (EU) 2016/427 and 2016/646).
2017-03-28
Technical Paper
2017-01-1009
Yajun Wang, Xingyu Liang, Yuesen Wang, Xiuxiu Sun, Hanzhengnan Yu, Xikai Liu
In this paper, the influences of metallic content of lubricating oils on diesel particles were investigated. Three lubricating oils with different levels of metallic content were used in a 2.22 Liter, two cylinders, four stroke, and direct injection diesel engine. 4.0 wt. % and 8 wt. % antioxidant and corrosion inhibitor (T202) were added into baseline lubricating oil to improve the performance respectively. Primary particle diameter distributions and particle nanostructure were compared and analyzed by Transmission Electron Microscope. The graphitization degrees of diesel particles from different lubricating oils were analyzed by Raman spectroscopy. Conclusions drawn from the experiments indicate that the metallic content increases the primary particles diameter at 1600 rpm and 2200 rpm. The primary particles diameter ranges from 5 nm to 65 nm and the distribution conformed to Gaussian distribution.
2017-03-28
Technical Paper
2017-01-0983
Masaaki Ito, Frank Katsube, Yasuhiko Hamada, Hiroaki Ishikawa, Tsuyoshi Asako
Abstract Particle Number (PN) regulation was firstly introduced for European light-duty diesel vehicles back in 2011[1]. Since then, PN regulation has been and is being expanded to heavy-duty diesel vehicles and non-road diesel machineries. PN regulation will also be expanded to China and India around 2020 or later. Diesel Particulate Filter (DPF) is significant factor for the above-mentioned PN regulation. This filter technology is to be continuously evolved for the near future tighter PN regulation. Generally, PN filtration performance test for filter technology development is carried out with chassis dynamometer, engine dynamometer or simulator [2]. This paper describes a simplified and relatively quicker alternative PN filtration performance test method for accelerating filter technology development compared to the current test method.
2017-03-28
Technical Paper
2017-01-1016
Charles Schenk, Paul Dekraker
Abstract EPA has been benchmarking engines and transmissions to generate inputs for use in its technology assessments supporting the Midterm Evaluation of EPA’s 2017-2025 Light-Duty Vehicle greenhouse gas emissions assessments. As part of an Atkinson cycle engine technology assessment of applications in light-duty vehicles, cooled external exhaust gas recirculation (cEGR) and cylinder deactivation (CDA) were evaluated. The base engine was a production gasoline 2.0L four-cylinder engine with 75 degrees of intake cam phase authority and a 14:1 geometric compression ratio. An open ECU and cEGR hardware were installed on the engine so that the CO2 reduction effectiveness could be evaluated. Additionally, two cylinders were deactivated to determine what CO2 benefits could be achieved. Once a steady state calibration was complete, two-cycle (FTP and HwFET) CO2 reduction estimates were made using fuel weighted operating modes and a full vehicle model (ALPHA) cycle simulation.
2017-03-28
Technical Paper
2017-01-1019
Bentolhoda Torkashvand, Andreas Gremminger, Simone Valchera, Maria Casapu, Jan-Dierk Grunwaldt, Olaf Deutschmann
Abstract The effect of increased pressure relevant to pre-turbine catalyst positioning on catalytic oxidation of methane over a commercial Pd-Pt model catalyst under lean conditions is investigated both experimentally and numerically. The possible gas phase reactions due to high temperature and pressure were tested with an inert monolith. Catalyst activity tests were conducted for both wet and dry gas mixtures and the effect of pressure was investigated at 1, 2 and 4 bar. Aside from the water in the inlet stream, the water produced by oxidation of methane in dry feed inhibited the activity of the catalyst as well. Experiments were carried out to check the effect of added water in the concentration range of water produced by methane oxidation on the catalyst activity. Based on the experimental results, a global oxidation rate equation is proposed. The reaction rate expression is first order with respect to methane and -1.15 with respect to water.
2017-03-28
Technical Paper
2017-01-1020
Finn Tseng, Imad Makki, Pankaj Kumar, Robert Jentz, Aed Dudar
Abstract Engine-Off Natural Vacuum (EONV) principles based leak detection monitors are designed to determine the presence of a small leak in the fuel tank system. It was introduced to address the ever more stringent emission requirement (currently at 0.02”) for gasoline engine equipped vehicles as proposed by the Environmental Protection Agency (EPA) and California Air Resources Board (CARB) in the United States [2, 3]. Other environmental protection agencies including the ones in EU and China will be adopting similar regulations in the near future. Due to its sensitivity to known noise factors such as the ambient temperature, barometric pressure, drive pattern and parking angle, it has been historically a lower performing monitor that is susceptible to warranty cost or even voluntary recalls. The proposed new model based monitor utilizes production pressure signal and newly instrumented temperature sensors [15].
2017-03-28
Journal Article
2017-01-0674
Benjamin Matthew Wolk, Isaac Ekoto
Abstract Pulsed nanosecond discharges (PND) can achieve ignition in internal combustion engines through enhanced reaction kinetics as a result of elevated electron energies without the associated increases in translational gas temperature that cause electrode erosion. Atomic oxygen (O), including its electronically excited states, is thought to be a key species in promoting low-temperature ignition. In this paper, high-voltage (17-24 kV peak) PND are examined in oxygen/nitrogen/carbon dioxide/water mixtures at engine-relevant densities (up to 9.1 kg/m3) through pressure-rise calorimetry and direct imaging of excited-state O-atom and molecular nitrogen (N2) in an optically accessible spark calorimeter, with the anode/cathode gap distance set to 5 mm or with an anode-only configuration (DC corona). The conversion efficiency of pulse electrical energy into thermal energy was measured for PND with secondary streamer breakdown (SSB) and similar low-temperature plasmas (LTP) without.
2017-03-28
Journal Article
2017-01-0639
Michael H. Shelby, Thomas G. Leone, Kevin D. Byrd, Frank K. Wong
Abstract Increasing compression ratio (CR) is one of the most fundamental ways to improve engine efficiency, but the CR of practical spark ignition engines is limited by knock and spark retard at high loads. A variable CR mechanism could improve efficiency by using higher CR at low loads, and lower CR (with less spark retard) at high loads. This paper quantifies the potential efficiency benefits of applying variable CR to a modern downsized, boosted gasoline engine. Load sweeps were conducted experimentally on a multi-cylinder gasoline turbocharged direct injection (GTDI) engine at several CRs. Experimental results were compared to efficiency versus CR correlations from the literature and were used to estimate the fuel economy benefits of 2-step and continuously variable CR concepts on several engine/vehicle combinations, for various drive cycles.
2017-03-28
Journal Article
2017-01-0644
Michael Pontoppidan, Adm José baeta
Abstract In a torch ignition engine system the combustion starts in a prechamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main combustion chamber. The paper presents the layout of the prototype engine and the developed fuel injection system. It continues with a detailed description of the performance of the torch ignition engine running on a gasoline/ethanol blend for different mixture stratification levels as well as engine speeds and loads. Also detailed analyses of specific fuel consumption, thermal and combustion efficiency, specific emissions of CO2 and the main combustion parameters are carried out. A supplementary decrease in NOX emissions was obtained by use of Brazilian pure hydrated fuel. The paper concludes presenting the main results obtained in this work, which show significant increase of the torch ignition engine performance in comparison with the commercial baseline engine.
2017-03-28
Journal Article
2017-01-0643
Thompson Lanzanova, Macklini Dalla Nora, Hua Zhao
Abstract The more strict CO2 emission legislation for internal combustion engines demands higher spark ignition (SI)engine efficiencies. The use of renewable fuels, such as bioethanol, may play a vital role to reduce not only CO2 emissions but also petroleum dependency. An option to increase SI four stroke engine efficiency is to use the so called over-expanded cycle concepts by variation of the valve events. The use of an early or late intake valve closure reduces pumping losses (the main cause of the low part load efficiency in SI engines) but decreases the effective compression ratio. The higher expansion to compression ratio leads to better use of the produced work and also increases engine efficiency. This paper investigates the effects of early and late intake valve closure strategies in the gas exchange process, combustion, emissions and engine efficiency at unthrottled stoichiometric operation.
2017-03-28
Journal Article
2017-01-0648
Dennis Robertson, Christopher Chadwell, Terrence Alger, Jacob Zuehl, Raphael Gukelberger, Bradley Denton, Ian Smith
Abstract Dedicated EGR (D-EGR) is an EGR strategy that uses in-cylinder reformation to improve fuel economy and reduce emissions. The entire exhaust of a sub-group of power cylinders (dedicated cylinders) is routed directly into the intake. These cylinders are run fuel-rich, producing H2 and CO (reformate), with the potential to improve combustion stability, knock tolerance and burn duration. A 2.0 L turbocharged D-EGR engine was packaged into a 2012 Buick Regal and evaluated on drive cycle performance. City and highway fuel consumption were reduced by 13% and 9%, respectively. NOx + NMOG were 31 mg/mile, well below the Tier 2 Bin 5 limit and just outside the Tier 3 Bin 30 limit (30 mg/mile).
2017-03-28
Journal Article
2017-01-0714
Qinglong Tang, Haifeng Liu, Mingfa Yao
Abstract Reactivity controlled compression ignition (RCCI) is a potential combustion strategy to achieve high engine efficiency with ultra-low NOx and soot emissions. Fuel stratification can be used to control the heat release rate of RCCI combustion. But the in-cylinder combustion process of the RCCI under different fuel stratification degrees has not been well understood, especially at a higher engine load. In this paper, simultaneous measurement of natural flame luminosity and emission spectra was carried out on a light-duty optical RCCI engine under different fuel stratification degrees. The engine was run at 1200 revolutions per minute under a load about 7 bar indicated mean effective pressure (IMEP). In order to form fuel stratification degrees from low to high, the common-rail injection timing of n-heptane was changed from -180° CA after top dead center (ATDC) to -10° CA ATDC, while the iso-octane delivered in the intake stroke was fixed.
2017-03-28
Journal Article
2017-01-0716
Randy Hessel, Zongyu Yue, Rolf Reitz, Mark Musculus, Jacqueline O'Connor
Abstract One way to develop an understanding of soot formation and oxidation processes that occur during direct injection and combustion in an internal combustion engine is to image the natural luminosity from soot over time. Imaging is possible when there is optical access to the combustion chamber. After the images are acquired, the next challenge is to properly interpret the luminous distributions that have been captured on the images. A major focus of this paper is to provide guidance on interpretation of experimental images of soot luminosity by explaining how radiation from soot is predicted to change as it is transmitted through the combustion chamber and to the imaging. The interpretations are only limited by the scope of the models that have been developed for this purpose. The end-goal of imaging radiation from soot is to estimate the amount of soot that is present.
2017-03-28
Journal Article
2017-01-0691
Louis-Marie Malbec, Julian Kashdan
Abstract Previous experimental data obtained in constant volume combustion vessels have shown that soot-free diffusive flames can be achieved in a Diesel spray if the equivalence ratio at the flame lift-off location is below 2. The so-called Leaner Lifted-Flame Combustion (LLFC) strategy is a promising approach to limit the levels of in-cylinder soot produced in Diesel engines. However, implementing such strategies in light-duty engines is not straightforward due to the effects of charge confinement , non-steady boundary conditions and spray-spray interactions compared to the simplified configuration of a free-jet in a constant-volume combustion vessel. The present study aims at trying to gain a better understanding of the requirements in terms of injector and engine settings in order to reach the LLFC regime in a light-duty engine. Experiments were performed on a 0.5L single-cylinder optical engine.
2017-03-28
Journal Article
2017-01-0704
Noriyuki Takada, Takeshi Hashizume, Terutoshi Tomoda, Kazuhisa Inagaki, Kiyomi Kawamura
Abstract Generally, soot emissions increase in diesel engines with smaller bore sizes due to larger spray impingement on the cavity wall at a constant specific output power. The objective of this study is to clarify the constraints for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes. The first report applied the geometrical similarity concept to two engines with different bore sizes and similar piston cavity shapes. The smaller engine emitted more smoke because air entrainment decreases due to the narrower spray angle. A new spray design method called spray characteristics similarity was proposed to suppress soot emissions. However, a smaller nozzle diameter and a larger number of nozzle holes are required to maintain the same spray characteristics (such as specific air-entrainment and penetration) when the bore size decreases.
Viewing 61 to 90 of 24428

Filter