Display:

Results

Viewing 31 to 60 of 24644
2017-10-08
Technical Paper
2017-01-2207
Nobunori Okui
Abstract Next-generation vehicles which include the Electric Vehicles, the Hybrid Electric Vehicles and the Plug-in Hybrid Electric Vehicles are researched and expected to reduce carbon dioxide (CO2) emission in the future. In order to reduce the emissions of the heavy-duty diesel plug-in hybrid electric vehicles (PHEV), it is necessary to provide the high exhaust-gas temperature and to keep the exhaust-gas aftertreatment system effective. The engine starting condition of the PHEV is cold, and the engine start and stop is repeated. And, the engine load of the PHEV is assisted by the electric motor. Therefore, the exhaust-gas aftertreatment system of the PHEV is not able to get the enough high exhaust-gas temperature. And, the warm-up of the exhaust-gas aftertreatment system for the PHEV is spent the long time. So, it is worried about a bad effect on the emission characteristics of the PHEV.
2017-10-08
Technical Paper
2017-01-2216
Yumin Fu
Abstract This study presents the development of sensor less rough road detection by using frequency analysis of instantaneous crankshaft rotation speed signal. Combustion diagnosis (misfire detection) is enforced by OBD requirement. Eliminating rough road’s effect on misfire detection is critical for getting robust diagnosis result, especially for crankshaft rotation speed based misfire detection. Although some kind of sensor is often used to identify vehicle driving on rough road, sensor less rough road detection method is still attractive for OEM to reduce cost and some approaches have been developed in past years for the aim [1] [2] [3]. This paper presents a new rough road detection approach based on crankshaft rotation speed frequency domain analysis. It firstly collects the signal from vehicle driving with misfire on public road and without misfire on rough road. Fluctuation exists in crankshaft rotation speed under such condition.
2017-10-08
Technical Paper
2017-01-2227
Wei Guan, Vinícius Pedrozo, Hua Zhao, Zhibo Ban, Tiejian Lin
Abstract In order to meet increasingly stringent emissions standards and lower the fuel consumption of heavy-duty (HD) vehicles, significant efforts have been made to develop high efficiency and clean diesel engines and aftertreatment systems. However, a trade-off between the actual engine efficiency and nitrogen oxides (NOx) emission remains to minimize the operational costs. In addition, the conversion efficiency of the diesel aftertreatment system decreases rapidly with lower exhaust gas temperatures (EGT), which occurs at low load operations. Thus, it is necessary to investigate the optimum combustion and engine control strategies that can lower the vehicle’s running costs by maintaining low engine-out NOx emissions while increasing the conversion efficiency of the NOx aftertreament system through higher EGTs.
2017-10-08
Technical Paper
2017-01-2235
Ting Liu, Fuyuan Zhang, Yuedong Chao, Zongjie Hu, Liguang Li
Abstract In order to investigate the impacts of recirculated exhaust gas temperature on gasoline engine combustion and emissions, an experimental study has been conducted on a turbocharged PFI gasoline engine. The engine was equipped with a high pressure cooled EGR system, in which different EGR temperatures were realized by using different EGR coolants. The engine ran at 2000 r/min and 3000 r/min, and the BMEP varied from 0.2MPa to 1.0MPa with the step of 0.2MPa. At each case, there were three conditions: 0% EGR, 10% LT-EGR, 10% HT-EGR. The results indicated that LT-EGR had a longer combustion duration compared with HT-EGR. When BMEP was 1.0 MPa, CA50 of HT-EGR advanced about 5oCA. However, CA50 of LT-EGR could still keep steady and in appropriate range, which guaranteed good combustion efficiency. Besides, LT-EGR had lower exhaust gas temperature, which could help to suppress knock. And its lower exhaust gas temperature could reduce heat loss.
2017-10-08
Technical Paper
2017-01-2232
Liming Cao, Ho Teng, Ruigang Miao, Xuwei Luo, Tingjun Hu, Xianlong Huang
Abstract The present paper is Part III of an investigation on the influences of the late intake valve closing (LIVC) and the early intake valve closing (EIVC) on the engine fuel consumptions at different loads and speeds. The investigation was conducted with two 1.5L turbo-charged gasoline direct injection (TGDI) engines, one with a low-lift intake cam (the Miller engine) and the other with a high-lift intake cam (the Atkinson engine). This paper focuses on the influence of the intake-valve-closing timing on the fuel economy with and without exhaust gas recirculation (EGR). It was found that the Miller engine had a lower friction than the Atkinson engine; however, the impact of the difference in engine frictions on the fuel economy was mainly for low-speed operations. Across the engine speed range, the Miller engine had longer combustion durations than the Atkinson engine as a result of the impact of EIVC on the cylinder charge motion.
2017-10-08
Technical Paper
2017-01-2244
Shui Yu, Xiao Yu, Zhenyi Yang, Meiping Wang, Xiaoye Han, Jimi Tjong, Ming Zheng
Abstract In this work, a spatially distributed spark ignition strategy was employed to improve the ignition process of well-mixed ultra-lean dilute gasoline combustion in a high compression ratio (13.1:1) single cylinder engine at partial loads. The ignition energy was distributed in the perimeter of a 3-pole igniter. It was identified that on the basis of similar total spark energy, the 3-pole ignition mode can significantly shorten the early flame kernel development period and reduce the cyclic variation of combustion phasing, for the spark timing sweep tests at λ 1.5. The effect of ignition energy level on lean-burn operation was investigated at λ 1.6. Within a relatively low ignition energy range, i.e. below 46 mJ per pole, the increase in ignition energy via ether 1 pole or 3 pole can improve the controllability over combustion phasing and reduce the variability of lean burn combustion.
2017-10-08
Technical Paper
2017-01-2259
Tianpu Dong, Fujun Zhang, Hongli Gao, Sufei Wang, Yidong Fei
Abstract The diesel low temperature combustion (LTC) can keep high efficiency and produce low emission. Which has been widely studied at home and abroad in recent years. The combustion control parameters, such as injection pressure, injection timing, intake oxygen concentration, intake pressure, intake temperature and so on, have an important influence on the combustion and emission of diesel LTC. Therefore, to realize different combustion modes and combustion mode switch of diesel engine, it is necessary to accurately control the injection parameters and intake parameters of diesel engine. In this work, experimental study has been carried out to analyze the effect of intake oxygen concentration, intake pressure and intake temperature in combustion and emission characteristics of diesel LTC, such as in-cylinder pressure, temperature, heat release rate, NOx and soot emission.
2017-10-08
Technical Paper
2017-01-2264
Hyun Woo Won, Alexandre Bouet, Joseph Kermani, Florence Duffour, Simon Dosda
Abstract Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in compression ignition engines. In this context, low research octane number (RON) gasoline, a refinery stream derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. In addition, thanks to its higher H/C ratio and energy content compared to diesel, CO2 benefits are also expected when used in such engines. In previous studies, different cetane number (CN) fuels have been evaluated and a CN 35 fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern and nozzle design have been performed on a single cylinder compression-ignition engine.
2017-10-08
Technical Paper
2017-01-2263
S. Vedharaj, R Vallinayagam, Yanzhao An, Mohammad Izadi Najafabadi, Bart Somers, Junseok Chang, Bengt Johansson
Abstract Low temperature combustion concepts are studied recently to simultaneously reduce NOX and soot emissions. Optical studies are performed to study gasoline PPC in CI engines to investigate in-cylinder combustion and stratification. It is imperative to perform emission measurements and interpret the results with combustion images. In this work, we attempt to investigate this during the transition from CI to HCCI mode for FACE I gasoline (RON = 70) and its surrogate, PRF70. The experiments are performed in a single cylinder optical engine that runs at a speed of 1200 rpm. Considering the safety of engine, testing was done at lower IMEP (3 bar) and combustion is visualized using a high-speed camera through a window in the bottom of the bowl. From the engine experiments, it is clear that intake air temperature requirement is different at various combustion modes to maintain the same combustion phasing.
2017-10-08
Technical Paper
2017-01-2247
Wenbin Zhang, Haichun ding, Shijin Shuai, Bin Zheng, Alex Cantlay, Vinod Natarajan, Zhang Song ZHAN, Yunping Pu
Abstract Gasoline direct injection (GDI) engines have been developed rapidly in recent years, driven by stringent legislative requirements on vehicle fuel efficiency and emissions. However, one challenge facing GDI is the formation of particulate emissions, particularly with the presence of injector tip deposits. The Chinese market features some gasoline fuels that contain no detergent additives and are prone to deposit formation, which can affect engine performance and emissions. The use of detergent additives to mitigate the formation of injector deposits in a GDI engine was investigated in this study by testing a 1.5L turbocharged GDI engine available in the Chinese market. The engine was operated both on base gasoline and on gasoline dosed with detergent additives to evaluate the effect on injector deposit formation and engine performance and emissions.
2017-10-08
Technical Paper
2017-01-2249
Chen Wang, Tianyou Wang, Kai Sun, Zhen Lu, Yong Gui
Abstract Clean combustion is critical for marine engines to meet the Tier III emission regulation. In this paper, the effects of EGR and injection strategies (including injection pressure, injection timing as well as multiple injection technology) on the performance and emissions of a 2-stroke, low speed marine diesel engine were investigated by using computational fluid dynamics (CFD) simulations to reach the IMO Tier III NOx emissions target and reduce the fuel consumption rate. Due to the large length scale of the marine engine, RANS simulation was performed in combination with the CTC-SHELL combustion model. Based on the simulation model, the variation of the cylinder pressure curve, the average temperature in the cylinder, the combustion heat release rate and the emission characteristics were studied.
2017-10-08
Technical Paper
2017-01-2248
Haichun Ding, Wenbin Zhang, Xiao Ma, Shi-Jin Shuai, Bin Zheng, Alex Cantlay, Vinod Natarajan, Zhang Song Zhan, Bin Liu
Abstract Gasoline direct injection (GDI) engine technology is now widely used due to its high fuel efficiency and low CO2 emissions. However, particulate emissions pose one challenge to GDI technology, particularly in the presence of fuel injector deposits. In this paper, a 4-cylinder turbocharged GDI engine in the Chinese market was selected and operated at 2000rpm and 3bar BMEP condition for 55 hours to accumulate injector deposits. The engine spark timing, cylinder pressure, combustion duration, brake specific fuel consumption (BSFC), gaseous pollutants which include total hydro carbon (THC), NOx (NO and NO2) and carbon dioxide (CO), and particulate emissions were measured before and after the injector fouling test at eight different operating conditions. Test results indicated that mild injector fouling can result in an effect on engine combustion and emissions despite a small change in injector flow rate and pulse width.
2017-10-08
Technical Paper
2017-01-2255
Raul Payri, Jaime Gimeno, Santiago Cardona, Sridhar Ayyapureddi
Abstract A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
2017-10-08
Technical Paper
2017-01-2254
Sirui Huang, Changpu Zhao, Yayong Zhu
Abstract In order to improve the combustion and emissions for high-speed marine diesel engines, numerical investigations on effects of different combustion chamber structures combined with intake air humidification have to be conducted. The study uses AVL Fire code to establish three-dimensional combustion model and simulate the in-cylinder flow, air-fuel mixing and combustion process with the flow dynamics metrics such as swirl number and uniformity index, analyze the interactional effects of combustion chamber structures and intake air humidification against the experimental data for a part load operation at 1350 r/min, find the optimized way to improve engine performance as well as decrease the NOx and soot emissions. The novelty is that this study is to combine different air humidifying rates with different combustion chamber structures including the re-entrant chamber, the straight chamber and the open chamber.
2017-10-08
Technical Paper
2017-01-2265
Hao-ye Liu, Zhi Wang, Bowen Li, Shi-Jin Shuai, Jian-Xin Wang
Abstract Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from initial boiling point of gasoline to final boiling point of diesel. Recent experimental results have shown WDF by blending 50% gasoline and 50% diesel (G50) exhibits much lower soot emissions than diesel at medium load with similar thermal efficiency. However, the engine performances fueled by G50 at both low load end and high load end are still unknown. In this study, the combustion and emission characteristics of G50 and diesel are compared over a wide load range from 0.2 MPa IMEP to 1.4 MPa IMEP at a light-duty diesel engine. The results shown that at 0.2 MPa IMEP, G50 exhibits low combustion stability and thermal efficiency. With the increase of load, the poor combustion quality of G50 is improved. G50 can achieve soot-free combustion up to 1.0 MPa IMEP, while diesel cannot.
2017-10-08
Technical Paper
2017-01-2267
Erik Svensson, Lianhao Yin, Per Tunestal, Martin Tuner
Abstract The concept of Partially Premixed Combustion (PPC) in internal combustion engines has shown to yield high gross indicated efficiencies, but at the expense of gas exchange efficiencies. Most of the experimental research on partially premixed combustion has been conducted on compression ignition engines designed to operate on diesel fuel and relatively high exhaust temperatures. The partially premixed combustion concept on the other hand relies on dilution with high exhaust gas recirculation (EGR) rates to slow down the combustion which results in low exhaust temperatures, but also high mass flows over cylinder, valves, ports and manifolds. A careful design of the gas exchange system, EGR arrangement and heat exchangers is therefore of utter importance. Experiments were performed on a heavy-duty, compression ignition engine using a fuel consisting of 80 volume % 95 RON service station gasoline and 20 volume % n-heptane.
2017-10-08
Technical Paper
2017-01-2269
Shijun Dong, Xiaobei Cheng, Biao Ou, Can Yang, Zhaowen Wang, Fumin Pan
Abstract Based on a composed PRF/ethanol/PAH mechanism, simulations were conducted to investigate the combustion characteristics of n-heptane spray under premixed ethanol/air and iso-octane/air atmosphere in a combustion vessel. The effects of premixed ethanol and iso-octane on ignition delay, important soot precursors and soot volume fraction of n-heptane spray were studied. Also, simulated results with and without considering the cooling effects of premixed fuel vaporization were compared. When the cooling effect of premixed fuel vaporization was not considered, simulations showed that premixed ethanol could increase the ignition delay of n-heptane spray at ambient temperatures below 850K. However, premixed iso-octane showed little inhibition effect on ignition of n-heptane spray. Also, it was found that both premixed ethanol and iso-octane contributed to faster ignition under high ambient temperatures.
2017-10-08
Technical Paper
2017-01-2287
Aniseh Abdalla, Guoyang Wang, Jun Zhang, Shi-Jin Shuai
Abstract Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
2017-10-08
Technical Paper
2017-01-2292
George S. Dodos, Florentia Vassileiou, Dimitrios Karonis
Abstract The aim of this study is to investigate the lubricity of hydrocarbons that constitute components of petroleum diesel fuel. A number of typical hydrocarbon compounds were selected as representative of the group types of alkanes (paraffins), cycloalkanes (naphthenes) and aromatics, similar to those that are present in diesel fuel. The lubricity of these substances was examined in a High Frequency Reciprocating Rig (HFRR) apparatus according to the ISO 12156-1 standard method. Thereafter, a series of diesel surrogate fuel were prepared from the above substances based on literature data for diesel fuel composition and on the previously obtained results. These model fuels were assessed regarding their lubricating performance in order to evaluate how each individual component can affect the lubricity of the final fuel.
2017-10-08
Technical Paper
2017-01-2312
Raouf Mobasheri, Rahman Akbari
Abstract The scope of this work is to investigate the simultaneous effects of injection pressure and Exhaust Gas Recirculation (EGR) on mixture formation and engine performance in a High Speed Direct Injection (HSDI) diesel engine. For this, the computational results have been firstly compared to the measured data and a good agreement has been achieved in order to predict the in-cylinder pressure, heat release rate and the amount of NOx and soot emissions. Then, various injection pressures have been studied to explore its benefits to achieve the low exhaust emission at different EGR rates. The results show, while no EGR has been applied, decreasing the nozzle diameter causes the reduction of Indicate Specific Fuel Consumption (ISFC) with an increase in Indicated Mean Effective Pressure (IMEP).
2017-10-08
Technical Paper
2017-01-2301
Hongli Gao, Fujun Zhang, Wenwen Zeng, Tianpu Dong, Zhengkai Wang
Abstract The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
2017-10-08
Technical Paper
2017-01-2329
Xiao Ma, Yue Ma, Shuaishuai Sun, Shi-Jin Shuai, Zhi Wang, Jian-Xin Wang
Abstract Polyoxymethylene dimethyl ethers (PODEn) are promising alternative fuel candidates for diesel engines because they present advantages in soot reduction. This study uses a PODEn mixture (contains PODE3-6) from mass production to provide oxygen component in blend fuels. The spray combustion of PODEn-diesel bend fuels in a constant volume vessel was studied using high speed imaging, PLII-LEM and OH* chemiluminescence. Fuels of several blend ratios are compared with pure diesel. Flame luminance data show a near linear decrease tendency with the blend ratio increasing. The OH* images reveal that the ignition positions of all the cases have small differences, which indicates that using a low PODEn blend ratio of no more than 30% does not need significant adjustment in engine combustion control strategies. It is found that 30% PODEn blended with diesel (P30) can effectively reduce the total soot by approximately 68% in comparison with pure diesel.
2017-10-08
Technical Paper
2017-01-2325
Midhat Talibi, Paul Hellier, Nicos Ladommatos
Abstract The conversion of lignocellulosic biomass to liquid fuels presents an alternative to the current production of renewable fuels for IC engines from food crops. However, realising the potential for reductions in net CO2 emissions through the utilisation of, for example, waste biomass for sustainable fuel production requires that energy and resource inputs into such processes be minimised. This work therefore investigates the combustion and emission characteristics of five intermediate platform molecules potentially derived from lignocellulosic biomass: gamma-valerolactone (GVL), methyl valerate, furfuryl alcohol, furfural and 2-methyltetrahydrofuran (MTHF). The study was conducted on a naturally aspirated, water cooled, single cylinder spark-ignition engine. Each of the platform molecules were blended with reference fossil gasoline at 20 % wt/wt.
2017-10-08
Technical Paper
2017-01-2328
Yuanxu Li, Karthik Nithyanandan, Zhi Ning, Chia-Fon Lee, Han Wu
Abstract Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
2017-10-08
Technical Paper
2017-01-2323
Lei Li, Kai Sun, Jianyu Duan
Abstract Butanol is a promising alcohol fuel. Previous studies on combustion and diesel engines showed different trends in sooting tendencies of the butanol isomers (n-butanol, iso-butanol, sec-butanol and tert-butanol).The impact of butanol isomers on the particulate emissions of GDI (Gasoline Direct Injection) engines, however, has not been reported. This work examines the combustion performance and particle number emissions of a GDI engine fueled with gasoline/butanol blends in steady state modes. Each isomer was tested at blend ratios from 10% to 50% by volume. Spark timings for all the fuels are set to obtain the maximum break torque (MBT), i.e. the MBT spark timings. Results show that the particle number concentration is reduced significantly with increasing butanol content for all the isomers.
2017-10-08
Technical Paper
2017-01-2322
Tankai Zhang, Karin Munch, Ingemar Denbratt
Abstract Reducing emissions and improving efficiency are major goals of modern internal combustion engine research. The use of biomass-derived fuels in Diesel engines is an effective way of reducing well-to-wheels (WTW) greenhouse gas (GHG) emissions. Moreover, partially premixed combustion (PPC) makes it possible to achieve very efficient combustion with low emissions of soot and NOx. The objective of this study was to investigate the effect of using alcohol/Diesel blends or neat alcohols on emissions and thermal efficiency during PPC. Four alcohols were evaluated: n-butanol, isobutanol, n-octanol, and 2-ethylhexanol. The alcohols were blended with fossil Diesel fuel to produce mixtures with low cetane numbers (26-36) suitable for PPC. The blends were then tested in a single cylinder light duty (LD) engine. To optimize combustion, the exhaust gas recirculation (EGR) level, lambda, and injection strategy were tuned.
2017-10-08
Technical Paper
2017-01-2424
Shemin Zhang, Huaping Li, Tao Chen, Nan Jiang, Xinzhen Tan, Limei Deng, Qingsong Xia, Paul Kapus, Mingtang Ma, Wei Li, Junqiang Zhang, Qingjun Ma, Yong Xia
Abstract In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
2017-10-08
Technical Paper
2017-01-2397
Zhan Gao, Lei Zhu, Xinyao Zou, Chunpeng Liu, Zhen Huang
Abstract Biodiesel is a potential alternative fuel which can meet the growing need for sustainable energy. Partially premixed compression ignition (PPCI) is an important low-temperature combustion strategy to reduce NOx and soot emission of diesel engines. To investigate partial premixing impact on particle formation in flames of biodiesel or biodiesel surrogates, an experimental study was performed to compare the soot morphology and nanostructure evolution in laminar co-flow methyl decanoate non-premixed flame (NPF) and partially premixed flame (PPF). The thermophoretic sampling technique was used to capture particles along flame centerlines. Soot morphology information and volume fraction were obtained from TEM analysis and nanostructure features were evaluated by HR-TEM. With primary equivalence ratio of 19, gas temperature of PPF is higher along flame centerline compared with NPF. The results show an initially stronger sooting tendency in PPF at lower positions.
2017-10-08
Technical Paper
2017-01-2395
Arjun Prakash, Allen Aradi, William Imoehl, Phil Armitage
The impact of fuel composition (ethanol and aromatic content) and injector design on particulate number generation was studied in a 1.0L displacement direct injection spark ignition engine. Two types of engine tests that mimic real-life vehicle operation were carried out using a matrix of eight fuels and two injectors. It was found that the DISI injector design had the biggest impact on the extent of particulate number generation. An injector prototype designed to meet Euro 6c specifications for PN (6*1011 particles/km) resulted in much lower PN values compared to those obtained using a production injector currently available in the market. The impact of fuel composition on PN was apparent only during engine operation with the production injector. Overall, qualitative trends were observed but no statistically significant differences were observed for the impact of ethanol (E10 fuel match-blended for aromatics and octane quality) and aromatic content (19-28%) variation.
2017-10-08
Technical Paper
2017-01-2398
Bei Liu, Xiaobei Cheng, Jialu Liu, Han Pu, Li Yi
Abstract Partially-premixed low-temperature combustion avoids the soot and NOx generation area on the Ф-T diagram to reduce both engine NOx and soot emissions. Compared with the HCCI combustion mode, partially-premixed combustion (PPC) has better combustion controllability. The purpose of controlling the combustion phase can be achieved by adjusting injection timing and strategy. Based on a 4 cylinder turbocharged diesel engine, this paper aims at investigating the influence of injection strategy to the engine combustion and emission formation under the condition of single injection and split injection PPC strategy respectively, in which the primary purpose focus on the emission characteristics of particles. Results show that the early-injection PPC formed by single injection can reduce the quantity, quality and geometric mean diameter (GMD) of particles obviously.
Viewing 31 to 60 of 24644

Filter