Display:

Results

Viewing 1 to 30 of 22751
2015-06-15
Technical Paper
2015-01-2123
Eric Defer, Jean-Louis Brenguier, Jos De Laat, Julien Delanoe, Fabien Dezitter, Michael Faivre, Amanda Gounou, Alice Grandin, Anthony Guignard, Jan Fokke Meirink, Jean-Marc Moisselin, Frederic Parol, Alain Protat, Claudine Vanbauce
J.-L. Brenguier (1), J. De Laat (2), P. De Valk (2), E. Defer (3), J. Delanoë (3), F. Dezitter (4), M. Faivre (3), A. Gounou (1), A. Grandin (4), A. Guignard (3), J. F. Meirink (2), J.-M. Moisselin (1), F. Parol (3), C. Vanbauce (3) 1 - Météo-France 2 - KNMI 3 - CNRS 4 - AIRBUS The European FP7 High Altitude Ice Crystals (HAIC) project aims at characterizing specific environmental conditions in the vicinity of convective clouds that can lead to in-service events [1]. Academics and aeronautic industries are collaborating within 6 main research activities that include dedicated field campaigns, development of new in situ probes, space-based detection and monitoring, upgrade of on-board weather radars, improvement of ground test facilities, and modeling of melting and impingement processes. All activities are designed to enhance aircraft safety when flying in mixed phase and glaciated icing conditions.
2015-05-01
Journal Article
2015-01-9016
Jean-Baptiste Gallo, Christopher Weaver
Abstract In-service emissions measurements were conducted on two package delivery trucks: one model year 2008 FCCC MT-55 conventional diesel and one model year 2012 FCCC MT-55 hydraulic hybrid (HHV). Mass emissions of CO2, CO, NOx, PM, and THC from the HHV and the conventional diesel test vehicle were each measured under conditions closely simulating normal package delivery operation. The HHV demonstrated a 29.4% improvement in fuel economy and a 17.4% reduction in CO2 emissions compared to the conventional diesel vehicle. The HHV showed its best potential in operating areas characterized by low driving speeds and high number of stops (“pick-up and delivery”) with a 40.5% improvement in fuel economy and a 21.2% reduction in CO2 emissions.
2015-04-16
Article
The Tube Fittings Division of Parker Hannifin Corp. has expanded its Seal-Lok O-ring face seal tube fitting line to provide alternative-fuel application compatibility.
2015-04-15
Standard
J2974_201504
This SAE Technical Information Report provides information on Automotive Battery Recycling. This document provides a compilation of current recycling definitions, technologies and flow sheets and their application to different battery chemistries.
2015-04-14
Article
Megacity growth and energy demand are driving a diverse future mix of autonomous vehicles, car sharing, and cycling, among other more sustainable future-transportation solutions.
2015-04-14
Collection
This technical paper collection will focus on ‘Advances in NOx Reduction Technology’. The topics covered will include: new materials for lean NOx traps (LNT) and Selective Catalytic Reduction (SCR); system integration and durability; advances in NOx catalyst substrates, novel reductants and mixing designs.
2015-04-14
Collection
This technical paper collection covers the systems engineering experience required to achieve ultra-low emission levels on light-duty vehicles. Emission system component topics include the development of advanced three-way catalysts, the development of NOX control strategies for gasoline lean burn engines, the application of high cell density substrates to advanced emission systems, and the integration of these components into full vehicle emission systems.
2015-04-14
Collection
Papers cover exhaust aftertreatment system models, as well as their validation and application. Technologies encompassed include DOC, HC Trap, DPF, GPF, LNT, TWC, SCR, SCRF, ammonia oxidation catalysts, hybrid or combined catalysts, urea-water solution spray dynamics, and mixture non-uniformity. Modeling aspects range from fundamental, 3D models of individual components to system level simulation, optimization, variation, degradation, and control.
2015-04-14
Collection
This technical paper collection focuses on particle emissions from combustion engines, including measurement and testing methods, and the effects of changes in fuel composition. Papers also cover the topics of the environmental and health effects of elemental carbon and organic carbon that constitutes solid cored particles plus the environmental and health effects of secondary organic aerosol emissions. This includes particulate emissions from both gasoline and diesel engines.
2015-04-14
Technical Paper
2015-01-1032
Z. Gerald Liu, Nathan Ottinger
U.S. and European nonroad diesel emissions regulations have led to the implementation of various exhaust aftertreatment solutions. One approved configuration, a vanadium-based selective catalytic reduction catalyst followed by an ammonia oxidation catalyst (V-SCR + AMOX), does not require the use of a diesel oxidation catalyst (DOC) or diesel particulate filter (DPF). While certification testing has shown the V-SCR + AMOX system to be capable of meeting the nitrogen oxides, carbon monoxide, and particulate matter requirements, open questions remain regarding the efficacy of this aftertreatment for volatile and nonvolatile organic emissions removal, especially since the removal of this class of compounds is generally attributed to both the DOC and DPF.
2015-04-14
Technical Paper
2015-01-1013
Shankar Ramadas, Sunil Prasanth Suseelan, Thiyagarajan Paramadhayalan, Ambalavanan Annamalai, Rahul Mital
Abstract Emission compliance at the production level has been a challenge for vehicle manufacturers. Diesel oxidation catalyst (DOC) plays a very important role in controlling the emissions for the diesel vehicles. Vehicle manufacturers tend to ‘over design’ the diesel oxidation catalyst to ‘absorb’ the production variations which seems an easier and faster solution. However this approach increases the DOC cost phenomenally which impacts the overall vehicle cost. The main objective of this paper is to address the high variation in CO tail pipe emissions which were observed on a diesel passenger car during development. This variation was posing a challenge in consistently meeting the internal product requirement/specification.
2015-04-14
Journal Article
2015-01-0998
Paul Mentink, Rob van den Nieuwenhof, Frank Kupper, Frank Willems, Dennis Kooijman
Abstract Heavy-duty diesel engines are used in different application areas, like long-haul, city distribution, dump truck and building and construction industry. For these wide variety of areas, the engine performance needs to comply with the real-world legislation limits and should simultaneously have a low fuel consumption and good drivability. Meeting these requirements takes substantial development and calibration effort, where an optimal fuel consumption for each application is not always met in practice. TNO's Integrated Emission Management (IEM) strategy, is able to deal with these variations in operating conditions, while meeting legislation limits and obtaining on-line cost optimization. Based on the actual state of the engine and aftertreatment, optimal air-path setpoints are computed, which balances EGR and SCR usage.
2015-04-14
Technical Paper
2015-01-1010
Hongsuk Kim, Hoyeol Lee, Sunyoup Lee, Gyubaek Cho
Diesel burners have been used to regenerate diesel particulate filters (DPF) because of their simplicity in engine torque control and less oil dilution by fuel compared with the commonly used in-cylinder post fuel injection method. We previously developed a novel diesel burner using rotating plasma as an ignition source and found it to be effective in DPF regeneration. Here, we carry out in-depth studies on combustion efficiency of this plasma-ignited diesel burner and investigate the effects of influential factors such as plasma power, the amount of fresh air supplied, and O2 concentration in the exhaust gas on combustion characteristics of the burner. The obtained results show that fresh air supplied to the burner plays an important role in ignition and the early stage of combustion, and O2 concentration in the exhaust gas is identified as the most dominant factor for combustion efficiency.
2015-04-14
Technical Paper
2015-01-1008
Vitaly Y. Prikhodko, Josh A. Pihl, Todd J. Toops, John F. Thomas, James E. Parks, Brian H. West
Abstract Ethanol is a very effective reductant for nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environments. With the widespread availability of ethanol/gasoline-blended fuel in the U.S., lean gasoline engines equipped with Ag/Al2O3 catalysts have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for evaluation of catalyst performance.
2015-04-14
Journal Article
2015-01-0992
Mojghan Naseri, Ceren Aydin, Shadab Mulla, Raymond Conway, Sougato Chatterjee
Abstract Selective Catalytic Reduction (SCR) systems have been demonstrated as effective solutions for controlling NOx emissions from Heavy Duty diesel engines. Future HD diesel engines are being designed for higher engine out NOx to improve fuel economy, while discussions are in progress for tightening NOx emissions from HD engines post 2020. This will require increasingly higher NOx conversions across the emission control system and will challenge the current aftertreatment designs. Typical 2010/2013 Heavy Duty systems include a diesel oxidation catalyst (DOC) along with a catalyzed diesel particulate filter (CDPF) in addition to the SCR sub-assembly. For future aftertreatment designs, advanced technologies such as cold start concept (dCSC™) catalyst, SCR coated on filter (SCRF® hereafter referred to as SCR-DPF) and SCR coated on high porous flow through substrates can be utilized to achieve high NOx conversions, in combination with improved control strategies.
2015-04-14
Technical Paper
2015-01-0990
Brett M. Bailey
This paper details the development of Cool Particulate Regeneration™, CPR™, an ultra-efficient non-thermal active particulate filter regeneration technology for gasoline and diesel particulate filters. In the technologies simplest form, mechanical two-way regeneration valves are sequentially and in rapid succession pneumatically actuated to induce a reverse flow filter cleaning. Their operation generates exhaust pressure by sealing off the exhaust system preventing filtered engine exhaust from exiting the tailpipe. The filtered and pressurized gases are then released to a separate low pressure particulate matter (PM) reservoir upstream of the filter. The reverse flow of high pressure filtered exhaust gases pass back though the filter physically dislodging the particulate and transporting it to the low pressure storage chamber. Innovative utilization of the particulate matter is discussed. CPR has undergone bench testing and two generations of research and development.
2015-04-14
Journal Article
2015-01-0991
Nathan Ottinger, Rebecca Veele, Yuanzhou Xi, Z. Gerald Liu
Abstract Lean-burn natural gas (NG) engines are used world-wide for both stationary power generation and mobile applications ranging from passenger cars to Class 8 line-haul trucks. With the recent introduction of hydraulic fracturing gas extraction technology and increasing availability of natural gas, these engines are receiving more attention. However, the reduction of unburned hydrocarbon emissions from lean-burn NG and dual-fuel (diesel and natural gas) engines is particularly challenging due to the stability of the predominant short-chain alkane species released (e.g., methane, ethane, and propane). Supported Pd-based oxidation catalysts are generally considered the most active materials for the complete oxidation of low molecular weight alkanes at temperatures typical of lean-burn NG exhaust. However, these catalysts rapidly degrade under realistic exhaust conditions with high water vapor concentrations and traces of sulfur.
2015-04-14
Technical Paper
2015-01-0989
Steve Schiller, Mark Brandl, Bruce Hoppenstedt, Korneel De Rudder
Abstract Diesel engine NOx emissions requirements have become increasingly stringent over the past two decades. Engine manufacturers have shown through the use of EGR and SCR technology that these requirements can be met. However, the desires for improved fuel efficiency, lower overall cost, and potential legislation to reduce NOx levels further increase the demand for higher DEF dosing rates. To meet this demand, a new DEF mixing technology has been developed. This paper describes the development methods used to create a compact, in-pipe mixer which utilizes an optimized wire mesh along with swirling flow to permit high DEF dosing rates without deposit formation. Its excellent mixing characteristics allowed for high NOx reduction to be achieved. Utilization of this technology makes it possible to reduce regeneration frequency, reduce the overall size of the SCR system, possibly eliminate the EGR system, and improve fuel efficiency through combustion enhancements.
2015-04-14
Technical Paper
2015-01-0789
Jongyoon Lee, Sangyul Lee, Jungho Kim, Duksang Kim
Abstract This paper shows development challenges for 6 liter heavy duty off-road diesel engines to meet the Tier4 final emission regulations with a base diesel engine compliant with Tier4 interim emission regulations. Even if an after-treatment system helps to reduce emissions, quite amount of particulate matters (PM) reduction is still necessary since a diesel particulate filter (DPF) system is supposed to be excluded in Tier4 final diesel engine. The objective of this research is to see if the base engine has a feasibility to meet Tier4 final emission regulations by a change of piston bowl geometry without DPF. Quite amount of PM can be reduced by piston bowl geometry because piston bowl geometry is a very important part that enhances air and fuel mixing process that help the combustion process.
2015-04-14
Journal Article
2015-01-0801
Gregory K. Lilik, Charles J. Mueller, Cosmin E. Dumitrescu, Christopher R. Gehrke
Abstract Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
2015-04-14
Technical Paper
2015-01-0800
Yann Gallo, Johan Simonsson, Ted Lind, Per-Erik Bengtsson, Henrik Bladh, Oivind Andersson
Abstract Two competing in-cylinder processes, soot formation and soot oxidation, govern soot emissions from diesel engines. Previous studies have shown a lack of correlation between the soot formation rate and soot emissions. The current experiment focuses on the correlation between soot oxidation rates and soot emissions. Laser extinction is measured using a red (690nm) laser beam, which is sent vertically through the cylinder. This wavelength is long enough to minimize absorption interference from poly-aromatic hydrocarbons, while still in the visible regime. It is modulated at 72 kHz in order to produce 10 pulses per crank angle degree at an engine speed of 1200 rpm. The intake oxygen concentration is varied between 9% and 21%. The time resolved extinction measurements are used to estimate soot oxidation rates during expansion.
2015-04-14
Journal Article
2015-01-0810
Hao-ye Liu, Zhi Wang, Jian-Xin Wang
Abstract Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from Initial Boiling Point (IBP) of gasoline to Final Boiling Point (FBP) of diesel. Polyoxymethylene Dimethyl Ethers (PODEn) have high oxygen content and cetane number, are promising green additive to diesel fuel. In this paper, WDF was prepared by blending diesel and gasoline at ratio of 1:1, by volume; the mass distribution of oligomers in the PODE3-4 product was 88.9% of PODE3 and 8.46% of PODE4. Diesel fuel (Diesel), WDF (G50D50) and WDF (80%)-PODE3-4 (20%) (G40D40P20) were tested in a light-duty single-cylinder diesel engine, combustion characteristic, fuel consumption and exhaust emissions were measured. The results showed that: at idling condition, G40D40P20 has better combustion stability, higher heat release rate, higher thermal efficiency compared with G50D50.
2015-04-14
Journal Article
2015-01-0808
Tadanori Yanai, Shouvik Dev, Xiaoye Han, Ming Zheng, Jimi Tjong
Abstract This study investigated neat n-butanol combustion, emissions and thermal efficiency characteristics in a compression ignition (CI) engine by using two fuelling techniques - port fuel injection (PFI) and direct injection (DI). Diesel fuel was used in this research for reference. The engine tests were conducted on a single-cylinder four-stroke DI diesel engine with a compression ratio of 18.2 : 1. An n-Butanol PFI system was installed to study the combustion characteristics of Homogeneous Charge Compression Ignition (HCCI). A common-rail fuel injection system was used to conduct the DI tests with n-butanol and diesel. 90 MPa injection pressure was used for the DI tests. The engine was run at 1500 rpm. The intake boost pressure, engine load, exhaust gas recirculation (EGR) ratio, and DI timing were independently controlled to investigate the engine performance.
2015-04-14
Journal Article
2015-01-0809
Joonsik Hwang, Yongjin Jung, Choongsik Bae
Abstract The effect of biodiesel produced from waste cooking oil (WCO) on the soot particles in a compression ignition engine was investigated and compared with conventional diesel fuel. The indicated mean effective pressure of approximately 0.65 MPa was tested under an engine speed of 1200 revolutions per minute. The fuels were injected at an injection timing of −5 crank angle degree after top dead center with injection pressures of 80 MPa. Detailed characteristics of particulate matters were analyzed in terms of transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and elemental analysis. Soot aggregates were collected on TEM grid by thermophoretic sampling device installed in the exhaust pipe of the engine. High-resolution TEM images revealed that the WCO biodiesel soot was composed of smaller primary particle than diesel soot. The mean primary particle diameter was measured as 19.9 nm for WCO biodiesel and 23.7 nm for diesel, respectively.
2015-04-14
Journal Article
2015-01-0781
Raphael Gukelberger, Jess Gingrich, Terrence Alger, Steven Almaraz
Abstract The ongoing pursuit of improved engine efficiency and emissions is driving gasoline low-pressure loop EGR systems into production around the globe. The Dedicated EGR (D-EGR®) engine was developed to minimize some of the challenges of cooled EGR while maintaining its advantages. The D-EGR engine is a high efficiency, low emissions internal combustion engine for automotive and off-highway applications. The core of the engine development focused on a unique concept that combines the efficiency improvements associated with recirculated exhaust gas and the efficiency improvements associated with fuel reformation. To outline the differences of the new engine concept with a conventional LPL EGR setup, a turbocharged 2.0 L PFI engine was modified to operate in both modes. The second part of the cooled EGR engine concept comparison investigates efficiency, knock resistance, combustion stability, and maximum load potential at high load conditions.
2015-04-14
Journal Article
2015-01-0783
Raphael Gukelberger, Jess Gingrich, Terrence Alger, Steven Almaraz, Bradley Denton
Abstract The ongoing pursuit of improved engine efficiency and emissions are driving gasoline low-pressure loop EGR systems into production around the globe. To minimize inevitable downsides of cooled EGR while maintaining its advantages, the Dedicated EGR (D-EGR®) engine was developed. The core of the D-EGR engine development focused on a unique concept that combines the efficiency improvements associated with recirculated exhaust gas and the efficiency improvements associated with fuel reformation. To outline the differences of the new engine concept with a conventional low-pressure loop (LPL) EGR setup, a turbocharged 2.0 L PFI engine was modified to operate in both modes and also compared to the baseline. The first part of the cooled EGR engine concept comparison investigates efficiency, emissions, combustion stability, and robustness at throttled part load conditions.
2015-04-14
Journal Article
2015-01-0784
Raphael Gukelberger, Jess Gingrich, Terrence Alger, Steven Almaraz
Abstract In light of the increasingly stringent efficiency and emissions requirements, several new engine technologies are currently under investigation. One of these new concepts is the Dedicated EGR (D-EGR®) engine. The concept utilizes fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency. While the positive impact of reformate, in particular hydrogen, on gasoline engine performance has been widely documented, the on-board reforming process and / or storage of H2 remains challenging. The Water-Gas-Shift (WGS) reaction is well known and has been used successfully for many years in the industry to produce hydrogen from the reactants water vapor and carbon monoxide. For this study, prototype WGS catalysts were installed in the exhaust tract of the dedicated cylinder of a turbocharged 2.0 L in-line four cylinder MPI engine.
2015-04-14
Technical Paper
2015-01-0873
Bin Mao, Mingfa Yao, Zunqing Zheng, Yongzhi Li, Haifeng Liu, Bowen Yan
Abstract An experimental study is carried out to compare the effects of high-pressure-loop, low-pressure-loop and dual-loop exhaust gas recirculation systems (HPL-EGR, LPL-EGR and DL-EGR) on the combustion characteristics, thermal efficiency and emissions of a diesel engine. The tests are conducted on a six-cylinder turbocharged heavy-duty diesel engine under various operating conditions. The low-pressure-loop portion (LPL-Portion) of DL-EGR is swept from 0% to 100% at several constant EGR rates, and the DL-EGR is optimized based on fuel efficiency. The results show that the LPL-EGR can attain the highest gross indicated thermal efficiency (ITEg) in the three EGR systems under all the tested conditions. At a middle load of 0.95 BMEP, 1660 r/min, the pumping losses of LPL-EGR lead to the lowest BTE among the EGR systems. The HPL-EGR can achieve the best brake thermal efficiency (BTE) and emissions within the EGR rate of 22.5% mainly due to the reduced pumping losses.
2015-04-14
Technical Paper
2015-01-0863
Hideyuki Ogawa, Peilong Zhao, Taiki Kato, Gen Shibata
Abstract Dual fuel combustion with premixed natural gas as the main fuel and diesel fuel as the ignition source was investigated in a 0.83 L, single cylinder, DI diesel engine. At low loads, increasing the equivalence ratio of natural gas to around 0.5 with intake throttling makes it possible to reduce the THC and CO emissions as well as to improve the thermal efficiency. At high loads, increasing the boost pressure moderates the combustion, but increases the THC and CO emissions, resulting in deterioration of the thermal efficiency. The EGR is essential to suppress the rapid combustion. As misfiring occurs with a compression ratio of 14.5 and there is excessively rapid combustion with 18.5 compression ratio, 16.5 is a suitable compression ratio.
2015-04-14
Journal Article
2015-01-0892
Alastair Smith, Rod Williams
Abstract The formation of deposits within injector nozzle holes of common-rail injection fuel systems fitted to modern diesel cars can reduce and disrupt the flow of fuel into the combustion chamber. This disruption in fuel flow results in reduced or less efficient combustion and lower power output. Hence there is sustained interest across the automotive industry in studying these deposits, with the ultimate aim of controlling them. In this study, we describe the use of Scanning Electron Microscopy (SEM) imaging to characterise fuel injector hole deposits at intervals throughout an adaptation of the CEC Direct Injection Common Rail Diesel Engine Nozzle Coking Test, CEC F-98-08 (DW10B test)[1]. In addition, a similar adaptation of a previously published Shell vehicle test method [2] was employed to analyse fuel injector hole deposits from a fleet of Euro 5 vehicles.
Viewing 1 to 30 of 22751

Filter