Criteria

Display:

Results

Viewing 1 to 30 of 22386
Technical Paper
2014-11-11
Andrew Smith, James Howard Lee, Robert Garrick, Daniel Piekarski, Kenneth Krapf, John Bulzacchelli
Compressed Natural Gas (CNG) is rapidly becoming one of the best potential alternatives for replacing traditional gasoline or diesel for engines. Engines burning natural gas can operate nearly identically to traditionally fueled models with only minor changes in engine control and fueling parameters. Natural gas produces fewer emissions and can be run at higher compression ratios without exhibiting pre-detonation due to its high octane number [1]. This investigation examined combustion and exhaust gas emissions of natural gas in a twin cylinder, four-stroke cycle, 750 CC engine. Three rounds of testing were conducted to evaluate the effects of fuel, Exhaust Gas Recirculation (EGR), and Air Fuel Ratio (AFR) on engine emissions. The v-twin engine, a Kohler Command ProCH749 with Electronic Fuel Injection (EFI), was naturally aspirated, fitted with natural gas injectors, external EGR valve, and an increased compression ratio (CR) of 13.8:1. The EGR rates, Revolutions Per Minute (RPM), load, and torque of the engine were varied to investigate the engine's emissions, combustion pressure, and combustion rates through combustion software produced by TFX.
Technical Paper
2014-11-11
Marcus Bonifer, Rainer Kiemel
In Europe the next level of emission regulation for motorcycles, Euro IV, is on the verge of introduction, followed by Euro V around 2021. Together with the new emission regulation the ECE R 40 testing cycle will become obsolete and the more realistic WMTC will be introduced. Current catalytic solutions consist of so called three way catalysts (TWC) that are able to reduce the emissions of CO, NOx and hydrocarbons below the regulatory emission limit. These catalysts mostly contain platinum (Pt), palladium (Pd) and rhodium (Rh) in different relations and concentrations. Another important component is the so-called oxygen storage material (OSC) that is compensating the fluctuations in lambda during acceleration and deceleration. Currently existing catalyst formulations must be modified to fulfil the more stringent emission limits with simultaneous consideration of a more realistic test cycle. In this paper we will present the modification of an existing Euro 3 catalytic formulation for a 690cc motorcycle.
Technical Paper
2014-11-11
Stefano Bernardi, Marco Ferrari, Dario Catanese
Many two stroke engines for hand-held applications are equipped with muffler that contain a catalyst in order to reduce exhaust gas emissions. However, one of the main problems, is to mantain the performances of the catalyst over time; this often leads to the adoption of systems with increased culling oversized issues related to weight , dimensions and temperature . One of the major causes of degradation of the catalyst is derived from elements of poison present in the oil mixture. This study showed the results obtained by comparing different types of oils of mixture, through durability tests carried out on an engine of a brush cutter .
Technical Paper
2014-11-11
Silvana Di Iorio, Francesco Catapano, Paolo Sementa, Bianca Maria Vaglieco, Salvatore Florio, Elena Rebesco, Pietro Scorletti, Daniele Terna
The small gasoline engines are widely used as prime movers in the urban areas. For this reason great efforts have been paid to improve their efficiency as well as to reduce the pollutant emissions. The direct injection allows to improve the engine efficiency; on the other hand, the GDI combustion produces larger particle emissions because of the non-uniform mixture preparation and piston wetting. The properties of fuels play an important role both on engine performance and pollutant emissions. In particular, great attention was paid to the octane number. In this sense, ethanol is becoming even more attractive for spark ignition fuels as more resistant to knock phenomena due to its higher octane number. Moreover, ethanol is also expected to play an important role in PM emission reduction. In this study was analyzed the effect of fuels with different RON and with ethanol content. The analysis was performed on a small GDI engine. It was investigated two operating condition representative of the typical EUDC.
Technical Paper
2014-11-11
Luiz Carlos Daemme, Renato Penteado, Fatima zotin PhD, Marcelo errera PhD
Research and/or Engineering Questions/Objective The motorcycle sales have improved consistently during the last decade mostly in developing and BRICS countries. There are many reasons for it such as their low cost and less fuel consumption comparing to cars, associated to the economic growth on those cited countries. New emissions limits have been reduced and the use of gas after treatment devices is widely present in new models. Additionally Flex Fuel motorcycles have been offered to the market and a combination of diverse gasoline/ethanol blends and their effect on the emissions still an open issue to be fully understood. The objective of the paper is to present recent results regarding regulated and unregulated emissions from a Flex Fuel motorcycle fuelled with 4 different gasoline/ethanol blends. Methodology One motorcycle was fuelled with gasoline blended with 22, 61 and 85% ethanol. Additionally a 100% ethanol fuel was used. Regulated emissions (CO, HC, and NOx) have been measured with 7000 series Horiba benches.
Technical Paper
2014-11-11
Sayaka Yasoshina, Ryo Saito
With environmental issues such as global warming getting acute, the demand of engine exhaust gas emission reduction is increasing. The purpose of this study is the reduction of exhaust gas emissions for small size generators by using after-treatment device. The requirement of small size generators are portability, so they must be lightweight and compact. After-treatment device should be housed in the compact package. And sometimes generators are used near a house, so CO discharge amount should be a little under the condition of fuel rich mixture for high specific power. To meet these conditions, a catalytic converter with secondary air induction is adopted. Secondary air is used for oxidization of CO. However before this study, sufficient amount of secondary air couldn’t be inducted because of the shortage of minus pressure in exhaust pipe which caused by high-load operating and the shortness of an exhaust pipe. But high-load operating is inevitable in generator and adoption of a long exhaust pipe is impossible to compact casing.
Technical Paper
2014-11-11
Jan Czerwinski, Markus Kurzwart, Andreas Mayer, Pierre Comte
The progressing exhaust gas legislation for on- and off-road vehicles includes gradually the nanoparticle count limits. The invisible nanoparticles penetrate like a gas into the living organisms and cause several health hazards. The present paper shows some results of a modern chain saw with & without oxidation catalyst, with Alkylate fuel and with different lube oils. The measurements focused specially on particulate emissions. Particulates were analysed by means of: gravimetry (PM), granulometry SMPS (PN) and differential analysis of filter residue. In this way the reduction potentials with application of the best material were indicated. It has been shown that the particle mass (PM) and the particle numbers (PN), which both consisting almost exclusively of unburned lube-oil, can attain quite high values, but can be considerably influenced by the lube oil quality and reduced with an oxidation catalyst.
Technical Paper
2014-11-11
Juergen Tromayer, Gerd Neumann, Marcus Bonifer, Rainer Kiemel
Looking at upcoming emission legislations for two-wheelers, it is quite obvious that the fulfilment of these targets will become one of the biggest challenges within the engine development process. The gradual harmonization of emission limits for two-wheelers with existing automotive standards will subsequently lead to new approaches regarding mixture preparation and exhaust gas aftertreatment. Referring to these future scenarios, the authors want to demonstrate the possible achievements by the application of state of the art technology to a standard small capacity two-wheeler engine being representative for the current market situation. After choosing a suitable test carrier, which has already been equipped with EFI components including an oxygen sensor for λ=1 operation mode, a basic injection system calibration was used to optimize the combustion process. Based on this setup, a variable exhaust system was manufactured to be able to integrate different catalyst configurations. Thus, the possibility for investigations on the optimization of exhaust gas aftertreatment was given.
Technical Paper
2014-11-11
Saager Paliwal, Alex S. Bare, Katherine J. Lawrence, Marc Anderson, Glenn Bower
This study looks at the application of a titanium dioxide (TiO2) catalytic nanoparticle suspension to the surface of the combustion chamber as a coating, as well as the addition of hydrogen gas to a four-stroke spark-ignited carbureted engine as a possible technique for lowering engine-out emissions. The experiments were conducted on two identical Generac gasoline powered generators using two, four and six halogen work lamps to load the engine. One generator was used as a control and the second had key components of the combustion chamber coated with the catalytic suspension. In addition to the coating, both engines were fed a hydrogen and oxygen gas mixture and tested at low, medium and high loads. Using an unmodified engine as a control set, the following three conditions were tested and compared: addition of hydrogen only, addition of coating only, and addition of hydrogen to the coated engine. Operating the engines on standard gasoline in a laboratory, emission gases were transferred via a heated line to be analyzed by an FTIR.
Technical Paper
2014-10-13
Jing Qin, Xiang Li, Yiqiang Pei
Abstract The aim of this detailed research is to experimentally investigate the effects of ignition timings, injection timings, excess air ratio (λ) and lubricating oil on particulate matter (PM) emissions from a 2.0 L turbo-charged gasoline direct injection (T-GDI) engine fueled with gasoline, methanol/gasoline blends and pure methanol. The results of this paper show that the PM number concentration mostly presents a typical bimodal or trimodal distribution in figures. The particle number concentration mainly concentrates in the nucleation mode. With the increase of methanol volume fraction in the blended fuel, the PM emissions decrease significantly. Furthermore, there are few particles when the engine fueled with pure methanol. As advancing ignition timing, the total PM number rises by over about 200%. Under the pre-ignition condition, the higher in-cylinder temperature may also accelerate the formation of the nucleation mode particles. As advancing injection timing, PM emissions decrease first, and then increase.
Technical Paper
2014-10-13
Jonathan Stewart, Roy Douglas, Alexandre Goguet, Cristina Elena Stere, Luke Blades
Kinetic models are becoming an ever present tool in the development of automotive catalysis, primarily used for characterisation of catalysts and as a predictive tool for performance. This has led to a large number of kinetic models related to automotive catalysis appearing in literature in literature in the past decades. Most kinetic models for automotive application focus primarily on the global kinetic approach for reaction kinetics, with the more chemically accurate micro-kinetics appearing more frequently in the past number of years. One of the most critical aspects in the development of a kinetic model in general is the method used to control the switch between limiting factors over the period of the chemical reaction, namely mass transfer and reaction kinetics. This balance becomes increasingly more critical with the automotive application as the gas composition and gas flow vary throughout the automotive cycles resulting in a large number or reactions competing, with a constantly changing space velocity.
Technical Paper
2014-10-13
Mohammad Reza Hamedi, Athanasios Tsolakis, Jose Martin Herreros
Recent developments in diesel engines lead to increased fuel efficiency and reduced exhaust gas temperature. Therefore more energy efficient aftertreatment systems are required to comply with tight emission regulations. In this study, a computational fluid dynamics package was used to investigate the thermal behaviour of diesel aftertreatment system. A parametric study was carried out to identify the most influential piping material and insulation characteristics in terms of thermal performance. In case of aftertreatment piping and canning material effect, an array of different potential materials was selected and their effects on the emission conversion efficiency of a Diesel Oxidation Catalyst (DOC) were numerically investigated over a driving cycle. Results indicate that although the piping material volumetric heat capacity was decreased by a factor of four, the total emission reduction was only considerable during the cold start. Since the piping system heat up and cool down periods were accelerated by reducing the system thermal inertia.
Technical Paper
2014-10-13
Benjamin Kingsbury, Jonathan Stewart, Zhentao Wu, Roy Douglas, Kang Li
This study describes an innovative monolith structure designed for applications in automotive catalysis using an advanced manufacturing approach developed at Imperial College London. The production process combines extrusion with phase inversion of a ceramic-polymer-solvent mixture in order to design substrate micro-structures that offer improvements in performance, including reduced PGM loading, reduced catalyst ageing and reduced backpressure. The novel substrate is formed from hollow fibres which are fused together to form a ceramic monolith. A highly ordered micro-structure is present, formed from micro-channels which extend from the inner surface to the outer surface of the hollow fibres. The entrances to the micro-channels are in the range of 10 – 90 μm and are directly accessible to the exhaust gas as it passes along the substrate. The designed micro-structure generates a geometric surface area of 32,000 m²/m³, while at the same time achieving a 40-70 % reduction in pressure drop along the length of the substrate.
Technical Paper
2014-10-13
Paul Schaberg, Mark Wattrus
In many countries fuel standards permit the limited addition of FAME to diesel fuel. For example, in Europe, diesel fuel complying with the EN590:2009 regulation may contain up to 7% FAME, and the low carbon fuel standards being considered in many regions encourage the consideration of even higher levels of FAME addition. Standards organisations such as CEN, ASTM, and CARB are also contemplating standards for paraffinic diesel fuels such as GTL (Gas-to-Liquids) diesel and HVO (Hydrogenated Vegetable Oil), an example being CEN Technical Standard 15940:2012. Since these standards may also allow the addition of FAME, it was decided to perform an extensive evaluation of the properties and performance of blends of GTL diesel and FAME, including emissions performance which is reported on in this paper. Fuels that were variously considered in the study were blends of GTL and EN590 diesel containing 0, 7, and 20 vol% of SME and RME (Soy and Rapeseed Methyl Ester). Part of the study focussed on European engine technology, and tests were performed on a Euro 4 passenger vehicle and engine, and a Euro V heavy-duty engine.
Technical Paper
2014-10-13
Bhimrao Patil, Vighnesha Nayak, Mohanan Padmanabha
This work aims study on the method of NOx reduction and performance enhancement by analysis of MPFI multi-cylinder gasoline engine running on LPG using gas injection system and vaporized water methanol induction to the intake manifold. For the generation of vaporized water methanol, heat from the exhaust gas has been used. Different percentages of water methanol by mass basis were used with variable engine speed ranging from 2000 to 4500 rpm. The results showed that as the percentage water methanol induction level to the engine increased, there is slight increase in percentage of useful work, while the NOx decreased drastically about 47%. Additionally, the engine brake thermal efficiency increases. The average increase in the brake thermal efficiency for a 20% water methanol with LPG is approximately 1.5% over the use of LPG without water methanol induction.
Technical Paper
2014-10-13
Z. Gerald Liu, Dana McGuffin, Chris M. Cremeens, Nathan Ottinger, Niklas Schmidt
More stringent emission requirements for nonroad diesel engines both in the U.S. and Europe have spurred the development of exhaust aftertreatment technologies. In this study, one such system consisting of a diesel oxidation catalyst, zeolite-based selective catalytic reduction catalyst, and an ammonia oxidation catalyst was evaluated using both nonroad transient and steady-state cycles in order to understand the emission characteristics of this configuration. Criteria pollutants were analyzed and particular attention was given to organic compound and NO2 emissions since both of these could be significantly affected by the absence of a diesel particulate filter that typically helps reduce semi-volatile and particle-phase organics and consumes NO2 via passive soot oxidation. Results are then presented on a detailed speciation of organic emissions including alkanes, cycloalkanes, aromatics, polycyclic aromatic hydrocarbons and their derivatives, and hopanes and steranes. It is shown that each of these groups of species was reduced significantly in comparison to engine out levels.
Technical Paper
2014-10-13
S. Reifarth, V. Rajagopal, K. Gritzun, H.-E. Angstrom
The distribution of EGR between the cylinders of an internal combustion engine has been shown to have large impact on the engine emissions. Especially at high EGR, the combustion reacts sensibly to variations in the EGR-rate. A cylinder that receives excessive EGR produces soot particles while a cylinder with too little EGR has increased NOx-emission. It is therefore important to have knowledge about the mixing in an engine. This study compares two different EGR-mixing measurement methods. The first is based on CO2 measurement with standard probes, placed at 36 different locations in the intake manifold of the engine. The second method uses a laser beam and a detector to gain information about the mixing with a high time-resolution, placed at six positions of the intake manifold. Additionally, 1-D simulations are used to gain information about the mixing process. To vary the mixing process on the engine, two different air/EGR mixers are used and their mixing performance is evaluated.
Technical Paper
2014-10-13
Andrew Smallbone, Amit Bhave, Peter Man
In this paper we combine experimental data, physics-based models and advanced numerical techniques to investigate 1) sources of friction losses in heavy-duty IC engines and, 2) fuel efficiency losses (and CO2 sources) in an engine and vehicle model over 160 ‘real-world’ and legislated drive cycles. These two applications are both typical examples where a multi-dimensional design space means that it is challenging to interpret and communicate the influence of each design parameter effectively and identify those of most importance for your chosen objective. In this paper, the authors present new methods to support a) the parameter estimation (model calibration) with respect to experimental data and, b) advanced global sensitivity analysis using a High Dimensional Model Representation (HDMR).
Technical Paper
2014-10-13
Xinyu Wang, Yadong Deng
Automotive exhaust-based thermoelectric generators (TEGs) effectively convert exhaust heat into electrical energy, which gradually improve utilization efficiency of the fuel. In this paper, a newly heat exchanger with the shape of regular-octagon cylinder box in TEG is designed. Through building three-dimensional models of different TEGs , it is available to calculate thermal stress field distribution of them separately in ANSYS software and test the reliability of expected TEG .By conducting multi -ordered temperature - fluid - solid coupling of heat exchanger in FLUENT software , adopting different heat exchanger structures, setting different parameters of length, width, height, thickness of the distributing fins, guiding fins, converging fins in the heat exchanger, and installing different distribution angles and spacing of these fins, the temperature field, pressure field and flow field simulation results are gained to explore the influence of air current resistance and the thermal performance of TEG caused by diverse heat exchanger structures and various physical-dimension and distribution of the fins.
Technical Paper
2014-10-13
S. Reifarth, E. Kristensson, J. Borggren, A. Sakowitz, H.-E. Angstrom
The use of EGR for NOX reduction is today a standard technology for diesel engines. The mixing of air and EGR is an important issue, especially for high-pressure EGR systems. An uneven distribution of EGR between the cylinders can lead to higher overall engine emissions when some cylinders produce more soot, others more NOX than they would with a perfectly even distribution. It is therefore important to understand the processes that control the mixing between air and EGR. The mixing is influenced by both the geometry of the mixing area and the pulsating nature of the flow. The aim of this work is to point out the high importance of the pulses present in the EGR-flow. By simulation in 1-D and 3-D as well as by a fast measurement method, it is shown that the EGR is transported in the air flow in packets. This implies that the timing between intake valve opening and the positioning of the EGR packets has a high influence of the distribution of EGR between the cylinders. The ability of 1-D and 3-D simulation to predict the behavior is evaluated.
Technical Paper
2014-10-13
Aayush Mehrotra, Simhachalam Juttu, Siva Subramanian Ravishankar, Ghodke Pundlik Rambhaji, J G Suryawanshi
Cooling EGR & improving its mixing with air has given consistent improvement in diesel emissions, hence the evolution of superior cooling technologies & low pressure EGR helps in meeting stringent diesel emission norms. For the same volume of exhaust gas, cooled exhaust gas occupies lower volume for the same mass; thereby it is possible for engine to digest more amount of EGR or air depending upon the trade off and substantially improve the heat carrying capacity of exhaust gas. Lowering the temperature of EGR gives a great potential in reducing NOx and smoke in diesel engines, it helps in lowering the EGR mixture temperature and hence reducing the in cylinder temperature. An attempt has been made here to lower the EGR temperature downstream of a conventional cooler without changing the cooler design itself. For this, the source for coolant has been taken from radiator outlet unlike the conventional location of cylinder block. A 12 V electric pump circulates coolant to EGR cooler with a bypass from radiator; since the radiator outlet is much cooler than cylinder block outlet the cooling efficiency increases significantly.
Technical Paper
2014-10-13
Qian Feng, Diming Lou, Piqiang Tan, Zhiyuan Hu
In this study, durability and performance evaluation of the ageing catalyzed continuously regenerating trap (CCRT) on solid and volatile particulate emissions from urban diesel bus was studied by means of a set of on board measurement, transient TSI engine exhaust particle sizer spectrometer. During fourteen months, the CCRT had successfully reached self-regeneration. Three typical urban bus operating conditions, idling, stepped steady and transient conditions were carried out on-real world tests. In all evaluation tests, the average filtration efficiency of particle number was 93.3% at least under idling and stepped steady conditions. The CCRT of different ageing phase had different effect on nuclei mode particle. As the CCRT aging increase, the total particle number concentrations showed a declining trend while proportion of nuclei mode number concentration presented rising trend increasingly. This’s mainly due to the development of filtration mechanism: deep bed filtration, transitory and granular bed filtration.
Technical Paper
2014-10-13
Chunxing Lin, Brian Hillman, Andrew Williams
Stringent IC engine PM emission regulation requires development of future filter substrate materials to achieve high filtration efficiency, low filter pressure drop, low cost and highly durable solutions. Monolithic wall flow filters perform well as they achieve high filtration efficiency due to the formation of the PM cake structure while maintaining low substrate face velocities due to the large filtration area. Within the process industry, MicroporeTM slotted metallic membrane filters offer both large surface areas and low filter pressure drops while maintaining the durability of metal substrates. The pore structure and pore arrangement can be readily tailored to suit specific applications. This paper characterizes a 300 μm thickness MicroporeTM metallic membrane with slots of 10 μm by 400 μm in size in the context of application as an engine exhaust particulate filter. The investigation was based on single layer of MicroporeTM slotted metallic membrane with size of 52 mm in diameter.
Technical Paper
2014-10-13
Tao Tang, Jun Zhang, Shi-jin Shuai, Dongxiao Cao
Selective catalytic reduction (SCR) has been demonstrated as one of the most promising technologies to reduce NOx emissions from heavy-duty diesel engines. To meet the Euro VI regulations, the SCR system should achieve high NOx reduction efficiency even at low temperature. In the SCR system, NH3 is usually supplied by the injection of urea water solution (UWS), therefore it is important to improve the evaporation and decomposition efficiency of UWS at low temperature and minimize urea deposits. In this study, the UWS spray, urea decomposition, and the UWS impingement on pipe wall at low temperature were investigated based on an engine test bench and computational fluid dynamics (CFD) code. The decomposition of urea and deposits was analyzed using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR). The TGA experiment shows that urea decomposition started at about 150℃, and exhibited two stages of rapid mass loss.
Technical Paper
2014-10-13
Kihyung Joo, Jin Woo Park, Jin-ha Lee, Seok-Jae Kim, Seungbeom Yoo
In diesel engine development, the new technology is coming out to meet the stringent exhaust emission regulation. The regulation demands more eco-friendly vehicles. Euro6c demands to meet not only WLTP mode, but also RDE(Real Driving Emission). In order to satisfy RDE mode, the new technology to reduce emissions should cover all operating areas including High Load & High Speed. It is a big challenge to reduce NOx on the RDE mode and a lot of DeNOx technologies are being developed. So the new DeNOx technology is needed to cover widened operating area and strict acceleration/deacceleration. The existing LNT(Lean NOx Trap) and Urea SCR(Selective Catalytic Reduction) is necessary to meet the typical NEDC or WLTP, but the RDE mode demands the powerful DeNOx technology. Therefore, the LNT & Urea SCR on DPF was developed through this study. This complex new technology consists of new catalysts(to reduce emissions), insulation(to improve fuel economy, and catalytic performance) , and logical controller(to control DeNOx and DePM strategy).
Technical Paper
2014-10-13
Kohei Yoshida, Yusuke Nozaki, Toshihiro Mori, Yuki Bisaiji, Yuki Haba, Kazuhiro Umemoto, Takao Fukuma
To fulfill upcoming stringent worldwide CO2 emission target, engine thermal efficiency should further be increased and diesel engine is one of the promising solutions. Nevertheless to ensure good air quality, NOx emission should be reduced using a specific catalyst. In order to reduce NOx from a diesel engine operation in lean condition, Urea-Selective Catalyst Reduction (SCR) or NOx Storage and Reduction (NSR) systems have been widely adopted in the European market. The NSR system is most efficient for small/mid vehicle size since it requires less packaging space and it is less expensive than a urea SCR system. However, its NOx reduction performance is currently limited under high temperature and high space velocity conditions since the NOx storage ability as nitrate is insufficient under such conditions. For future NSR usage, it is therefore necessary to improve the NOx reduction performance of NSR. DiAir (Diesel NOx After-treatment by Adsorbed Intermediate Reductants) has been introduced as one of the measures to improve NOx conversion performance under high space velocity (SV) and temperature conditions.
Technical Paper
2014-10-13
Andrew Pedlow, Geoffrey McCullough, Alexandre Goguet, Ken Hansen
Pedlow, A1). McCullough1), G. Goguet, A2). 1) School of Mechanical and Aerospace Engineering, Queen's University Belfast 2) School of Chemistry and Chemical Engineering, Queen's University Belfast Pedlow, A. Email: apedlow01@qub.ac.uk, Tel.: +4428 9097 4569 Mathematical modelling has become an essential tool in the design of modern catalytic systems. Emissions legislation is becoming increasingly stringent, meaning that mathematical models of after-treatment systems must become more accurate in order to provide confidence that a catalyst will convert pollutants over the required range of conditions in order to meet legislated limits. Automotive Catalytic converter models contain several sub-models that represent processes such as mass and heat transfer, and the rates at which the reactions proceed on the surface of the precious metal. Of these sub-models, the prediction of the surface reaction rates is by far the most challenging due to the complexity of the reaction system and the large number of gas species involved.
Technical Paper
2014-10-13
Kristin Götz, Anja Singer, Olaf Schröder, Christoph Pabst, Axel Munack, Jürgen Bünger, Jürgen Krahl
The political and economic major aim in Europe is the increase of the use of renewable energy resources up to 10 % till 2020. This means a reduction in crude oil dependency. Already well known in diesel fuel area are fatty acid methyl esters, named biodiesel. However, this biogenic component has not only advantages, as a further raise of the amount of biodiesel content in diesel fuel higher than seven percent can lead to an increase of the engine oil dilution in passenger cars with diesel particulate filters. Because of the regeneration of the particulate filters, the entry of fuel components increases. This may induce sludge formation in the engine oil. A promising approach to reduce this problem is a new type of biogenic fuel, called HVO (hydrotreated vegetable oil). This is also produced from vegetable oil or animal fat and it is chemically quite similar to fossil diesel fuel. Like biodiesel, HVO is free of sulfur or any aromatics. HVO has a higher cetane number in comparison to biodiesel and most diesel fuels.
Technical Paper
2014-10-13
Jonathan Stewart, Andrew Woods, Roy Douglas, Richard O’Shaughnessy
With emission legislation becoming ever more stringent, automotive companies are forced to invest heavily in solutions to meet the targets set. To date, the most effective way of treating emissions is through the use of catalytic converters. Since the introduction of these converters as the main method of reducing automotive emissions, catalyst performance testing has become a major part of automotive research and development. One of the most critical aspects of the performance testing process is catalyst ageing. Legislation has been introduced stating that catalytic converters must meet the set emissions standards legislation up to a lifetime of 150,000 miles (LEV 2014-2022). The catalytic converter will deactivate over its lifetime due to a number of different factors, such as, thermal deactivation, poisoning, fouling and structural breakdown of the catalyst. It is therefore of the utmost importance for automotive companies to evaluate the performance of the catalytic converters under these conditions.
Technical Paper
2014-10-13
Amar Deep, Naveen Kumar, Ashish Karnwal, Dhruv Gupta, Vipul Vibhanshu, Abhishek Sharma, Jitesh Singh Patel
The interest of using alternative fuels in diesel engines has been accelerated exponentially due to a foreseen scarcity in world petroleum reserves, increase in the prices of the conventional fossil fuels and restrictions on exhaust emissions such as greenhouse gases from internal combustion (IC) engines initiated by environmental concerns. The constant trade-off between efficiency and emissions should be in proper balance with the conventional fuels in a fuel design process for future combustors. Unlike gasoline and diesel, alcohols act as oxygenated fuels. Adding alcohols to petroleum products allows the fuel to combust properly due to the presence of oxygen, which enhances premixed combustion phase, improves the diffusive combustion phase which increases the combustion efficiency and reduces air pollution. The higher activation energy of alcohols leads to better resistance to engine knocking that allows higher compression ratios and greater engine thermal efficiencies. Direct use of alcohol/diesel fuel blends is one of the most interesting possibilities because of their lower viscosity and similar physio-chemical properties to mineral diesel; most importantly, prior modifications on diesel engine are not required.
Viewing 1 to 30 of 22386

Filter

  • Article
    1052
  • Book
    74
  • Collection
    38
  • Magazine
    497
  • Technical Paper
    20114
  • Standard
    611
  • Article
    611