Display:

Results

Viewing 271 to 300 of 24557
2017-03-28
Journal Article
2017-01-0704
Noriyuki Takada, Takeshi Hashizume, Terutoshi Tomoda, Kazuhisa Inagaki, Kiyomi Kawamura
Abstract Generally, soot emissions increase in diesel engines with smaller bore sizes due to larger spray impingement on the cavity wall at a constant specific output power. The objective of this study is to clarify the constraints for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes. The first report applied the geometrical similarity concept to two engines with different bore sizes and similar piston cavity shapes. The smaller engine emitted more smoke because air entrainment decreases due to the narrower spray angle. A new spray design method called spray characteristics similarity was proposed to suppress soot emissions. However, a smaller nozzle diameter and a larger number of nozzle holes are required to maintain the same spray characteristics (such as specific air-entrainment and penetration) when the bore size decreases.
2017-03-28
Journal Article
2017-01-0691
Louis-Marie Malbec, Julian Kashdan
Abstract Previous experimental data obtained in constant volume combustion vessels have shown that soot-free diffusive flames can be achieved in a Diesel spray if the equivalence ratio at the flame lift-off location is below 2. The so-called Leaner Lifted-Flame Combustion (LLFC) strategy is a promising approach to limit the levels of in-cylinder soot produced in Diesel engines. However, implementing such strategies in light-duty engines is not straightforward due to the effects of charge confinement , non-steady boundary conditions and spray-spray interactions compared to the simplified configuration of a free-jet in a constant-volume combustion vessel. The present study aims at trying to gain a better understanding of the requirements in terms of injector and engine settings in order to reach the LLFC regime in a light-duty engine. Experiments were performed on a 0.5L single-cylinder optical engine.
2017-03-28
Journal Article
2017-01-0743
Kukwon Cho, Eric Latimer, Matthew Lorey, David J. Cleary, Mark Sellnau
Abstract Fuel efficiency and emission performance sensitivity to fuel reactivity was examined using Delphi’s second-generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The study was designed to compare a US market gasoline (RON 92 E10) to a higher reactivity gasoline (RON 80) at four operating conditions ranging from light load of 800 rpm / 2.0 bar gross indicated-mean-effective pressure (IMEPg) to medium load of 2000 rpm / 10.0 bar IMEPg. The experimental assessment indicated that both gasolines could achieve good performance and Tier 3 emission targets at each of the four operating conditions. Relative to the RON 92 E10 gasoline, better fuel consumption and engine-out emissions performance was achieved when using RON 80 gasoline; consistent with our previously reported single-cylinder engine research [1].
2017-03-28
Journal Article
2017-01-0747
John Storey, Samuel Lewis, Melanie Moses-DeBusk, Raynella Connatser, Jong Lee, Tom Tzanetakis, Kukwon Cho, Matthew Lorey, Mark Sellnau
Abstract Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEPg) to medium load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEPg). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations.
2017-03-28
Journal Article
2017-01-0773
Dan DelVescovo, Sage Kokjohn, Rolf Reitz
Abstract Engine experiments were conducted on a heavy-duty single-cylinder engine to explore the effects of charge preparation, fuel stratification, and premixed fuel chemistry on the performance and emissions of Reactivity Controlled Compression Ignition (RCCI) combustion. The experiments were conducted at a fixed total fuel energy and engine speed, and charge preparation was varied by adjusting the global equivalence ratio between 0.28 and 0.35 at intake temperatures of 40°C and 60°C. With a premixed injection of isooctane (PRF100), and a single direct-injection of n-heptane (PRF0), fuel stratification was varied with start of injection (SOI) timing. Combustion phasing advanced as SOI was retarded between -140° and -35°, then retarded as injection timing was further retarded, indicating a potential shift in combustion regime. Peak gross efficiency was achieved between -60° and -45° SOI, and NOx emissions increased as SOI was retarded beyond -40°, peaking around -25° SOI.
2017-03-28
Journal Article
2017-01-0796
J. Felipe Rodriguez, Wai K. Cheng
Abstract The NOx emissions during the crank-start and cold fast-idle phases of a GDI engine are analyzed in detail. The NOx emissions of the first 3 firing cycles are studied under a wide set of parameters including the mass of fuel injected, start of injection, and ignition timing. The results show a strong dependence of the NOx emissions with injection timing; they are significantly reduced as the mixture is stratified. The impact of different valve timings on crank-start NOx emissions was analyzed. Late intake and early exhaust timings show similar potential for NOx reduction; 26-30% lower than the baseline. The combined strategy, resulting in a large symmetric negative valve overlap, shows the greatest reduction; 59% lower than the baseline. The cold fast-idle NOx emissions were studied under different equivalence ratios, injection strategies, combustion phasing, and valve timings. Slightly lean air-fuel mixtures result in a significant reduction of NOx.
2017-03-28
Journal Article
2017-01-0795
Changhoon Oh, Wai K. Cheng
Abstract The gasoline direct injection (GDI) engine particulate emission sources are assessed under cold start conditions: the fast idle and speed/load combinations representative of the 1st acceleration in the US FTP. The focus is on the accumulation mode particle number (PN) emission. The sources are non-fuel, combustion of the premixed charge, and liquid fuel film. The non-fuel emissions are measured by operating the engine with premixed methane/air or hydrogen/air. Then the PN level is substantially lower than what is obtained with normal GDI operation; thus non-fuel contribution to PN is small. When operating with stoichiometric premixed gasoline/air, the PN level is comparable to the non-fuel level; thus premixed-stoichiometric mixture combustion does not significantly generate particulates. For fuel rich premixed gasoline/air, PN increases dramatically when lambda is less than 0.7 to 0.8.
2017-03-28
Journal Article
2017-01-0910
Michiel Makkee, Yixiao Wang
Abstract We studied the mechanism of NO reduction as well as its selectivity and reactivity in the presence of excess O2. Results show that fuel injection and/or pretreatment are important for ceria catalyst reduction and carbon deposition on the catalyst surface. Oxygen defects of reduced ceria are the key sites for the reduction of NO into N2. The deposited carbon acts as a buffer reductant, i.e., the oxidation of carbon by lattice oxygen recreates oxygen defects to extend the NO reduction time interval. A small amount of NO showed a full conversion into only N2 both on the reduced Zr-La doped ceria and reduced Pt-Zr-La doped ceria. Only when the catalyst is oxidised NO is converted into NO2.
2017-03-28
Journal Article
2017-01-0909
Zhe Zhang, Mats Abom, Hans Boden, Mikael Karlsson, David Katoshevski
Abstract Air pollution caused by exhaust particulate matter (PM) from vehicular traffic is a major health issue. Increasingly strict regulations of vehicle emission have been introduced and efforts have been put on both the suppression of particulate formation inside the engine cylinders and the development of after-treatment technologies such as filters. With modern direct injected engines that produce a large number of really small sub-micron particles, the focus has increased even further and now also includes a number count. The problem of calculating particle trajectories in flow ducts like vehicle exhaust systems is challenging but important to further improve the technology. The interaction between particles and oscillating flows may lead to the formation of particle groups (regions where the particle concentration is increased), yielding a possibility of realizing particle agglomeration.
2017-03-28
Journal Article
2017-01-0919
Takeru Yoshida, Hiromasa Suzuki, Yuki Aoki, Naohiro Hayashi, Kenichi Ito
Abstract Emission regulations in many countries and regions around the world are becoming stricter in reaction to the increasing awareness of environment protections, and it has now become necessary to improve the performance of catalytic converters to achieve these goals. A catalytic converter is composed of a catalytically active material coated onto a ceramic honeycomb-structured substrate. Honeycomb substrates play the role of ensuring intimate contact between the exhaust gas and the catalyst within the substrate’s flow channels. In recent years, high-load test cycles have been introduced which require increased robustness to maintain low emissions during the wide range of load changes. Therefore, it is extremely important to increase the probability of contact between the exhaust gas and catalyst.
2017-03-28
Journal Article
2017-01-0911
Krishna Chilumukuru, Aniket Gupta, Michael Ruth, Michael Cunningham, Govindarajan Kothandaraman, Lasitha Cumaranatunge, Howard Hess
Abstract Future light duty vehicles in the United States are required to be certified on the FTP-75 cycle to meet Tier 3 or LEV III emission standards [1, 2]. The cold phase of this cycle is heavily weighted and mitigation of emissions during this phase is crucial to meet the low tail pipe emission targets [3, 4]. In this work, a novel aftertreatment architecture and controls to improve Nitrogen Oxides (NOx) and Hydrocarbon (HC) or Non Methane Organic gases (NMOG) conversion efficiencies at low temperatures is proposed. This includes a passive NOx & HC adsorber, termed the diesel Cold Start Concept (dCSC™) catalyst, followed by a Selective Catalytic Reduction catalyst on Filter (SCRF®) and an under-floor Selective Catalytic Reduction catalyst (SCR). The system utilizes a gaseous ammonia delivery system capable of dosing at two locations to maximize NOx conversion and minimize parasitic ammonia oxidation and ammonia slip.
2017-03-28
Journal Article
2017-01-0942
Joseph R. Theis, Christine Lambert
Abstract Model low temperature NOx adsorbers (LTNA) consisting of Pd on a ceria/zirconia washcoat on monoliths were evaluated for low temperature NOx storage under lean conditions to assess their potential for adsorbing the cold-start NOx emissions on a diesel engine during the period before the urea/SCR system becomes operational. A reactor-based transient test was performed with and without C2H4, CO/H2, and H2O to assess the effects of these species on the NOx storage performance. In the absence of C2H4 or CO/H2, H2O severely suppressed the NOx storage of these model LTNAs at temperatures below 100°C, presumably by blocking the storage sites. When C2H4 was included in the feedgas, H2O still suppressed the NOx storage below 100°C. However, the C2H4 significantly increased the NOx storage efficiency above 100°C, attributable to the formation of alkyl nitrites or alkyl nitrates on the catalyst.
2017-03-28
Journal Article
2017-01-0940
Jesus Emmanuel De Abreu Goes, Louise Olsson, Malin Berggrund, Annika Kristoffersson, Lars Gustafson, Mikael Hicks
Abstract Even though substantial improvements have been made for the lean NOx trap (LNT) catalyst in recent years, the durability still remains problematic because of the sulfur poisoning and sintering of the precious metals at high operating temperatures. Hence, commercial LNT catalysts were aged and tested in order to investigate their performance and activity degradation compared to the fresh catalyst, and establish a proper correlation between the aging methods used. The target of this study is to provide useful information for regeneration strategies and optimize the catalyst management for better performance and durability. With this goal in mind, two different aging procedures were implemented in this investigation. A catalyst was vehicle-aged in the vehicle chassis dynamometer for 100000 km, thus exposed to real conditions. Whereas, an accelerated aging method was used by subjecting a fresh LNT catalyst at 800 °C for 24 hours in an oven under controlled conditions.
2017-03-28
Journal Article
2017-01-0945
Markus Dietrich, Carsten Steiner, Gunter Hagen, Ralf Moos
Abstract The radio-frequency (RF) or microwave-based catalyst state determination offers the opportunity to operate an automotive catalyst at its optimal point. This has already been proven for the oxidation state of TWCs, the soot loading state on DPFs/GPFs, and the ammonia storage state of vanadium and zeolite based SCR catalysts. However, the latter has only been demonstrated in laboratory scale with synthetic exhaust using gaseous ammonia. This work presents first results on an engine test bench with a serial-type zeolite-based SCR catalyst, using urea solution and the RF tool to detect the current ammonia loading in real time and to control directly the urea dosing system without any additional sensors. The original catalyst volume was reduced by 50 % to operate deliberately the SCR system under high space velocities and to challenge its function. Stationary conditions and operation points with continuously changing NOx emissions and space velocities were observed.
2017-03-28
Journal Article
2017-01-0947
Athanasios G. Konstandopoulos, Dimitrios Zarvalis, Leonidas Chasapidis, Danis Deloglou, Nickolas Vlachos, Adam Kotrba, Ginette Anderson
Abstract Evolving marine diesel emission regulations drive significant reductions of nitrogen oxide (NOx) emissions. There is, therefore, considerable interest to develop and validate Selective Catalytic Reduction (SCR) converters for marine diesel NOx emission control. Substrates in marine applications need to be robust to survive the high sulfur content of marine fuels and must offer cost and pressure drop benefits. In principle, extruded honeycomb substrates of higher cell density offer benefits on system volume and provide increased catalyst area (in direct trade-off with increased pressure drop). However higher cell densities may become more easily plugged by deposition of soot and/or sulfate particulates, on the inlet face of the monolithic converter, as well as on the channel walls and catalyst coating, eventually leading to unacceptable flow restriction or suppression of catalytic function.
2017-03-28
Journal Article
2017-01-0951
Paul Mentink, Xander Seykens, Daniel Escobar Valdivieso
Abstract To meet future emission targets, it becomes increasingly important to optimize the synergy between engine and aftertreatment system. By using an integrated control approach minimal fluid (fuel and DEF) consumption is targeted within the constraints of emission legislation during real-world operation. In such concept, the on-line availability of engine-out NOx emission is crucial. Here, the use of a Virtual NOx sensor can be of great added-value. Virtual sensing enables more direct and robust emission control allowing, for example, engine-out NOx determination during conditions in which the hardware sensor is not available, such as cold start conditions. Furthermore, with use of the virtual sensor, the engine control strategy can be directly based on NOx emission data, resulting in reduced response time and improved transient emission control. This paper presents the development and on-line implementation of a Virtual NOx sensor, using in-cylinder pressure as main input.
2017-03-28
Journal Article
2017-01-0954
Christopher Sharp, Cynthia C. Webb, Gary Neely, Michael Carter, Seungju Yoon, Cary Henry
Abstract The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
2017-03-28
Journal Article
2017-01-0955
Hai-Ying Chen, Donna Liu, Erich Weigert, Lasitha Cumaranatunge, Kenneth Camm, Patrick Bannon, Julian Cox, Louise Arnold
Abstract The phase-in of US EPA Tier 3 and California LEV III emission standards require further reduction of tailpipe criteria pollutants from automobiles. At the same time, the mandate for reducing Green House Gas (GHG) emissions continuously lowers the exhaust temperature. Both regulations pose significant challenges to emission control catalyst technologies, especially for cold start emissions. The recently developed diesel cold start concept technology (dCSC™) shows promising results. It stores NOx and HC during the cold start period until the downstream catalytic components reach their operating temperatures, when the stored NOx/HC are subsequently released and converted. The technology also has oxidation functions built in and acts as a diesel oxidation catalyst under normal operating conditions. In a US DOE funded project, the diesel cold start concept technology enabled a high fuel efficiency vehicle to achieve emissions targets well below the SULEV30 emission standards.
2017-03-28
Journal Article
2017-01-0970
Johann C. Wurzenberger, Christoph Triebl, Susanne Kutschi, Christoph Poetsch
The present work describes an existing transient, non-isothermal 1D+1D particulate filter model to capture the impact of different types of particulate matter (PM) on filtration and regeneration. PM classes of arbitrary characteristics (size, composition etc.) are transported and filtered following standard mechanisms. PM deposit populations of arbitrary composition and contact states are used to describe regeneration on a micro-kinetical level. The transport class and deposit population are linked by introducing a splitting deposit matrix. Filtration and regeneration modes are compared to experimental data from literature and a brief numerical assessment on the filtration model is performed. The filter model as part of an exhaust line is used in a concept study on different coating variants. The same exhaust line model is connected to an engine thermodynamic and vehicle model. This system model is run through a random drive cycle in office simulation.
2017-03-28
Journal Article
2017-01-0956
Christopher Sharp, Cynthia C. Webb, Seungju Yoon, Michael Carter, Cary Henry
Abstract The 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, the California Air Resource Board (ARB) projects that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter (PM) and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
2017-03-28
Journal Article
2017-01-0982
Dhruvang Rathod, Mark A. Hoffman, Simona Onori
Abstract The duration over which a three way catalyst (TWC) maintains proper functionality during lambda excursions is critically impacted by aging, which affects its oxygen storage capacity (OSC). As such, emissions control strategies, which strive to maintain post TWC air-to-fuel ratios at the stoichiometric value, will benefit from an accurate estimation of TWC age. To this end, this investigation examines a method of TWC age estimation suitable for real-world transient operation. Experimental results are harvested from an instrumented test vehicle equipped with a two-brick TWC during operation on a chassis dynamometer. Four differently aged TWCs are instrumented with wideband and switch-type Lambda sensors upstream (Pre TWC location), and downstream (Mid location) of first catalyst brick.
2017-03-28
Journal Article
2017-01-0987
Nathan Ottinger, Niklas Schmidt, Z. Gerald Liu
Abstract Nitrous oxide (N2O), with a global warming potential (GWP) of 297 and an average atmospheric residence time of over 100 years, is an important greenhouse gas (GHG). In recognition of this, N2O emissions from on-highway medium- and heavy-duty diesel engines were recently regulated by the US Environmental Protection Agency (EPA) and National Highway Traffic Safety Administration’s (NHTSA) GHG Emission Standards. Unlike NO and NO2, collectively referred to as NOx, N2O is not a major byproduct of diesel combustion. However, N2O can be formed as a result of unselective catalytic reactions in diesel aftertreatment systems, and the mitigation of this unintended N2O formation is a topic of active research. In this study, a nonroad Tier 4 Final/Stage IV engine was equipped with a vanadium-based selective catalytic reduction (SCR) aftertreatment system. Experiments were conducted over nonroad steady and both cold and hot transient cycles (NRSC and NRTC, respectively).
2017-03-28
Journal Article
2017-01-0974
Timothy C. Watling, Maya R. Ravenscroft, Jason P.E. Cleeton, Ian D. Rees, David A.R. Wilkins
Abstract The development of a one-dimensional model for the prediction of backpressure across a gasoline or diesel particulate filter (PF) is presented. The model makes two innovations: Firstly, the term for momentum convection in the gas momentum balance equations includes the loss (or gain) of axial momentum in the direction perpendicular to the channels; neglecting this results in the momentum convection term being too large. Secondly, equations for the pressure change due to the abrupt contraction at the PF entrance and for abrupt expansion at the exit are derived which take into account the fact that the velocity profile across the channels is not flat; often workers have used equations appropriate for high Reynolds numbers which assume flat velocity profiles. The model has been calibrated/tested against cold flow data for more than one length of PF. The use of more than one length allows along-filter pressure losses to be separated from entrance and exit effects.
2017-03-28
Journal Article
2017-01-0978
Andrew Auld, Andrew Ward, Kenan Mustafa, Benjamin Hansen
Abstract Since previous publications, Ricardo have continued to investigate the development of advanced after-treatment technologies through model based system simulation using an integrated model based development (IMBD) approach. This paper presents the results of the evaluation of after-treatment systems and management strategies for a range of diesel passenger cars. The targets of this study are applicable to Real Driving Emissions (RDE) legislation, but now targeting emissions levels beyond Euro 6d. The work was carried out as part of the EC Horizon 2020 co-funded REWARD (Real World Advanced technologies foR Diesel engines) project. Owing to the wide variation in feed-gas properties expected over an RDE cycle, the results seen for current production system architectures such as Lean NOX traps (LNT) or actively dosed Selective Catalytic Reduction (aSCR) systems highlight the challenge to adhere to emissions limitations for RDE legislation whilst fulfilling stringent CO2 targets.
2017-03-28
Journal Article
2017-01-0994
Tim Nevius, Dario Rauker, Masanobu Akita, Yoshinori Otsuki, Scott Porter, Michael Akard
Abstract Direct measurement of dilution air volume in a Constant Volume emission sampling system may be used to calculate tailpipe exhaust volume, and the total dilution ratio in the CVS. A Remote Mixing Tee (RMT) often includes a subsonic venturi (SSV) flowmeter in series with the dilution air duct. The venturi meter results in a flow restriction and significant pressure drop in the dilution air pipe. An ultrasonic flow meter for a similar dilution air volume offers little flow restriction and negligible pressure drop in the air duct. In this investigation, an ultrasonic flow meter (UFM) replaces the subsonic venturi in a Remote Mixing Tee. The measurement uncertainty and accuracy of the UFM is determined by comparing the real time flow rates and integrated total dilution air volume from the UFM and the dilution air SSV in the RMT. Vehicle tests include FTP and NEDC test cycles with a 3.8L V6 reference vehicle.
2017-03-28
Journal Article
2017-01-0989
Jennifer H. Zhu, Christopher Nones, Yan Li, Daniel Milligan, Barry Prince, Mark Polster, Mark Dearth
Abstract Vehicle interior air quality (VIAQ) measurements are currently conducted using the offline techniques GC/MS and HPLC. To improve throughput, speed of analysis, and enable online measurement, specialized instruments are being developed. These instruments promise to reduce testing cost and provide shortened analysis times at comparable accuracy to the current state of the art offline instruments and methods. This work compares GCMS/HPLC to the Voice200ultra, a specialized real-time instrument utilizing the technique selected ion flow tube mass spectrometry (SIFT-MS). The Voice200ultra is a real-time mass spectrometer that measures volatile organic compounds (VOCs) in air down to the parts-per-trillion level by volume (pptv). It provides instantaneous, quantifiable results with high selectivity and sensitivity using soft chemical ionization.
2017-03-28
Journal Article
2017-01-0990
Carl Paulina, Dan McBryde, Mike Matthews
Abstract Track Road Load Derivations (RLDs) and subsequent load matching on test cell dynamometers has traditionally been conducted using vehicle coastdowns (CDs). Vehicle speed changes during these coastdowns are used to calculate the vehicle mechanical drag forces slowing vehicles when on the road. Track drag force, exerted on a vehicle, can also be quantified by holding a vehicle at a specific steady state speed and measuring the forces required to maintain that speed. This paper focuses on two methods to quantify speed dependent forces which a vehicle must work against when motoring. One method is the traditional coastdown method. The second reference method measures vehicle steady state speed forces necessary to propel the vehicle using both electric vehicle propulsion power flows and dynamometer measured forces. Track CDs require the vehicle to be placed in neutral.
2017-03-28
Journal Article
2017-01-1013
Sunil Kumar Pathak, Yograj Singh, Vineet sood, Salim Abbasbhai Channiwala
Abstract The standard emission protocol including driving cycle is performed for the legislative fuel economy and emission testing of the vehicles in a laboratory. The driving cycles are expected to represent actual driving pattern and energy requirements. However, recent studies showed that the gap between real world driving conditions and the standard driving cycle is widening, as the traffic pattern and vehicle population is varying dynamically and the change in the emission procedures is not synchronized with the same pace. More so, as the process of harmonization of emission legislations is in progress to narrow down the country specific variation of emission regulation, as this will help in the smooth globalization of the automotive business process. The new regulation for in-service conformity is being considered to reduce the emissions in real-world driving.
2017-03-28
Journal Article
2017-01-1008
Antti Rostedt, Leonidas D. Ntziachristos, Pauli Simonen, Topi Rönkkö, Zissis C. Samaras, Risto Hillamo, Kauko Janka, Jorma Keskinen
Abstract In this article we present a design of a new miniaturized sensor with the capacity to measure exhaust particle concentrations on board vehicles and engines. The sensor is characterized by ultra-fast response time, high sensitivity, and a wide dynamic range. In addition, the physical dimensions of the sensor enable its placement along the exhaust line. The concentration response and temporal performance of a prototype sensor are discussed and characterized with aerosol laboratory test measurements. The sensor performance was also tested with actual engine exhaust in both chassis and engine dynamometer measurements. These measurements demonstrate that the sensor has the potential to meet and even exceed any requirements around the world in terms of on-board diagnostic (OBD) sensitivity and frequency of monitoring.
2017-03-28
Journal Article
2017-01-1005
Yizhou Zhang, Jaal Ghandhi, David Rothamer
Abstract The effect of direct-injected fuel on particle size distributions (PSDs) of particulate matter emitted from dual-fuel combustion strategies was investigated. The PSD data were acquired from a light-duty single-cylinder diesel engine operated using conventional diesel combustion (CDC) and two diesel/natural gas dual-fuel combustion strategies. Three different direct-injection (DI) fuels (diesel, 2,6,10-trimethyldodecane, and a primary reference fuel blend) and two different injector nozzles were studied. The DI fuels were chosen to have similar energy and ignition characteristics (heat of combustion and cetane number) but different physical and chemical properties (volatility, aromatics %, viscosity, density). The two nozzles (with different orifice diameter and spray angle) allowed a wide range in DI fuel quantity for the dual-fuel combustion strategies.
Viewing 271 to 300 of 24557

Filter