Display:

Results

Viewing 61 to 90 of 24446
2017-03-28
Technical Paper
2017-01-0975
Pankaj Kumar, Imad Makki
Abstract A three-way catalytic converter (TWC) is an emissions control device, used to treat the exhaust gases in a gasoline engine. The conversion efficiency of the catalyst, however, drops with age or customer usage and needs to be monitored on-line to meet the on board diagnostics (OBD II) regulations. In this work, a non-intrusive catalyst monitor is developed to diagnose the track the remaining useful life of the catalyst based on measured in-vehicle signals. Using air mass and the air-fuel ratio (A/F) at the front (upstream) and rear (downstream) of the catalyst, the catalyst oxygen storage capacity is estimated. The catalyst capacity and operating exhaust temperature are used as an input features for developing a Support Vector Machine (SVM) algorithm based classifier to identify a threshold catalyst. In addition, the distance of the data points in hyperspace from the calibrated threshold plane is used to compute the remaining useful life left.
2017-03-28
Technical Paper
2017-01-1162
Ken Laberteaux, Karim Hamza
Abstract Electric drive vehicles (EDV) have the potential to greatly reduce greenhouse gas (GHG) emissions and thus, there are many policies in place to encourage the purchase and use of gasoline-hybrid, battery, plug-in hybrid, and fuel cell electric vehicles. But not all vehicles are the same, and households use vehicles in very different ways. What if policies took these differences into consideration with the goal of further reducing GHG emissions? This paper attempts to answer two questions: i) are there certain households that, by switching from a conventional vehicle to an EDV, would result in a comparatively large GHG reduction (as compared to other households making that switch), and, if so, ii) how large is the difference in GHG reductions? The paper considers over 65,000 actual GPS trip traces (generated by one-second interval recording of the speed of approximately 2,900 vehicles) collected by the 2013 California Household Travel Survey (CHTS).
2017-03-28
Technical Paper
2017-01-0683
Michael Fischer, Philipp Kreutziger, Yong Sun, Adam Kotrba
Abstract External Exhaust Gas Recirculation (EGR) has been used on diesel engines for decades and has also been used on gasoline engines in the past. It is recently reintroduced on gasoline engines to improve fuel economy at mid and high engine load conditions, where EGR can reduce throttling losses and fuel enrichment. Fuel enrichment causes fuel penalty and high soot particulates, as well as hydrocarbon (HC) emissions, all of which are limited by emissions regulations. Under stoichiometric conditions, gasoline engines can be operated at high EGR rates (> 20%), but more than diesel engines, its intake gas including external EGR needs extreme cooling (down to ~50°C) to gain the maximum fuel economy improvement. However, external EGR and its problems at low temperatures (fouling, corrosion & condensation) are well known.
2017-03-28
Technical Paper
2017-01-0684
Vickey B. Kalaskar, Raphael Gukelberger, Bradley Denton, Thomas Briggs
Abstract Dedicated EGR has shown promise for achieving high efficiency with low emissions [1]. For the present study, a 4-cylinder turbocharged GDI engine which was modified to a D-EGR configuration was used to investigate the impact of valve phasing and different injection strategies on the reformate production in the dedicated cylinder. Various levels of positive valve overlap were used in conjunction with different approaches for dedicated cylinder over fueling using PFI and DI fuel systems. Three speed-load combinations were studied, 2000 rpm 4 bar IMEPg, 2000 rpm 12 bar IMEPg, and 4000 rpm 12 bar IMEPg. The primary investigation was conducted to map out the dedicated cylinders' performance at the operating limits of intake and exhaust cam phasing. In this case, the limits were defined as conditions that yielded either no reformate benefit or led to instability in the dedicated cylinder.
2017-03-28
Technical Paper
2017-01-0962
Jian Gong, Di Wang, Avra Brahma, Junhui Li, Neal Currier, Aleksey Yezerets, Pingen Chen
Abstract Oxygen storage capacity (OSC) is one of the most critical characteristics of a three-way catalyst (TWC) and is closely related to the catalyst aging and performance. In this study, a dynamic OSC model involving two oxygen storage sites with distinct kinetics was developed. The dual-site OSC model was validated on a bench reactor and a natural gas engine. The model was capable of predicting temperature dependence on OSC with H2, CO and CH4 as reductants. Also, the effects of oxygen concentration and space velocity on the amount of OSC were captured by the model. The validated OSC model was applied to simulate lean breakthrough phenomena with varied space velocities and oxygen concentrations. It is found that OSC during lean breakthrough is not a constant for a particular TWC catalyst and is dependent on space velocity and oxygen concentration. Specifically, breakthrough time exhibits a non-linear, inverse correlation to oxygen flux.
2017-03-28
Technical Paper
2017-01-1285
Tarun Mehra
Abstract Exploring and enhancement of biodiesel production from feedstock like non-edible vegetable oil is one of the powerful method to resolve inadequate amount of conventional raw materials and their high prices. The main aim of this study is to optimize the biodiesel production process parameters of a biodiesel obtained from non-edible feedstocks, namely Neem (Azadirachta indica) oil and Sesame (Sesamum indicum L.) oil, with response surface methodology using Doehlert’s experimental design. Based on the results, the optimum operating parameters for transesterification of the mixture A50S50 oil mixture at 51.045° C over a period of 45 minutes are as follows: methanol-to-oil ratio: 8.45, and catalyst concentration: 1.933 wt.%. These optimum operating parameters give the highest yield for the A50S50 biodiesel with a value of 95.24%.
2017-03-28
Technical Paper
2017-01-0645
Jeremy Galpin, Thierry Colliou, Olivier Laget, Fabien Rabeau, Gaetano De Paola, Pascal Rahir
Abstract In spite of the increasingly stringent emission standards, the constant growth of road traffic contributes to climate change and induces detrimental effects on the environment. The European REWARD project (REal World Advanced Technologies foR Diesel Engines) aims to develop a new generation of Diesel engines complying with stricter post Euro 6 legislation and with lower CO2 emissions. Among the different technologies developed, a fuel-efficient two-stroke Diesel engine suited for C-segment passenger cars will be designed and experimentally evaluated. One major challenge for two-stroke engines is the achievement of an efficient scavenging. As the emptying of the in-cylinder burnt gases and the filling by fresh gases is performed at the same time, the challenge consists in removing as much burnt gases as possible while avoiding the by-pass of fresh air toward the exhaust line.
2017-03-28
Technical Paper
2017-01-0531
Rani Kiwan, Anna Stefanopoulou, Jason Martz, Gopichandra Surnilla, Imtiaz Ali, Daniel Styles
Abstract Low Pressure (LP) Exhaust Gas Recirculation (EGR) promises fuel economy benefits at high loads in turbocharged SI engines as it allows better combustion phasing and reduces the need for fuel enrichment. Precise estimation and control of in-cylinder EGR concentration is crucial to avoiding misfire. Unfortunately, EGR flow rate estimation using an orifice model based on the EGR valve ΔP measurement can be challenging given pressure pulsations, flow reversal and the inherently low pressure differentials across the EGR valve. Using a GT-Power model of a 1.6 L GDI turbocharged engine with LP-EGR, this study investigates the effects of the ΔP sensor gauge-line lengths and measurement noise on LP-EGR estimation accuracy. Gauge-lines can be necessary to protect the ΔP sensor from high exhaust temperatures, but unfortunately can produce acoustic resonance and distort the ΔP signal measured by the sensor.
2017-03-28
Technical Paper
2017-01-0998
Kurtis James Irwin, Jonathan Stewart, Roy Douglas, Andrew Woods, Richard O’Shaughnessy, Andrew Pedlow, Rose Mary Stalker
Abstract Accelerated aging of automotive catalysts has become a routine process for the development of new catalytic formulations and for homologation of vehicle emissions. In the standard approach, catalyst samples are subjected to temperatures in excess of 800°C on a predefined test cycle and aged for precise timescales representative of certain vehicle mileage. The high temperature feed gas is traditionally provided by a large gasoline engine but, increasingly, alternative bench-aging techniques are being applied as these offer more precise control and considerable cost savings, as well as offering more development possibilities. In the past few years, emissions control of light duty vehicles has become increasingly prominent as more stringent emissions legislations require more complex after-treatment systems. Aging of the catalysts are not fully understood as they are subjected to many varying environments, including temperature and gas concentrations.
2017-03-28
Technical Paper
2017-01-0967
Xin Liu, Jeong Kim, Timothy Chanko, Christine Lambert, James Pakko
Abstract With an emerging need for gasoline particulate filters (GPFs) to lower particle emissions from gasoline direct injection (GDI) engines, studies are being conducted to optimize GPF designs in order to balance filtration efficiency, backpressure penalty, filter size, cost and other factors. Metal fiber filters could offer additional designs to the GPF portfolio, which is currently dominated by ceramic wall-flow filters. However, knowledge on their performance as GPFs is still limited. In this study, modeling on backpressure and filtration efficiency of fibrous media was carried out to determine the basic design criteria (filtration area, filter thickness and size) for different target efficiencies and backpressures at given gas flow conditions. Filter media with different fiber sizes (8 - 17 μm) and porosities (80% - 95%) were evaluated using modeling to determine the influence of fiber size and porosity.
2017-03-28
Technical Paper
2017-01-0986
Mohd Azman Abas, Shaiful Fadzil Zainal Abidin, Srithar Rajoo, Ricardo Martinez-Botas, Muhammad Izzal Ismail
Abstract Engine stop/start and cylinder deactivation are increasingly in use to improve fuel consumption of internal combustion engine in passenger cars. The stop/start technology switches off the engine to whenever the vehicle is at a stand-still, typically in a highly-congested area of an urban driving. The inherent issue with the implementation of stop/start technology in Southeast Asia, with tropical climate such as Malaysia, is the constant demand for the air-conditioning system. This inevitably reduces the duration of engine switch-off when the vehicle at stop and consequently nullifying the benefit of the stop/start system. On the other hand, cylinder deactivation technology improves the fuel consumption at certain conditions during low to medium vehicle speeds, when the engine is at part load operation only.
2017-03-28
Technical Paper
2017-01-0991
Sunil Kumar Pathak, Yograj Singh, Vineet sood, Salim Abbasbhai Channiwala
Abstract Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their type approval emission values and reference fuel consumption. Some studies have shown that real world driving emissions are much higher as compared to laboratory measurements. The difference was caused by two important factors, i.e. ambient conditions (temperature and altitude) and actual real-world driving cycles. For this reason, the European Commission had constituted a working group which developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS). RDE test will verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. In RDE test specific boundary conditions of the temperatures, classified as moderate (0 ≤Tamb < 30), Extended (low): -7 ≤Tamb < 0 and Extended (high): 30
2017-03-28
Journal Article
2017-01-0863
Bader Almansour, Sami Alawadhi, Subith Vasu
Abstract The biofuel and engine co-development framework was initiated at Sandia National Labs. Here, the synthetic biologists develop and engineer a new platform for drop-in fuel production from lignocellulosic biomass, using several endophytic fungi. Hence this process has the potential advantage that expensive pretreatment and fuel refining stages can be optimized thereby allowing scalability and cost reduction; two major considerations for widespread biofuel utilization. Large concentrations of ketones along with other volatile organic compounds were produced by fungi grown over switchgrass media. The combustion and emission properties of these new large ketones are poorly known.
2017-03-28
Technical Paper
2017-01-0960
Pankaj Kumar, Imad Makki
Abstract Traditionally, a three-way catalyst (TWC) is controlled to a set heated exhaust gas oxygen (HEGO) sensor voltage (typically placed after the monitored catalyst) that corresponds to optimal catalyst efficiency. This limits the control action, as we rely on emissions breakthrough at the HEGO sensor to infer the state of catalyst. In order to robustly meet the super ultra-low emission regulations, a more precise TWC control around the oxidation level of catalyst is desirable. In this work, we developed a comprehensive set of models to predict the oxygen storage capacity using measured in-vehicle signals only. This is accomplished by developing three models; the first model is a linear in parameter regression model to predict the feed gas emissions from measured signals like engine speed and air-to-fuel ratio (A/F). The second model is a low-dimensional physics based model of the three-way catalyst to predict the exhaust emissions and oxidation state of the catalyst.
2017-03-28
Technical Paper
2017-01-1016
Charles Schenk, Paul Dekraker
Abstract EPA has been benchmarking engines and transmissions to generate inputs for use in its technology assessments supporting the Midterm Evaluation of EPA’s 2017-2025 Light-Duty Vehicle greenhouse gas emissions assessments. As part of an Atkinson cycle engine technology assessment of applications in light-duty vehicles, cooled external exhaust gas recirculation (cEGR) and cylinder deactivation (CDA) were evaluated. The base engine was a production gasoline 2.0L four-cylinder engine with 75 degrees of intake cam phase authority and a 14:1 geometric compression ratio. An open ECU and cEGR hardware were installed on the engine so that the CO2 reduction effectiveness could be evaluated. Additionally, two cylinders were deactivated to determine what CO2 benefits could be achieved. Once a steady state calibration was complete, two-cycle (FTP and HwFET) CO2 reduction estimates were made using fuel weighted operating modes and a full vehicle model (ALPHA) cycle simulation.
2017-03-28
Technical Paper
2017-01-1019
Bentolhoda Torkashvand, Andreas Gremminger, Simone Valchera, Maria Casapu, Jan-Dierk Grunwaldt, Olaf Deutschmann
Abstract The effect of increased pressure relevant to pre-turbine catalyst positioning on catalytic oxidation of methane over a commercial Pd-Pt model catalyst under lean conditions is investigated both experimentally and numerically. The possible gas phase reactions due to high temperature and pressure were tested with an inert monolith. Catalyst activity tests were conducted for both wet and dry gas mixtures and the effect of pressure was investigated at 1, 2 and 4 bar. Aside from the water in the inlet stream, the water produced by oxidation of methane in dry feed inhibited the activity of the catalyst as well. Experiments were carried out to check the effect of added water in the concentration range of water produced by methane oxidation on the catalyst activity. Based on the experimental results, a global oxidation rate equation is proposed. The reaction rate expression is first order with respect to methane and -1.15 with respect to water.
2017-03-28
Technical Paper
2017-01-0609
Pan Song, Shugang Xie, Yuan Zhong, Bolin Gao
Abstract This paper presents a unified creep-speed controller specifically designed for the automated parking system of an automated manual transmission vehicle, whereby the engine management system, transmission control unit, and electronic stability control system can work cooperatively and harmoniously within the same control framework. First, a novel reference speed generator is designed and employs sinusoidal functions to produce the speed profile based on the maneuver-dependent distances computed by a path planner, such that the lag in vehicle response during start-up can be effectively reduced. Second, a well-tuned PID controller is adopted to determine the resultant longitudinal force in attempt to follow the reference speed and eliminate the distance error during the parking maneuvers.
2017-03-28
Technical Paper
2017-01-0675
Kenichiro Ogata
Low pressure cooled exhaust gas recirculation (EGR) to suppress engine knocking is increasingly being used to downsize engines and increase the compression ratio to improve thermal efficiency. This study aims to develop an ignition system to extend the EGR limit and EGR operation area. The ignition system must be improved to enhance ignitability of a mixture of fuel and air. In this paper, we focus on ignition energy of the ignition coil and summarize experimental results on a test dyno obtained by using reinforced conventional ignition coil on the basis of ignition energy and engine speed. As engine speed (mixture flow velocity between ignition plug electrode-gap) and EGR ratio were increased, the secondary energy requirement of the ignition coil was increased. This increase was considered to be caused by an increase of mixture flow velocity at the plug gap and a decrease of laminar flame velocity as EGR ratio increased.
2017-03-28
Collection
Separate sub-sessions cover powertrain control, calibration, and system-level optimization processes related to achieving stringent market fuel economy, emissions, performance, reliability, and quality demands. Topics include the control, calibration, and diagnostics of the engine, powertrain, and subsystems related to energy management in conventional and hybrid operation, considering the simultaneous optimization of hardware design parameters and control software calibration parameters.
2017-03-28
Technical Paper
2017-01-1228
Masaya Nakanishi
Abstract Alternator, which supplies electric energy to a battery and electrical loads when it is rotated by engine via belt, is one of key components to improve vehicle fuel efficiency. We have reduced rectification loss from AC to DC with a MOSFET instead of a rectifier diode. It is important to turn on the MOSFET and off during a rectification period, called synchronous control, to avoid a current flow in the reverse direction from the battery. We turn it off so as to remain a certain conduction period through a body diode of the MOSFET before the rectification end. It is controlled by making a feedback process to coincide with an internal target conduction period based on the rotational speed of the alternator. We reduced a voltage surge risk at turn-off by changing the feedback gain depending on the sign of the time difference between the measured period and the target.
2017-03-28
Technical Paper
2017-01-0976
Seun Olowojebutu, Thomas Steffen
Abstract The integration of selective catalytic reduction catalysts (SCR) into diesel particulate filters (DPF) as a way to treat nitrogen oxides (NOx) and particulate matter (PM) emission is an emerging technology in diesel exhaust aftertreatment. This is driven by ever-tightening limits on NOx and PM emission. In an integrated SCR-in-DPF (also known as SCRF®, SCR-on-DPF, SDPF, or SCR coated filter), the SCR catalyst is impregnated within the porous walls of the DPF. The compact, low weight/volume of the integrated unit provides improvement in the diesel engine cold start emission performance. Experimental investigations have shown comparable performance with standard SCR and DPF units for NOx conversion and PM control, respectively. The modelling of the integrated unit is complicated.
2017-03-28
Technical Paper
2017-01-0949
Makoto Ito, Mitsuru Sakimoto, Zhenzhou Su, Go Hayashita, Keiichiro Aoki
Abstract New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
2017-03-28
Technical Paper
2017-01-0971
Uladzimir Budziankou, Thomas Lauer, Xuehai Yu, Brian M Schmidt, Nam Cho
Experimental studies have shown that knitted wiremesh mixers reduce the formation of solid deposits and improve ammonia homogenization in automotive SCR systems. However, their implementation in CFD models remains a major challenge due to the complex WM geometry. It was the aim of the current study to investigate droplet WM interaction. Essential processes, such as secondary droplet generation, wall film formation, and heat exchange, were analyzed in detail and a numerical model was set up. A box with heat resisting glass was used to study urea-water solution spray impingement on a WM under a wide range of operating conditions. High speed videography was used to identify the impingement regimes. Infrared thermography was applied to investigate WM cooling. In order to determine the impact of the WM on the spray characteristics, the droplet spectrum was measured both upstream and downstream of the WM using the laser diffraction method.
2017-03-28
Technical Paper
2017-01-1245
Takamitsu Tajima, Hideki Tanaka, Takeo Fukuda, Yoshimi Nakasato, Wataru Noguchi, Yoshikazu Katsumasa, Tomohisa Aruga
Abstract The use of electric vehicles (EV) is becoming more widespread as a response to global warming. The major issues associated with EV are the annoyance represented by charging the vehicles and their limited cruising range. In an attempt to remove the restrictions on the cruising range of EV, the research discussed in this paper developed a dynamic charging EV and low-cost infrastructure that would make it possible for the vehicles to charge by receiving power directly from infrastructure while in motion. Based on considerations of the effect of electromagnetic waves, charging power, and the amount of power able to be supplied by the system, this development focused on a contact-type charging system. The use of a wireless charging system would produce concerns over danger due to the infiltration of foreign matter into the primary and secondary coils and the health effects of leakage flux.
2017-03-28
Technical Paper
2017-01-0160
Longjie Xiao, Tianming He, Gangfeng Tan, Bo Huang, Xianyao Ping
Abstract While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
2017-03-28
Technical Paper
2017-01-0963
Hoon Cho, Thomas Brewbaker, Devesh Upadhyay, Brien Fulton, Michiel Van Nieuwstadt
Abstract Many excellent papers have been written about the subject of estimating engine-out NOx on diesel engines based on real-time available data. The claimed accuracy of these models is typically around 6-10% on validation data sets with known inputs. This reported accuracy typically ignores input uncertainties, thus arriving at an optimistic estimate of the model accuracy in a real-time application. In our paper we analyze the effect of input uncertainty on the accuracy of engine-out NOx estimates via a numerical Monte Carlo simulation and show that this effect can be significant. Even though our model is based on an in-cylinder pressure sensor, this sensor is limited in its capability to reduce the effect of other measured inputs on the model.
2017-03-28
Technical Paper
2017-01-1178
Ken Laberteaux, Karim Hamza
Abstract This work presents a simulation-based modeling of the equivalent greenhouse gas (GHG) of plugin hybrid electric vehicles (PHEVs) for real driving patterns obtained from monitoring of real vehicles in public survey data sets such as the California Household Travel Survey (CHTS). Aim of the work is to highlight differences in attainable GHG reduction by adopting a PHEV instead of a conventional vehicle (CV) for different driving patterns obtained from real-world sub-populations of vehicles. Modeling of the equivalent GHG for a trip made by a PHEV can be challenging since it not only depends on the vehicle design and driving pattern of the trip in question, but also on: i) all electric range (AER) of the PHEV, ii) “well to tank” (W2T) equivalent GHG of the electricity used to charge the battery, as well as, iii) battery depletion in previous trips since the last charging event.
2017-03-28
Technical Paper
2017-01-1274
Jason M. Luk, Hyung Chul Kim, Robert De Kleine, Timothy J. Wallington, Heather L. MacLean
Abstract This study investigates the life cycle greenhouse gas (GHG) emissions of a set of vehicles using two real-world gliders (vehicles without powertrains or batteries); a steel-intensive 2013 Ford Fusion glider and a multi material lightweight vehicle (MMLV) glider that utilizes significantly more aluminum and carbon fiber. These gliders are used to develop lightweight and conventional models of internal combustion engine vehicles (ICV), hybrid electric vehicles (HEV), and battery electric vehicles (BEV). Our results show that the MMLV glider can reduce life cycle GHG emissions despite its use of lightweight materials, which can be carbon intensive to produce, because the glider enables a decrease in fuel (production and use) cycle emissions. However, the fuel savings, and thus life cycle GHG emission reductions, differ substantially depending on powertrain type. Compared to ICVs, the high efficiency of HEVs decreases the potential fuel savings.
2017-03-28
Technical Paper
2017-01-0928
Osama M. Ibrahim
Abstract Diesel oxidation catalysts with ultra-low NO2 emissions have been developed based on palladium-tungsten (Pd-W). The catalysts are supported by aluminum-yttrium oxides (Al2O3-Y2O3) nano-washcoat on sintered metal fibers. Elemental composition analysis was performed using Energy Dispersive Spectroscopy (EDS) to quantify the distribution of the Al2O3-Y2O3 nano-washcoats and Pd-W catalysts on the surface of the metal fibers. Initially, emissions measurements were conducted to evaluate the performance of Pd-W catalysts using small coated samples of sintered metal fibers. The results show that the catalysts selectively oxidize CO into CO2 and reduce NO2 into NO, resulting in over 90% reduction in CO emissions and up to 85% reduction in NO2 emissions. Scale-up of an Active Diesel Particulate Filter (ADPF) was then tested on a Cummins 5.9L ISB diesel engine using the US-FTP transient test cycle and the ISO 8178 8-mode test cycle.
2017-03-28
Technical Paper
2017-01-0984
Wenran Geng, Diming Lou, Ning Xu, Piqiang Tan, Zhiyuan Hu
Abstract Recently Hybrid Electric Buses (HEBs) have been widely used in China for energy saving and emission reduction. In order to study the real road emission performance of HEBs, the emission tests of an in-use diesel-electric hybrid bus (DHEB) are evaluated both on chassis dynamometer over China City Bus Cycles (CCBC) and on-road using Portable Emissions Measurement Systems (PEMS). The DHEB is powered by electric motor alone at speed of 0~20km/h. When the speed exceeds 20km/h, engine gets engaged rapidly and then works corporately with the electric motor to drive the bus. For chassis dynamometer test over CCBC, emissions of NOx, particulate number, particulate mass, and THC of the DHEB are 7.68g/km, 5.88E+11#/km, 0.412mg/km, and 0.062g/km, respectively. They have all decreased greatly compared to those of the diesel bus. But the CO emission which is 3.48g/km has increased significantly.
Viewing 61 to 90 of 24446

Filter