Display:

Results

Viewing 271 to 300 of 23329
2016-04-05
Technical Paper
2016-01-0612
Rohit Koli, Konstantinos Siokos, Robert Prucka, Shyam Jade, Jason Schwanke
Abstract Low-pressure cooled EGR (LP-cEGR) systems can provide significant improvements in spark-ignition engine efficiency and knock resistance. However, open-loop control of these systems is challenging due to low pressure differentials and the presence of pulsating flow at the EGR valve. This research describes a control structure for Low-pressure cooled EGR systems using closed loop feedback control along with internal model control. A Smith Predictor based PID controller is utilized in combination with an intake oxygen sensor for feedback control of EGR fraction. Gas transport delays are considered as dead-time delays and a Smith Predictor is one of the conventional methods to address stability concerns of such systems. However, this approach requires a plant model of the air-path from the EGR valve to the sensor.
2016-04-05
Technical Paper
2016-01-0616
Jayant Sarlashkar, Sankar Rengarajan, Ryan Roecker
Abstract Southwest Research Institute (SwRI) has successfully demonstrated the cooled EGR concept via the High Efficiency Dilute Gasoline Engine (HEDGE) consortium. Dilution of intake charge provides three significant benefits - (1) Better Cycle Efficiency (2) Knock Resistance and (3) Lower NOx/PM Emissions. But EGR dilution also poses challenges in terms of combustion stability, condensation and power density. The Dedicated EGR (D-EGR) concept brings back some of the stability lost due to EGR dilution by introducing reformates such as CO and H2 into the intake charge. Control of air, EGR, fuel, and ignition remains a challenge to realizing the aforementioned benefits without sacrificing performance and drivability. This paper addresses the DEGR solution from a controls standpoint. SwRI has been developing a unified framework for controlling a generic combustion engine (gasoline, diesel, dual-fuel natural gas etc.).
2016-04-05
Technical Paper
2016-01-0618
Feilong Liu, Jeffrey M. Pfeiffer, Ron Caudle, Peter Marshall, Peter Olin
Abstract Low Pressure Cooled Exhaust Gas Recirculation (LP EGR) is an attractive technology to reduce fuel consumption for a spark-ignition (SI) engine, particularly at medium-to-high load conditions, due to its knock suppression and combustion cooling effects. However, the long LP EGR transport path presents a significant challenge to the transient control of LP EGR for the engine management system. With a turbocharged engine, this is especially challenging due to the much longer intake induction system path compared with a naturally aspirated engine. Characterizing and modeling the EGR, intake air mixing and transport delay behavior is important for proper control. The model of the intake air path includes the compressor, intercooler and intake plenum. It is important to estimate and track the final EGR concentration at the intake plenum location, as it plays a key role in combustion control.
2016-04-05
Technical Paper
2016-01-0409
Fatih Unal, Cem Sorusbay
Abstract In an effort to support design and testing activities at product development lifecycle of the engine, proper duty cycle is required. However, to collect data and develop accurate duty cycles, there are not any vehicles equipped with prototype engines at customers. Therefore, in this paper, discrete duty cycle development methodology is studied to generate trailer truck engine usage profile which represents driving conditions in Turkey for engines in development phase. Cycles are generated using several vehicles equipped with prototype engines and professional drivers that can mimic customer usage. Methodology is based on defining real-world customer driving profile, discretizing real-world drives into separate events, collecting vehicle data from each discrete drive, determining the weight of events by conducting customer surveys and creating a representative reference usage profile with data analysis.
2016-04-05
Journal Article
2016-01-0183
Taehoon Han, Hyunki Sul, John Hoard, Chih-Kuang Kuan, Daniel Styles
Abstract Exhaust Gas Recirculation (EGR) coolers are commonly used in diesel and modern gasoline engines to reduce the re-circulated gas temperature. A common problem with the EGR cooler is a reduction of the effectiveness due to the fouling layer primarily caused by thermophoresis, diffusion, and hydrocarbon condensation. Typically, effectiveness decreases rapidly at first, and asymptotically stabilizes over time. There are several hypotheses of this stabilizing phenomenon; one of the possible theories is a deposit removal mechanism. Verifying such a mechanism and finding out the correlation between the removal and stabilization tendency would be a key factor to understand and overcome the problem. Some authors have proposed that the removal is a possible influential factor, while other authors suggest that removal is not a significant factor under realistic conditions.
2016-04-05
Technical Paper
2016-01-0194
Yici Li, Wei Tian
Abstract The exhaust cooling is an important index which measures the performance of the flameproof diesel engine. In this paper, a modification model is built for enhancing the cooling performance of exhaust, based on the reference model of the dry cooling equipment. The annular nozzle direction, extend plate of guide, bellows and elbow are introduced and studied in the model as the modification way. Considering the Coanda and Venturi effects, the comprehensive comparison of fluid velocity, temperature, pressure and mixture coefficient is implemented, and the optimum horizontal dimension of throat is summarized. The simulation results indicate the modification model shows better performance in reducing exhaust temperature and pressure than the reference model.
2016-04-05
Journal Article
2016-01-0186
Hyunki Sul, Taehoon Han, Mitchell Bieniek, John Hoard, Chih-Kuang Kuan, Daniel Styles
Abstract Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
2016-04-05
Technical Paper
2016-01-0571
Guillaume Bernard, Mark Scaife, Amit Bhave, David Ooi, Julian Dizy
Abstract Internal combustion (IC) engines that meet Tier 4 Final emissions standards comprise of multiple engine operation and control parameters that are essential to achieve the low levels of NOx and soot emissions. Given the numerous degrees of freedom and the tight cost/time constraints related to the test bench, application of virtual engineering to IC engine development and emissions reduction programmes is increasingly gaining interest. In particular, system level simulations that account for multiple cycle simulations, incylinder turbulence, and chemical kinetics enable the analysis of combustion characteristics and emissions, i.e. beyond the conventional scope of focusing on engine performance only. Such a physico-chemical model can then be used to develop Electronic Control Unit in order to optimise the powertrain control strategy and/or the engine design parameters.
2016-04-05
Technical Paper
2016-01-0580
Joohan Kim, Namho Kim, Kyoungdoug Min
Abstract The soot emission in direct-injection spark-ignition engines under various operating conditions was numerically investigated in the present study. A detailed soot model was used to resolve the physical soot process that consists of polycyclic aromatics hydrocarbon (PAH) formation and soot particle dynamics. The primary propagating flame in partially-premixed field was described by G-equation model, and the concentrations of burned species as well as PAH behind of the flame front were determined from the laminar flamelet library that incorporates the PAH chemical mechanism. The particle dynamics in post-flame region include nucleation, surface growth, coagulation, and oxidation were modeled by method of moments. To improve the model predictability, a gasoline surrogate model was proposed to match the real fuel properties, and the input of droplet size distribution of fuel spray was obtained from Phase-Doppler Particle Analyzer.
2016-04-05
Technical Paper
2016-01-0576
Chad Koci, Kenth Svensson, Christopher Gehrke
Abstract A two-zone NOx model intended for 1-D engine simulations was developed and used to model NOx emissions from a 2.5 L single-cylinder engine. The intent of the present work is to understand key aspects of a simple NOx model that are needed for predictive accuracy, including NOx formation and destruction phenomena in a DI Diesel combustion system. The presented two-zone model is fundamentally based on the heat release rate and thermodynamic incylinder data, and uses the Extended Zeldovich mechanism to model NO. Results show that the model responded very well to changes in speed, load, injection timing, and EGR level. It matched measured tail pipe NOx levels within 20%, using a single tuning setup. When the model was applied to varied injection rate shapes, it showed correct sensitivity to speed, load, injection timing, and EGR level, but the absolute level was well outside the target accuracy. The same limitation was seen when applying the Plee NOx model.
2016-04-05
Technical Paper
2016-01-0575
Konstantinos Siokos, Rohit Koli, Robert Prucka, Jason Schwanke, Shyam Jade
Abstract Low pressure (LP) and cooled EGR systems are capable of increasing fuel efficiency of turbocharged gasoline engines, however they introduce control challenges. Accurate exhaust pressure modeling is of particular importance for real-time feedforward control of these EGR systems since they operate under low pressure differentials. To provide a solution that does not depend on physical sensors in the exhaust and also does not require extensive calibration, a coupled temperature and pressure physics-based model is proposed. The exhaust pipe is split into two different lumped sections based on flow conditions in order to calculate turbine-outlet pressure, which is the driving force for LP-EGR. The temperature model uses the turbine-outlet temperature as an input, which is known through existing engine control models, to determine heat transfer losses through the exhaust.
2016-04-05
Technical Paper
2016-01-0590
Alexandros Hatzipanagiotou, Paul Wenzel, Christian Krueger, Raul Payri, Jose M. Garcia-Oliver, Walter Vera-Tudela, Thomas Koch
Abstract In this work a detailed soot model based on stationary flamelets is used to simulate soot emissions of a reactive Diesel spray. In order to represent soot formation and oxidation processes properly, a calibration of the soot reaction rates has to be performed. This model calibration is usually performed on basis of engine out soot measurements. Contrary to this, in this work the soot model is calibrated on local soot concentrations along the spray axis obtained from laser extinction chamber measurements. The measurements are performed with B7 certification Diesel and a series production multihole injector to obtain engine similar boundary conditions. In order to ensure that the flow and mixture field is captured well by the CFD-simulation, the simulated liquid penetration lengths and flame lift-off lengths are compared to chamber measurements.
2016-04-05
Technical Paper
2016-01-0548
Estefanía Hervas-Blasco, Emilio Navarro-Peris, José Corberan, Alex Rinaldi
Abstract Nowadays, more than 50% of the fuel energy is lost in CNG Engines. While efforts to increase their efficiency have been focused mainly on the improvement of the combustion process, the combustion chamber and the reduction of friction losses, heat losses still remain the most important inefficient factor. A global strategy in which several energy recovery strategies are implemented could lead to engine improvements up to 15%. Therefore, the development of accurate models to size and predict the performance of the integrated components as well as to define an optimized control strategy is crucial. In this contribution, a model to analyze the potential of a new powertrain based on the electrification of the main auxiliaries, the integration of a kinetic energy recovery system and the exhaust gases heat recovery through a thermoelectric generator and a turbo-component is presented.
2016-04-05
Technical Paper
2016-01-0547
Andrea Piano, Federico Millo, Giulio Boccardo, Mahsa Rafigh, Alessandro Gallone, Marcello Rimondi
The predictive capabilities of an innovative multizone combustion model DIPulse, developed by Gamma Technologies, were assessed in this work for a last generation common rail automotive diesel engine. A detailed validation process, based on an extensive experimental data set, was carried out concerning the predicted heat release rate, the in-cylinder pressure trace, as well as NOx and soot emissions for several operating points including both part load and full load points. After a preliminary calibration of the model, the combustion model parameters were then optimized through a Latin Hypercube Design of Experiment (DoE), with the aim of minimizing the RMS error between the predicted and experimental burn rate of several engine operating points, thus achieving a satisfactory agreement between simulation and experimental engine combustion and emissions parameters.
2016-04-05
Technical Paper
2016-01-0550
Zhijia Yang, Edward Winward, Gary O'Brien, Richard Stobart, Dezong Zhao
Abstract The intrinsic model accuracy limit of a commonly used Exhaust Gas Recirculation (EGR) mass flow rate model in diesel engine air path control is discussed in this paper. This EGR mass flow rate model is based on the flow of a compressible ideal gas with unchanged specific heat ratio through a restriction cross-area within a duct. A practical identification procedure of the model parameters is proposed based on the analysis of the engine data and model structure. This procedure has several advantages which include simplicity, low computation burden and low engine test cost. It is shown that model tuning requires only an EGR valve sweep test at a few engine steady state operating points.
2016-04-05
Technical Paper
2016-01-0558
Christoph Poetsch, Tomaz Katrasnik
Abstract The present work introduces an innovative mechanistically based 0D spray model which is coupled to a combustion model on the basis of an advanced mixture controlled combustion approach. The model calculates the rate of heat release based on the injection rate profile and the in-cylinder state. The air/fuel distribution in the spray is predicted based on momentum conservation by applying first principles. On the basis of the 2-zone cylinder framework, NOx emissions are calculated by the Zeldovich mechanism. The combustion and emission models are calibrated and validated with a series of dedicated test bed data specifically revealing its capability of describing the impact of variations of EGR, injection timing, and injection pressure. A model based optimization is carried out, aiming at an optimum trade-off between fuel consumption and engine-out emissions. The findings serve to estimate an economic optimum point in the NOx/BSFC trade-off.
2016-04-05
Journal Article
2016-01-1152
Alan Brown, Marc Nalbach, Sebastian Kahnt, André Korner
Abstract Global CO2 reduction by 2021, according to some projections, will be comprised of multiple vehicle technologies with 7% represented by hybrid and electric vehicles (2% in 2014) [1]. Other low cost hybrid methods are necessary in order to achieve widespread CO2 reduction. One such method is engine-off coasting and regenerative braking (or recuperation) using a conventional internal combustion engine (ICE). This paper will show that a 48V power system, compared to a 12V system with energy storage module for vehicle segments B, D and E during WLTP and NEDC, is much more efficient at reducing CO2. Passive engine-off coasting using 12V energy storage shows a CO2 benefit for practical real world driving, but, during NEDC, multiple sources of friction slow the vehicle down to the extent that the maximum benefit is not achieved.
2016-04-05
Journal Article
2016-01-1165
Mahmoud Abdelhamid, Imtiaz Haque, Srikanth Pilla, Zoran S. Filipi, Rajendra Singh
Abstract The challenge of meeting the Corporate Average Fuel Economy (CAFE) standards of 2025 has led to major developments in the transportation sector, among which is the attempt to utilize clean energy sources. To date, use of solar energy as an auxiliary source of on-board fuel has not been extensively investigated. This paper is the first study at undertaking a comprehensive analysis of using solar energy on-board by means of photovoltaic (PV) technologies to enhance automotive fuel economies, extend driving ranges, reduce greenhouse gas (GHG) emissions, and ensure better economic value of internal combustion engine (ICE) -based vehicles to meet CAFE standards though 2025. This paper details and compares various aspects of hybrid solar electric vehicles with conventional ICE vehicles.
2016-04-05
Journal Article
2016-01-1176
Karim Hamza, Ken Laberteaux
Abstract This work presents a modeling approach for estimation of the equivalent greenhouse gas (GHG) emissions of plugin hybrid electric vehicles (PHEVs) for real driving patterns and charging behaviors. In general, modeling of the equivalent GHG for a trip made by a PHEV not only depends on the trip trace in question, but also on the electric range of the vehicle and energy consumption in previous trips since the last charging event. This can significantly increase the necessary computational burden of estimating the GHG emissions using numerical simulation tools, which are already computationally-expensive. The proposed approach allows a trip numerical simulation starting with a fully charged battery to be re-used for GHG estimation of a trip that starts with any initial state of charge by re-allocating the appropriate amount electric energy to an equivalent gas consumption.
2016-04-05
Journal Article
2016-01-1192
Hisao Kato
Abstract Electrode catalyst (platinum) degradation represents a major challenge to the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) in Fuel Cell Vehicles (FCVs). While various mechanisms have been proposed and investigated previously, there is still a need to develop in situ imaging techniques that can characterize and provide direct evidence to confirm the degradation process. In the present study, we report an in situ transmission electron microscopy (TEM) method that enables real time, high-resolution observation of carbon-supported platinum nanoparticles in liquid electrolyte under working conditions. By improving the design of the Micro Electro Mechanical Systems (MEMS) sample holder, the migration and aggregation of neighboring platinum nanoparticles could be visualized consistently and correlated to applied electrode potentials during aging process (i.e., cyclic voltammetry cycles).
2016-04-05
Journal Article
2016-01-0942
Nicholas Custer, Carl Justin Kamp, Alexander Sappok, James Pakko, Christine Lambert, Christoph Boerensen, Victor Wong
Abstract The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
2016-04-05
Journal Article
2016-01-0941
Christine K. Lambert, Mira Bumbaroska, Douglas Dobson, Jon Hangas, James Pakko, Paul Tennison
Abstract The purpose of this work was to examine gasoline particle filters (GPFs) at high mileages. Soot levels for gasoline direct injection (GDI) engines are much lower than diesel engines; however, noncombustible material (ash) can cause increased backpressure, reduced power, and lower fuel economy. In this study, a post mortem was completed of two GPFs, one at 130,000 mi and the other at 150,000 mi, from two production 3.5L turbocharged GDI vehicles. The GPFs were ceramic wall-flow filters containing three-way catalytic washcoat and located downstream of conventional three-way catalysts. The oil consumption was measured to be approaching 23,000 mpqt for one vehicle and 30,000 mpqt for the other. The ash contained Ca, P, Zn, S, Fe, and catalytic washcoat. Approximately 50 wt% of the collected ash was non-lubricant derived. The filter capture efficiency of lubricant-derived ash was about 50% and the non-lubricant metal (mostly Fe) deposition rate was 0.9 to 1.2 g per 10,000 mi.
2016-04-05
Journal Article
2016-01-0959
Dhinesh Kumar, Ashwhanth Raju, Nitin Sheth, Steffen Digeser
Abstract The future emission regulation (BS V) in India is expected to create new challenges to meet the particulate matter (PM) limit for diesel cars. The upcoming emission norms will bring down the limit of PM by 80 % when compared to BS IV emission norms. The diesel particulate filter (DPF) is one of the promising technologies to achieve this emission target. The implementation of DPF system into Indian market poses challenges against fuel quality, driving cycles and warranty. Hence, it is necessary to do a detailed on-road evaluation of the DPF system with commercially available fuel under country specific drive cycles. Therefore, we conducted full vehicle durability testing with DPF system which is available in the European market to evaluate its robustness and reliability with BS III fuel (≤350ppm sulfur) & BS IV (≤50ppm sulfur) fuel under real Indian driving conditions.
2016-04-05
Journal Article
2016-01-0957
Patrick Schrangl, Roman Schmied, Stephan Stadlbauer, Harald Waschl, Luigi del Re, Bernhard Ramsebner, Christoph Reiter
Abstract Abatement and control of emissions from passenger car combustion engines have been in the focus for a long time. Nevertheless, to address upcoming real-world driving emission targets, knowledge of current engine emissions is crucial. Still, adequate sensors for transient emissions are seldom available in production engines. One way to target this issue is by applying virtual sensors which utilize available sensor information in an engine control unit (ECU) and provide estimates of the not measured emissions. For real-world application it is important that the virtual sensor has low complexity and works under varying conditions. Naturally, the choice of suitable inputs from all available candidates will have a strong impact on these factors. In this work a method to set up virtual sensors by means of design of experiments (DOE) and iterative identification of polynomial models is augmented with a novel input candidate selection strategy.
2016-04-05
Journal Article
2016-01-0967
Rohil Daya, John Hoard, Sreedhar Chanda, Maneet Singh
Abstract A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
2016-04-05
Journal Article
2016-01-0970
Henrik Smith, Thomas Lauer, Viktor Schimik, Klaus Gabel
Abstract In this work we extended the findings from a previous study by the authors on the mechanisms and influence factors of deposit formation in urea-based selective catalytic reduction systems (SCR) [1]. A broader range of operating conditions was investigated in detail. In order to quantify the boundary conditions of deposition, a representative set of deposits was studied during formation and decomposition. A box of heat resisting glass was equipped with a surrogate mixing element to monitor solidification timescales, temperatures and deposit growth. A chemical analysis of the deposits was performed using thermogravimetry. The depletion timescales of individual deposit components were systematically investigated. A moderate temperature increase to 350 °C was deemed sufficient to trigger fast decomposition of deposits formed below 250 °C.
2016-04-05
Journal Article
2016-01-0968
Athanasios G. Konstandopoulos, Chrysoula Pagkoura, Souzana Lorentzou, Georgia Kastrinaki
Abstract Catalysts that have been extensively investigated for direct soot oxidation in Catalyzed Diesel Particulate Filters (CDPFs) are very often based on mixed oxides of ceria with zirconia, materials known to assist soot oxidation by providing oxygen to the soot through an oxidation-reduction catalytic cycle. Besides the catalyst composition that significantly affects soot oxidation, other parameters such as morphological characteristics of the catalyst largely determined by the synthesis technique followed, as well as the reagents used in the synthesis may also contribute to the activity of the catalysts. In the present work, two ceria-zirconia catalyst samples with different zirconia content were subjected to different milling protocols with the aim to shift the catalyst particle size distribution to lower values. The produced catalysts were then evaluated with respect to their soot oxidation activity following established protocols from previous works.
2016-04-05
Journal Article
2016-01-0969
Johann C. Wurzenberger, Sophie Bardubitzki, Susanne Kutschi, Robert Fairbrother, Christoph Poetsch
The present work introduces an extended particulate filter model focusing on capabilities to cover catalytic and surface storage reactions and to serve as a virtual multi-functional reactor/separator. The model can be classified as a transient, non-isothermal 1D+1D two-channel model. The applied modeling framework offers the required modeling depth to investigate arbitrary catalytic reaction schemes and it follows the computational requirement of running in real-time. The trade-off between model complexity and computational speed is scalable. The model is validated with the help of an analytically solved reference and the model parametrization is demonstrated by simulating experimentally given temperatures of a heat-up measurement. The detailed 1D+1D model is demonstrated in a concept study comparing the impact of different spatial washcoat distributions.
2016-04-05
Journal Article
2016-01-0984
Venkatraman Mahadevan, Suresh Iyer, David Klinikowski
Abstract This paper proposes a method to recover species concentrations at the tail pipe exit of heavy-duty vehicles during chassis dynamometer tests, and investigates its effect in the calculation of emissions from their raw exhaust streams. It was found that the method shown in this paper recovered the sharp peaks of the gas species. The effect on calculations was significant, as time-variant raw exhaust flow rate and emissions concentrations data are acquired continuously during a test (at 10 Hz), and their product is integrated during calculations. The response of the analyzer is delayed due to the time taken for transport of the sample gases from the probe tip to the analyzer, and deformed due to mixing and diffusion during this transport. This ‘convolution’ of the concentration data stream introduces an error in the final result, calculated in g/mile.
2016-04-05
Journal Article
2016-01-0997
Huzeifa Badshah, David Kittelson, William Northrop
Abstract To ensure reliable starting under cold weather conditions (< 0 oC ambient), gasoline engines use fuel enrichment, leading to higher soot formation and greater tailpipe particle number (PN) emissions. In gasoline direct injection (GDI) engines, PN emissions are higher due to liquid fuel impingement on cold surfaces of the combustion chamber and piston. This study characterizes solid (mostly elemental carbon) and semi-volatile (organic) particle number, mass, and size distributions during cold-cold engine start-up from light duty vehicles. Particle emissions were sampled from vehicles upon engine start-up after an overnight soak, with an average ambient temperature of -8 ± 7 oC. The average PN emitted during 180 seconds by GDI and PFI vehicles were 3.09E+13 and 2.12E+13 particles respectively.
Viewing 271 to 300 of 23329

Filter