Display:

Results

Viewing 31 to 60 of 24523
2017-09-04
Technical Paper
2017-24-0130
Antonio Paolo Carlucci, Marco Benegiamo, Sergio Camporeale, Daniela Ingrosso
Nowadays, In-Cylinder Pressure Sensors (ICPS) have become a mainstream technology that promises to change the way the engine control is performed. Among all the possible applications, the prediction of raw (engine-out) NOx emissions would allow to eliminate the NOx sensor currently used to manage the after-treatment systems. In the current study, a semi-physical model already existing in literature for the prediction of engine-out nitric ox-ide emissions based on in-cylinder pressure measurement has been improved; in particular, the main focus has been to improve nitric oxide prediction accuracy when injection timing is varied. The main modification introduced in the model lies in taking into account the turbu-lence induced by fuel spray and enhanced by in-cylinder bulk motion.
2017-09-04
Technical Paper
2017-24-0131
Sergio Mario Camporeale, Patrizia D. Ciliberti, Antonio Carlucci, Daniela Ingrosso
The incoming PostEuro6 regulation and the on-board diagnostics -OBD- pushes the research activity towards the set-up of even more efficient after treatment systems. Nowadays, the most common after treatment system for NOx reduction is the selective catalytic reactor –SCR- . This system requires as an input the value of engine out NOx emission –raw- in order to control the Urea dosing strategy. In this work, a grey box NOx raw emission model based on in-cylinder pressure signal (ICPS) is validated on two standard cycles: MNEDC and WLTC using an EU6 engine at the test bench. The overall results show a maximum relative error of the integrated cumulate value integral of 12.8% and 17.4% for MNEDC and WLTC respectively. In particular, the instantaneous value of relative error is included in the range of ± 10% in the steady state conditions while during transient conditions is less than 20% mainly.
2017-09-04
Technical Paper
2017-24-0127
Lauretta Rubino, Dominic Thier, Torsten Schumann, Stefan Guettler, Gerald Russ
With the increasing number of engines utilizing direct fuel injection and the upcoming more stringent emission legislation, regulating not only particulate mass (PM) but particulate number (PN), emissions of Direct Injection Spark Ignition Engines (DISI) are becoming of increasing concern. Gasoline Particle Filters (GPF) represent a novel potential measure to reduce particle number emissions from DISI engines and are particularly effective in view of the tight particle number limits requirements at cold start and over RDE. Even if some learning from the development and application of particulate filters to diesel engines can be transferred to gasoline engines, the particulate consistence, the mass to number ratio and the temperature as well as the gas composition of gasoline engines are significant different to diesel engines. Therefore, there is the need to study the application of particulate filters to gasoline engines carefully.
2017-09-04
Technical Paper
2017-24-0126
Christian Zöllner, Dieter Brueggemann
The removal of particulate matter (PM) from diesel exhaust is necessary to protect the environment and human health. To meet the strict emission standards for diesel engines an additional exhaust aftertreatment system is essential. Diesel particulate filters (DPF) are established devices to remove emitted PM from diesel exhaust. But the deposition and the accumulation of soot in the DPF influences the filter back pressure and therefore the engine performance and the fuel consumption which is why a periodical regeneration through PM oxidation is necessary. The oxidation behavior should result in an effective regeneration mode that minimizes the fuel penalty and limits the temperature rise while maintaining a high regeneration efficiency. Excessive and fast regenerations have to be avoided as well as uncontrolled oxidations leading to damages of the filter and fuel penalty.
2017-09-04
Technical Paper
2017-24-0125
Angelo Algieri, Pietropaolo Morrone, Jessica Settino, Teresa Castiglione, Sergio Bova
In the last years automotive researchers and manufacturers are focusing a large attention on the development and the optimisation of aftertreatment systems able to meet the ever more severe regulations on exhaust gas emissions. The scientific literature highlights that all the emission control systems require proper operating temperatures and an accurate flow control to guarantee reliable and effective processes. In particular, to assure the suitable thermal level for efficient treatments, the addition of supplemental fuel is often necessary, with a not negligible penalty on the global engine efficiency. To reduce this effect, innovative reversed flow converters have been proposed over the past few years. They are based on the cyclic inversion of the exhaust gas between the two system ends (active flow control). Conversely, unidirectional flow within the aftertreatment system represents the technical solution largely adopted in practice (passive flow control).
2017-09-04
Technical Paper
2017-24-0109
Nic Van Vuuren, Lucio Postrioti, Gabriele Brizi, Federico Picchiotti
ABSTRACT: Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of urea sprays under operating conditions including those where fluid temperatures exceed the atmospheric fluid boiling point. Results were previously presented from imaging of an AUS-32 injector spray which showed substantial structural differences in the spray between room temperature fluid conditions, and conditions where the fluid temperature approached and exceeded 104º C and “flash boiling” of the fluid was initiated.
2017-09-04
Technical Paper
2017-24-0111
Heechang Oh, JuHun Lee, Seungkook Han, Chansoo Park, Choongsik Bae, Jungho Lee, In Keun Seo, Sung Jae Kim
In this study, the effect of nozzle tip geometry on nozzle tip wetting and particulate emissions was investigated. Various design concepts of injector nozzle hole were newly developed for this study. Spray and emission characteristics of each concept were discussed with experimental results. The macroscopic spray visualization was carried out in a constant volume chamber to investigate general spray characteristics of each nozzle hole concept. The laser induced fluorescence technique was applied to evaluate fuel wetting characteristics on the nozzle tip. The vehicle test and emissions measurement in chassi dynamo were performed to investigate particulate emission characteristics for various injector nozzle designs. In addition, during a vehicle test, the in-cylinder combustion visualization with the optical fiber sensor (AVL VISIO VOLUME) was conducted to provide a comprehensive understanding of diffusion combustion and wetting behavior.
2017-09-04
Technical Paper
2017-24-0112
Guanyu Zheng
Urea injection is required in EU IV to EU VI applications as a mainstream technical direction. In heavy and some medium duty trucks, compressed air at 3-5 bar is available; therefore it can assist urea injection by mixing with urea liquid droplet and exhaust gases. The development of air assisted urea pump and injectors, seemly simpler than airless counterparts, poses multiple challenges. One challenge is to properly mix urea in the mixing chamber with the compressed air, leaving no residual deposits while achieving high mixing efficiency. Another is to maintain good spray quality for a given length of delivery pipe as the liquid phase and gas phase tends to coalesce as they propagate along the pipe flow direction. In addition, the urea pump and injector need to provide robust and reliable performance under stringent road conditions.
2017-09-04
Journal Article
2017-24-0118
Marius Zubel, Stefan Pischinger, Benedikt Heuser
Within the cluster of excellence “Tailor-Made Fuels from Biomass” at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for Diesel engine combustion. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines. For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load, the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
2017-09-04
Technical Paper
2017-24-0120
Matthew Keenan
It appears that the earliest public domain reference regarding automotive catalysis was from January 1959 and written by GM and presented at the annual SAE meeting in Detroit. The publication related hydrocarbon control of a gasoline vehicle using an oxidation catalyst. The results showed 85 – 100% hydrocarbon reduction over the temperature range 600 – 750oC, under different vehicle operating conditions from idle to accelerations. The catalyst contained no precious metals but the full chemical composition was not disclosed. However, interestingly air was required to be pumped into the exhaust as the application didn’t always operate under stoichiometric conditions, but operated periodically under rich conditions. Hence oxygen was required to oxidise the gasoline derived hydrocarbons.
2017-09-04
Technical Paper
2017-24-0121
Ivan Arsie, Giuseppe Cialeo, Federica D'Aniello, Cesare Pianese, Matteo De Cesare, Luigi Paiano
The demand for high NOx conversion efficiency and low tailpipe ammonia slip for urea-based selective catalytic reduction (SCR) systems has substantially increased in the past decade, as NOx emission legislations for Diesel engines are becoming more stringent than ever before. Model-based control strategies are fundamental to meet the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. In this paper, a control oriented model of a Cu-zeolite urea-selective catalytic reduction (SCR) system for automotive diesel engines is presented. The model is derived from a quasi-dimensional four-state model of the urea-SCR plant. In order to make it suitable for the real-time urea-SCR management, a reduced order one-state model has been developed, with the aim of capturing the essential behavior of the system with a low computational demand. The model estimates the relevant species (i.e. NO, NO2 and NH3) independently.
2017-09-04
Technical Paper
2017-24-0123
Christopher Eck, Futoshi Nakano
Small commercial vehicles (SCV) with Diesel engines require efficient exhaust aftertreatment systems to reduce the emissions while keeping the fuel consumption and total operating cost as low as possible. To meet current emission legislations in all cases, a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) and some NOx treatment device (e.g. a lean NOx trap or selective catalytic reduction, SCR) are required. Creating a cost-effective SCV also requires to keep the cost for the aftertreatment system as low as possible because the contribution to total vehicle cost is high. By using more sophisticated and more robust operating strategies and control algorithms, the hardware cost can be reduced. To keep the calibration effort at a low level, it is necessary to apply only algorithms which have a time-efficient calibration procedure. This paper will focus on the active regeneration of the DPF.
2017-09-04
Technical Paper
2017-24-0092
Francesco Catapano, Silvana Di Iorio, Paolo Sementa, Bianca Maria Vaglieco
Fuel depletion as well as the growing concerns on environmental issues prompt to the use of more environmental friendly fuels. The natural gas (CNG) is considered one of the most promising alternative fuel for engine applications because of the lower emissions. Nevertheless, recent studies highlighted the presence of ultrafine particle emissions at the exhaust of CNG engines. The present study aims to investigate the effect of CNG on particle formation and emissions when it was direct injected and when it was dual fueled with gasoline. The study was carried out on a transparent small displacement single cylinder SI engine. The engine was fueled with CNG and gasoline, both simultaneously and not. In particular, CNG and gasoline were direct injected in the combustion chamber. For dual fuel configuration, instead, the CNG was direct injected and the gasoline port fuel injected. In-cylinder 2D images of flame evolution were detected. The flame front propagation was calculated.
2017-09-04
Technical Paper
2017-24-0091
Hyun Woo Won, Alexandre Bouet, Joseph KERMANI, Florence Duffour
Reduce the CO2 footprint, limit the pollutant emissions and rebalance the ongoing shift demand toward middle-distillate fuels are major concerns for vehicle manufacturers and oil refiners. In this context, gasoline-like fuels have been recently identified as good candidate. Strait run naphtha, a refinery stream directly derived from the atmospheric crude oil distillation process, allows to reduce both NOx and particulate emissions when used in compression-ignition engines. CO2 benefits are also expected thanks to its higher H/C ratio and energy content compared to diesel. In previous studies, wide ranges of Cetane Number naphtha fuels have been evaluated and CN 35 naphtha fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern, nozzle design and air-path technology have been performed on a light-duty single cylinder compression-ignition engine.
2017-09-04
Technical Paper
2017-24-0096
Laura Sophie Baumgartner, Stephan Karmann, Fabian Backes, Andreas Stadler, Georg Wachtmeister
Due to its molecular structure, methane provides several advantages as fuel for internal combustion engines. First, owing to the single carbon atom per molecule, a formation of particular matter becomes drastically more unlikely and second the carbon to hydrogen ratio of methane reduces the amount of carbon dioxide by 20 % at the same energy output. To cope with nitrogen oxide emissions a high level of excess air is beneficial, which on the other hand deteriorates the flammability and combustion duration of the mixture. One approach to meet these challenges and ensure a stable combustion process are fuel scavenged prechambers. The flow and combustion processes within these prechambers are highly influenced by the position, orientation, number and overall cross-sectional area of the orifices connecting the prechamber and the main combustion chamber.
2017-09-04
Technical Paper
2017-24-0077
Matteo Pelucchi, Mattia Bissoli, Cristina Rizzo, Yingjia Zhang PhD, Kieran Somers PhD, Alessio Frassoldati, Henry Curran, Tiziano Faravelli
Pursuing a sustainable energy scenario for transportation requires the blending of renewable oxygenated fuels such as alcohols into commercial hydrocarbon fuels. From a chemical kinetic perspective, this requires the accurate description of both hydrocarbon reference fuels (n-heptane, iso-octane, toluene, etc.) and oxygenated fuels chemistry. A recent systematic investigation of linear C2–C5 alcohols ignition in a rapid compression machine at p = 10–30 bar and T = 650–900 K has extended the scarcity of fundamental data at such conditions allowing for a revision low temperature chemistry for alcohol fuels in the POLIMI mechanism. Heavier alcohols such as n-butanol and n-pentanol present ignition characteristic of interest for application in HCCI engines, due to the presence of the hydroxyl moiety reducing their low temperature reactivity compared to the parent linear alkanes (i.e. higher octane number).
2017-09-04
Technical Paper
2017-24-0075
Felix Leach, Riyaz Ismail, Martin Davy, Adam Weall, Brian Cooper
Modern Diesel cars, fitted with state-of- the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant complexity, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder—both during the injection and combustion events—and also to the induced air motion in and around the bowl prior to injection. In this paper the effects of two different piston bowl shapes are investigated – one with a stepped bowl lip, and the other without.
2017-09-04
Technical Paper
2017-24-0081
Luigi De Simio, Michele Gambino, Sabato Iannaccone
In recent years the use of alternative fuels for internal combustion engines has had a strong push coming from both technical and economic-environmental aspects. Among these, gaseous fuels such as liquefied petroleum gas and natural gas have occupied a segment no longer negligible in the automotive industry, thanks to their adaptability, anti-knock capacity, lower toxicity of pollutants, reduced CO2 emissions and cost effectiveness. On the other hand, diesel engines still represent the reference category among the internal combustion engines in terms of consumptions. The possibility offered by the dual fuel (DF) systems, to combine the efficiency and performance of a diesel engine with the advantages offered by the gaseous fuels, has been long investigated. However the simple replacement of diesel fuel with natural gas does not allow to optimize the performance of the engine due to the high THC emissions particularly at lower loads.
2017-09-04
Technical Paper
2017-24-0076
Mark A. Hoffman, Ryan O'Donnell, Zoran Filipi
The proven impact of combustion chamber deposits on advanced compression ignition combustion strategies has steered recent works toward the development of thermal barrier coatings, which can mimic their benefits on combustion efficiency and operational range expansion. However, recent work based on statistical thermodynamics has indicated that inter-molecular radiation during the combustion event may subject the combustion chamber walls to non-negligible radiation heat transfer, regardless of the relatively low soot formation within the well-mixed and lean charge. In the present paper, the impact of radiation heat transfer on combustion chamber deposits and thermal barrier coatings is studied. The morphological construction of the combustion chamber deposit layer is shown to be partially transparent to radiation heat transfer, drawing corollaries with ceramic based thermal barrier coatings.
2017-09-04
Technical Paper
2017-24-0085
Jesus Benajes, Antonio Garcia, Javier Monsalve-Serrano, Vicente Boronat
This work investigates the particulates size distribution of reactivity controlled compression ignition combustion, a dual-fuel concept which combines port fuel injection of low reactive/gasoline-like fuels with direct injection of diesel fuel, when implemented in a medium-duty diesel engine. The particulates size distribution measurement was also carried out for conventional diesel combustion at six engine speeds, from 950 to 2200 rpm, and 25% engine load. For this purpose, a scanning mobility particle sizer was used to measure the particles size distribution from 5-250 nm. Both combustion strategies were conducted in a single-cylinder engine derived from a stock medium-duty multi-cylinder production engine with a compression ratio of 15.3. The combustion strategy proposed during the tests campaign was limited to accomplish mechanical as well as emissions constraints.
2017-09-04
Technical Paper
2017-24-0086
Yanzhao An, S vedharaj, R vallinayagam, Alaaeldin Dawood PhD, Jean-Baptiste MASURIER, Mohammad Izadi Najafabadi, Bart Somers, Junseok Chang, Bengt Johansson
Compared to conventional Compression Ignition (CI), both of Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC) concepts have shown high efficiency with low soot emissions. However, soot measurements are rarely investigated and correlated with in-cylinder combustion in an optical diesel engine. The objective of this study is to investigate the effect of addition of toluene (aromatic) to primary reference fuel, PRF60, on combustion stratification and particulate emissions. Experiments are performed in an optical CI engine at a speed of 1200 rpm for TPRF0 (60% iso-octane + 40% n-heptane), TPRF20 (33.5% iso-octane + 46.5% n-heptane + 20% toluene) and TPRF40 (6% iso-octane + 54% n-heptane + 40% toluene). TPRF mixtures are prepared in such a way that the RON of all test blends are same (RON = 60) to account for the influence of aromatics in TPRF mixtures. The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar.
2017-09-04
Technical Paper
2017-24-0083
Hassan khatamnejad, Shahram Khalilarya, Samad Jafarmadar, Mostafa Mirsalim, Mufaddel Dahodwala
RCCI strategy gained popularity in automotive applications due to lower fuel consumption, less emissions formation and higher engine performance in compared with other diesel combustion strategies. This study presents results of an experimental and numerical investigation on RCCI combustion using natural gas as a low reactivity premixed fuel with advanced injection of diesel fuel as a high reactivity fuel in a CI engine. An advanced three dimensional CFD simulation coupled with chemical kinetic developed to examine the effects of diesel injection timing, diesel/natural gas ratio and diesel fuel included spray angle on combustion and emissions formation in various engine loads and speeds, in a heavy duty diesel engine.
2017-09-04
Technical Paper
2017-24-0084
Giacomo Belgiorno, Nikolaos Dimitrakopoulos, Gabriele Di Blasio, Carlo Beatrice, Martin Tuner, Per Tunestal
In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx–soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
2017-09-04
Technical Paper
2017-24-0067
Yoshiaki Toyama, Nozomi Takahata, Katsufumi Kondo, Tetsuya Aizawa
In order to better understand in-flame diesel soot oxidation processes, soot particles at the oxidation-dominant periphery of diesel spray flame were sampled by a newly developed “suck” type soot sampler employing a high-speed solenoid valve and their morphology and nanostructure were observed via High-Resolution Transmission Electron Microscopy (HR-TEM). A single-shot diesel spray flame for the soot sampling experiment was achieved in a constant-volume vessel under a diesel-like condition. The sampler quickly sucks out a small portion of soot laden gases from the flame. A TEM grid hold inside the flow passage close to its entrance is immediately exposed to the gas flow induced by the suction at the upstream of the solenoid valve, so that the quick thermophoretic soot deposition onto the grid surface can effectively freeze morphology variation of soot particles during the sampling processes.
2017-09-04
Technical Paper
2017-24-0070
Stefano D'Ambrosio, Daniele Iemmolo, Alessandro Mancarella, Nicolò Salamone, Roberto Vitolo, Gilles Hardy
A precise estimation of the recirculated exhaust gas rate and oxygen concentration as well as a predictive evaluation of the possible EGR unbalance among cylinders are of paramount importance, especially if non-conventional combustion modes, which require high EGR flowrates, are implemented. In the present paper, starting from the equation related to convergent nozzles, the EGR mass flow-rate is modeled considering the pressure and the temperature upstream of the EGR control valve, as well as the pressure downstream of it. The restricted flow-area at the valve-seat passage and the discharge coefficient are carefully assessed as functions of the valve lift. Other models were fitted using parameters describing the engine working conditions as inputs, following a semi-physical and a purely statistical approach. The resulting models are then applied to estimate EGR rates to both conventional and non-conventional combustion conditions.
2017-07-10
Technical Paper
2017-28-1937
Jyotirmoy Barman, Prateek Arora, Kumar Patchappalam
Abstract Air Pollution is a major concern in our country due to which Indian Government has taken a decision to move from BS-IV to BS-VI which is nearly 90% reduction in NOx and 50% in particulate matter along with addition of particulate number regulation for BS-VI in comparison to BS-IV norms in very short span of time. Vehicle manufacturers are also having the challenge to produce low cost and fuel efficient product with BS-VI solution in order to meet tightening emission regulations and increasing needs of lower fuel consumption. Detailed study is done with different approaches to meet BS-VI emission which is elaborately explained in different aspect of engine design and after treatment parameter with its pros and cons. After Treatment selection plays an important role in engine development to meet stringent emission legislations and customer demands. Strategies for BS-VI were described with the advantage and drawbacks for after treatment selection.
2017-07-10
Technical Paper
2017-28-1927
Saurav Roy, Jyotirmoy Barman, Rizwan Khan
Abstract The urea NOx selective catalytic reduction (SCR) is an effective technique for the reduction of NOx emitted from diesel engines. Urea spray quality has significant effect on NOx conversion efficiency. Air less injection is one of effective, less complex way of injecting urea spray into the Exhaust stream. Further with air less injection it become more challenging in an engine platform of ~3 to 4L where Exhaust mass flow and temperature are relatively less. The droplet diameter and velocity distribution of De-Nox system has taken as input along with Engine raw emission data for a numerical model. The atomization and evaporation of airless urea injection systems were modeled using computational fluid dynamics. The numerical model was validated by the experimental results.
2017-07-10
Technical Paper
2017-28-1933
Alberto Boretti
Abstract The paper captures the recent events in relation with the Volkswagen (VW) Emissions Scandal and addresses the impact of this event on the future of power train development. The paper analyses the impact on the perspectives of the internal combustion engine, the battery based electric car and the hydrogen based technology. The operation of the United States Environmental Protection Agency (EPA), VW and the United States prosecutor, sparked by the action of the International Council on Clean Transportation (ICCT) is forcing the Original Equipment Manufacturers (OEM) towards everything but rationale immediate transition to the battery based electric mobility. This transition voids the value of any improvement of the internal combustion engine (ICE), especially in the lean burn, compression ignition (CI) technology, and of a better hybridization of powertrains, both options that have much better short term perspectives than the battery based electric car.
2017-07-10
Technical Paper
2017-28-1954
Premkumarr Santhanamm, K. Sreejith, Avinash Anandan
A local and global environmental concern regarding automotive emissions has led to optimize the design and development of Power train systems for IC engines. Blow-by and Engine oil consumption is an important source of hydrocarbon and particulate emissions in modern IC engines. Great efforts have been made by automotive manufacturers to minimize the impact of oil consumption and blow-by on in-cylinder engine emissions. This paper describes a case study of how simulation played a supportive role in improving piston ringpak assembly. The engine taken up for study is a six cylinder, turbocharged, water cooled diesel engine with a peak firing pressure of 140 bar and developing a power output of 227 KW at 1500 rpm. This paper reveals the influence of stepped land, top groove angle, ring face profile, twist features with regard to tweaking of Blow-by & LOC. Relevant design inputs of engine parameters were provided by the customer to firm up the boundary conditions.
2017-07-10
Technical Paper
2017-28-1953
Tushar Narendra Puri lng, Lalitkumar Ramujagir Soni lng, Sourabh Deshpande
Abstract The infliction of rigorous emission norms across the world has made the automobile industry to focus and dwell upon researches to reduce the emissions from internal combustion engines, namely diesel engines. Variation in fuel injection timing has better influence on reduction of engine exhaust emissions. This papers deals with the variation of fuel injection timing along with fuel injection pressure numerically on a 4 stroke, single cylinder, and direct injection diesel engine running at full load condition using CONVERGE CFD tool. As the piston and bowl geometry considered in this work is symmetric, only 60 degree sector of the piston cylinder assembly is considered for numerical simulation over complete 360 degree model.
Viewing 31 to 60 of 24523

Filter