Display:

Results

Viewing 271 to 300 of 24435
2017-01-10
Technical Paper
2017-26-0133
Ashok Kumar, Junhui Li, Jinyong Luo, Saurabh Joshi, Aleksey Yezerets, Krishna Kamasamudram, Niklas Schmidt, Khyati Pandya, Prachetas Kale, Thangaraj Mathuraiveeran
Abstract Advanced emission control systems for diesel engines usually include a combination of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and Ammonia Slip Catalyst (ASC). The performance of these catalysts individually, and of the aftertreatment system overall, is negatively affected by the presence of oxides of sulfur, originating from fuel and lubricant. In this paper, we illustrated some key aspects of sulfur interactions with the most commonly used types of catalysts in advanced aftertreatment systems. In particular, DOC can oxidize SO2 to SO3, collectively referred to as SOx, and store these sulfur containing species. The key functions of a DOC, such as the ability to oxidize NO and HC, are degraded upon SOx poisoning. The impact of sulfur poisoning on the catalytic functions of a DPF is qualitatively similar to DOC.
2017-01-10
Technical Paper
2017-26-0043
Peter Heuser, Stefano Ghetti, Devising Rathod, Sebastian Petri, Sascha Schoenfeld
Abstract The Bharat Stage VI (BS-VI) emission legislation will come into force in 2020, posing a major engineering challenge in terms of system complexity, reliability, cost and development time. Solutions for the EURO VI on-road legislation in Europe, from which the BS-VI limits are derived, have been developed and have already been implemented. To a certain level these European solutions can be transferred to the Indian market. However, several market-specific challenges are yet to be defined and addressed. In addition, a very strict timeline has to be considered for application of advanced technologies and processes during the product development. In this paper, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the exhaust aftertreatment side. This includes boosting and fuel injection technologies as well as different exhaust gas recirculation methods.
2017-01-10
Technical Paper
2017-26-0180
Swaminathan Ramaswamy, Christophe Schorsch, Mario Kolar
Abstract Automotive OEMs are adapting various “green” technologies to meet the upcoming and anticipated regulations for reducing direct and indirect GHG emissions equivalent to CO2. Using compact devices and lightweight components on the aggregates, OEMs get the benefit of carbon credits towards their contribution in reducing CO2 emissions. With regards to the HVAC systems, enhancements such as ultra-low permeation hose assemblies and adoption of low GWP refrigerant have shown promising results in reducing the direct GHG emissions by controlling refrigerant permeation & indirect GHG emissions by using compact and high efficiency compressors, compact heat exchangers, and other technologies that contribute to weight reduction and ultimately impact CO2 emissions. Traditional AC lines are routed/installed in space that accommodates the relative movement between the engine and chassis by connecting the various parts.
2017-01-10
Technical Paper
2017-26-0125
Sougato Chatterjee, Mojghan Naseri, Jianquan Li
Abstract The next generation advanced emission regulations have been proposed for the Indian heavy duty automotive industry for implementation from 2020. These BS VI emission regulations will require both advanced NOx control as well as advanced PM (Particulate Matter) control along with Particle Number limitations. This will require implementation of full DPF (Diesel Particulate Filter) and simultaneous NOx control using SCR technologies. DPF technologies have already been successfully implemented in Euro VI and US 10 HDD systems. These systems use low temperature NO2 based passive DPF regeneration as well as high temperature oxygen based active DPF regeneration. Effective DPF and DOC designs are essential to enable successful DPF regeneration (minimize soot loading in the DPF) while operating HDD vehicles under transient conditions. DOC designs are optimized to oxidize engine out NO into NO2, which helps with passive DPF regeneration.
2017-01-10
Journal Article
2017-26-0364
Igor Gritsuk, Vladimir Volkov, Vasyl Mateichyk, Yurii Gutarevych, Mykola Tsiuman, Nataliia Goridko
Abstract The article suggests the results of experimental and theoretical studies of the engine heating system with a phase-transitional thermal accumulator when the vehicle is in motion in a driving cycle. The aim of the study is to evaluate the efficiency of the vehicle heating system within thermal accumulator and catalytic converter under operating conditions. The peculiarity of the presented system is that it uses thermal energy of exhaust gases to accumulate energy during engine operation. The article describes the methodology to evaluate vehicle fuel consumption and emission in the driving cycle according to the UNECE Regulation № 83-05. The methodology takes into account the environmental parameters, road conditions, the design parameters of the vehicle, the modes of its motion, thermal state of the engine cooling system and the catalytic converter.
2017-01-10
Journal Article
2017-26-0056
Suramya Naik, David Johnson, Laurence Fromm, John Koszewnik, Fabien Redon, Gerhard Regner, Neerav Abani
Abstract The government of India has decided to implement Bharat Stage VI (BS-VI) emissions standards from April 2020. This requires OEMs to equip their diesel engines with costly after-treatment, EGR systems and higher rail pressure fuel systems. By one estimate, BS-VI engines are expected to be 15 to 20% more expensive than BS-IV engines, while also suffering with 2 to 3 % lower fuel economy. OEMs are looking for solutions to meet the BS-VI emissions standards while still keeping the upfront and operating costs low enough for their products to attract customers; however traditional engine technologies seem to have exhausted the possibilities. Fuel economy improvement technologies applied to traditional 4-stroke engines bring small benefits with large cost penalties. One promising solution to meet both current, and future, emissions standards with much improved fuel economy at lower cost is the Opposed Piston (OP) engine.
2017-01-10
Journal Article
2017-26-0053
Sumit Rawat, Kumar Patchappalam, Abhijit Sahare
Abstract BSIV implementation for commercial vehicle in pans India effectively from April 2017. It’s very challenging job for performance and emission engineer to meet engine performance & fuel economy with stringent emission norms for high power and torque density HD diesel engine. In Altitude, lack of air availability & combustion energy passes by mechanical waste gate, lead to lower boost at partial load in waste gate region; which in turn leads to poor engine performance & fuel efficiency and higher turbo speed. To control the turbocharger design speed limit various methodologies adopted like engine derating or optimizing the combustion parameters leads to poor vehicle performance. Combustion parameter optimsation is having limited scope for turbocharger speed control.
2017-01-10
Journal Article
2017-26-0143
Saroj Pradhan, Arvind Thiruvengadam, Pragalath Thiruvengadam, Berk Demirgok, Marc Besch, Daniel Carder, Bharadwaj Sathiamoorthy
Abstract Three-way catalyst equipped stoichiometric natural gas vehicles have proven to be an effective alternative fuel strategy that has shown superior low NOx benefits in comparison to diesels equipped with SCR. However, recent studies have shown the TWC activity to contribute to high levels of tailpipe ammonia emissions. Although a non-regulated pollutant, ammonia is a potent pre-cursor to ambient secondary PM formation. Ammonia (NH3) is an inevitable catalytic byproduct of TWCduring that results also corresponds to lowest NOx emissions. The main objective of the study is to develop a passive SCR based NH3 reduction strategy that results in an overall reduction of NH3 as well as NOx emissions from a stoichiometric spark ignited natural gas engine. The study investigated the characteristics of Fe-based and Cu-based zeolite SCR catalysts in storage, and desorption of ammonia at high exhaust temperature conditions, that are typical of stoichiometric natural gas engines.
2017-01-10
Journal Article
2017-26-0138
B Sakthivel, R Sridhar, Subin Ansh, B Srinivasan, J Suresh Kumar
Abstract The air pollution is increasing at an alarming rate now a day mainly due to emissions coming out of automotive vehicles. The exhaust emissions gases are hazardous to human health. The increased number of vehicles on road will make the scenario even worse. In order to control the pollution level, the regulatory bodies are now implementing stringent emission norms. In India, the regulatory authorities has framed the transition of BS IV to BS VI emission norms in 2020 by skipping the BS V emission norms which makes the automotive industries to work on more advanced fuel management technologies. It is more tedious to control the tail pipe emissions beyond BS IV emission norms with the conventional carburetor system since it is operating on open loop system.
2017-01-10
Journal Article
2017-26-0121
Grigorios C. Koltsakis, Ioannis Kandylas, Vaibhav Gulakhe
Abstract Modern ‘DOC-cDPF’ systems for diesel exhaust are employing Pt-, Pd- as well as Pt/Pd alloy- based coatings to ensure high conversion efficiency of CO, HC even at low temperatures. Depending on the target application, these coatings should be also optimized towards NO2 generation which is involved in low temperature soot oxidation as well as in SCR-based deNOx. Zeolite materials are also frequently used to control cold-start HC emissions. Considering the wide variety of vehicles, engines and emission targets, there is no single optimum coating technology. The main target is therefore to maximize synergies rather than to optimize single components. At the same time, the system designer has nowadays a wide range of technologies to choose from, including PGM alloyed combinations (Pt/Pd), multiple layers and zones applicable to both DOCs and DPFs.
2017-01-10
Journal Article
2017-26-0119
Ragupathi Soundara Rajan, Vijay Sharma, Ashraf Emran, Devising Rathod, John Henry Kwee, Thorsten Michaelis-Hauswaldt, Thomas Körfer
Abstract The emission legislations are becoming increasingly strict all over the world and India too has taken a big leap in this direction by signaling the migration from Bharat Stage 4 (BS 4) to BS 6 in the year 2020. This decision by the Indian government has provided the Indian automotive industry a new challenge to find the most optimal solution for this migration, with the existing BS 4 engines available in their portfolio. Indian market for the LCV segment is highly competitive and cost sensitive where the overall vehicle operation cost (vehicle cost + fluid consumption cost) is the most critical factor. The engine and after-treatment technology for BS 6 emission levels should consider the factors of minimizing the additional hardware cost as well as improving the fuel efficiency. Often both of which are inversely proportional. The presented study involves the optimization of after treatment component size, layout and various systems for NOx and PM reduction.
2017-01-10
Journal Article
2017-26-0113
Azael J. Capetillo, Fernando Ibarra, Dominik Stepniewski, Jo Vankan
Abstract Selective catalytic reduction (SCR) systems have become the preferred technology to deal with NOx emissions in Diesel engines. Their efficiency is highly reliant, among other factors, on the uniformity of distribution - known as Uniformity Index (UI) - of NH3 which is injected into the system through a urea-water solution (UWS). SCR system make use of a mixer component designed to achieve the desired UI levels. However, the great variety of exhaust systems, makes it impossible to employ a universal solution. Therefore, each SCR system requires of a tailor made mixer, capable of achieving the required UI, while preventing urea crystallisation and minimising pressure drops. Computer fluid dynamics (CFD) tools together with optimisation techniques based on the design of experiments (DoE) can be used to obtain the appropriate mixer design.
2017-01-10
Journal Article
2017-26-0074
Jayakrishnan Krishnan Unni, Divesh Bhatia, Viresh Dutta, Lalit Mohan Das, Srinivas Jilakara, GP Subash
Abstract Air pollution caused by vehicular tail pipe emissions has become a matter of grave concern in major cities of the world. Hydrogen, a carbon free fuel is a clean burning fuel with only concern being oxides of nitrogen (NOx) formed. The present study focuses on the development of a hydrogen powered multi-cylinder engine with low NOx emissions. The NOx emissions were reduced using a combination of an in-cylinder control strategy viz. Exhaust Gas Recirculation (EGR) and an after treatment method using hydrogen as a NOx reductant. In the present study, the low speed torque of the hydrogen engine was improved by 38.46% from 65 Nm to 90 Nm @ 1200 rpm by operating at an equivalence of 0.64. The higher equivalence ratio operation compared to the conventional low equivalence ratio operation lead to an increase in the torque generated but increased NOx as well.
2017-01-10
Journal Article
2017-26-0073
B Ashok, K Nantha Gopal, Thundil Karuppa Raj Rajagopal, Sushrut Alagiasingam, Suryakumar Appu, Aravind Murugan
Abstract With the alarming increase in vehicular population, there is depletion of fossil fuel availability. Hence to overcome the difficulties, alternative fuels are tested and used in parts of the world. One of the difficulties with usage of alternate fuels is their high viscosity in comparison to fossil fuels. To overcome this, preheating of biofuel is a good option as it makes the fuel less viscous. In our research, we have used a helical coil heat exchanger to preheat the inlet fuel using the engine’s exhaust gas, making the system more sustainable since no external energy is used. In order to evaluate the effectiveness of preheating device a simulation study has been carried for the ethanol based biofuels. For simulation work, a set of boundary conditions has been arrived based on the experimental analysis. The results from the experiment such as velocity of air and fuel inlet were utilized as input for simulation work.
2017-01-10
Journal Article
2017-26-0116
Mahesh Govindareddy, Achim Heibel
Abstract With Bharat Stage VI (BSVI) regulations on the horizon [3],[4]tighter particulate matter (PM) regulations will require the use of wall flow diesel particulate filters for on-road heavy duty (HD) diesel engines in India. The Indian HD vehicle market is very cost sensitive, especially with the majority of engine displacement being less than 7L [5] therefore, after treatment cost plays a significant role in design of the system. Robust wall flow diesel particulate filter solutions with the ability to deliver high filtration requirements required for particle number regulations can be designed in a cost-efficient manner. In this paper advanced design for diesel particulate filters with pressure drop, ash capacity, regeneration, and filtration performance are discussed. Corning’s asymmetric cell technology (ACT) was created to improve ash capacity and reduce pressure drop and has the potential to downsize up to 45%.
2017-01-10
Journal Article
2017-26-0142
Zahra Nazarpoor, Steve Golden, Ru-Fen Liu
Abstract Stricter regulatory standards are continuously adopted worldwide to control heavy duty emissions, and at the same time, fuel economy requirements have significantly lowered exhaust temperatures. The net result is a significant increase in Precious Group Metal (PGM) usage with current Diesel Oxidation Catalyst (DOC) technology. Therefore, the design and development of advanced DOC with ultra-low PGM to achieve highly beneficial emission performance improvement is necessary. The advanced DOC is synergized PGM (SPGM) with Mixed Metal Oxide (MMO). The presence of MMO in SPGM is responsible for NO oxidation to NO2 which is critical for the passive regeneration of the downstream filter and SCR function. This paper outlines the development of MMO for application in modern DOCs and addresses some specific challenges underlying this application.
2017-01-07
Article
Schaffler Group engineers stepped 'out of the box' to develop a new type of e-vehicle aimed at transporting people and goods within the crowded cities of the future
2017-01-06
Article
Active flow control devices based on electric plasmas can smooth the turbulent wakes that sweep off the rear edges of truck trailers travelling at highway speeds.
2017-01-05
WIP Standard
AIR7521
This document summarizes a number of guidance values and measured values in published literature for Substances listed in ARP4418.
2016-12-29
WIP Standard
ARP5718B
This document describes: a. the preparatory steps to test experimental Type II, III, and IV fluids according to AMS1428; b. the recommendations for the preparation of samples for endurance time testing according to ARP5485; c. a short description of the recommended field spray test; d. the protocol to generate draft holdover time guidelines from endurance time data obtained from ARP5485; e. the protocol for inclusion of Type II, III, and IV fluids on the FAA and Transport Canada lists of fluids and the protocol for updating the lists of fluids; f. the role of the SAE G-12 Aircraft Deicing Fluids Committee; g. the role of the SAE G-12 Holdover Time Committee; h. the process for the publication of Type II, III, and IV holdover time guidelines. This document does not describe laboratory testing procedures. This document does not include the qualification process for AMS1424 Type I fluids.
2016-12-22
Book
Jay Meldrum
This collection is a resource for studying the history of the evolving technologies that have contributed to snowmobiles becoming cleaner and quieter machines. Papers address design for a snowmobile using E10 gasoline (10% ethanol mixed with pump gasoline). Performance technologies that are presented include: • Engine Design: application of the four-stroke engine • Applications to address both engine and track noise • Exhaust After-treatment to reduce emissions The SAE International Clean Snowmobile Challenge (CSC) program is an engineering design competition. The program provides undergraduate and graduate students the opportunity to enhance their engineering design and project management skills by reengineering a snowmobile to reduce emissions and noise. The competition includes internal combustion engine categories that address both gasoline and diesel, as well as the zero emissions category in which range and draw bar performance are measured.
2016-12-20
Article
Researchers from Iowa State University are expanding fundamental materials studies into research and development of new, all-solid-state technology for batteries.
CURRENT
2016-12-13
Standard
AIR6212
This document collates the ways and means that existing sensors can identify the platform’s exposure to volcanic ash. The capabilities include real-time detection and estimation, and post flight determinations of exposure and intensity. The document includes results of initiatives with the Federal Aviation Administration (FAA), the European Aviation Safety Agency (EASA), the International Civil Aviation Organization (ICAO), Transport Canada, various research organizations, Industry and other subject matter experts. The document illustrates the ways that an aircraft can use existing sensors to act as health monitoring tools so as to assess the operational and maintenance effects related to volcanic ash incidents and possibly help determine what remedial action to take after encountering a volcanic ash (VA) event.
2016-12-12
WIP Standard
AIR6130A
14-day material test to determine the cyclic effects of runway deicing compounds on cadmium plated parts.
2016-12-07
Article
Christopher Grundler, the Director of OTAQ for the U.S. EPA, answered questions about Phase 2 rule-making for heavy trucks, global harmonization of emissions regulations, and his outlook for a new national NOx standard. Grundler will be the featured speaker on opening day of the SAE 2017 Government/Industry Meeting taking place January 25-27 in Washington D.C.
2016-12-02
Article
London Mayor Sadiq Khan unveiled the world’s first double-decker hydrogen bus at the end of November as part of a commitment to phase out purchase of new pure diesel buses in the capital's fleet beginning in 2018.
2016-12-02
Magazine
Autonomous plows ahead Agriculture, construction, mining-even marine-are advancing autonomous technology to improve the productivity and safety of vehicles on the job. Expediting engine design Simulation tools drive development of the most complex, fuel- efficient and powerful engines ever seen in off-highway applications. Industry 4.0: The smart factory arrives The plants that produce vehicles and their high-tech systems are increasingly employing intelligent systems, Big Data and advanced analytics to improve quality, safety and efficiency. The future is not so far-off Enhanced Cat 3500 engine boosts power 20%, trims fuel usage by 10% Phase 2 GHG rules driver for advanced technology, alternative fuels Eaton demonstrates waste heat recovery, variable valve actuation for HD diesels Hyliion develops add-on hybrid system for semi-trailers that reduces fuel consumption by 30% Tech-heavy Iveco Z Truck concept spawns 29 patents EPA's Grundler talks Phase 2 regs
2016-12-01
Article
Ford is to introduce a cylinder deactivation version of its 3-cylinder EcoBoost triple. It will enter production by early 2018 and it is expected to deliver up to a 6% fuel saving with associated CO2 emissions reduction.
2016-11-18
WIP Standard
J100
This SAE Recommended Practice establishes boundaries for shade bands on glazed surfaces in class "A" vehicles. These boundaries are located so that the shade band can provide occupant comfort and driver vision protection from glare, with respect to solar radiation, under some lighting and driving conditions. Since shade bands transmit less visible light than adjacent glazed surfaces, the shade band boundaries establish boundaries for the driver's field of view.
2016-11-16
Magazine
Focus on advanced safety systems and human-factor interventions The impact of REACH on the aviation sector Considered the most comprehensive chemical-regulation legislation to date, REACH presents serious ramifications for the aircraft industry. Lightweighting: What's Next? Experts weigh in on the challenges and future enablers in the battle to reduce vehicle mass. The best of COMVEC 2016 Autonomous vehicles and improved fuel efficiency via advanced powertrain solutions are pressing topics detailed in this select group of technical papers from the SAE Commercial Vehicle Engineering Congress. Optimizing waste heat recovery for long-haul trucks Autonomous solutions in agriculture Downsizing a HD diesel engine for off-highway applications Zero-emissions electric aircraft: Theory vs. reality
Viewing 271 to 300 of 24435

Filter