Criteria

Display:

Results

Viewing 1 to 30 of 1148
2017-03-28
Technical Paper
2017-01-0638
Neerav Abani, Nishit Nagar, Rodrigo Zermeno, Michael chiang, Isaac Thomas
Abstract Heavy-duty vehicles, currently the second largest source of fuel consumption and carbon emissions are projected to be fastest growing mode in transportation sector in future. There is a clear need to increase fuel efficiency and lower emissions for these engines. The Opposed-Piston Engine (OP Engine) has the potential to address this growing need. In this paper, results are presented for a 9.8L three-cylinder two-stroke OP Engine that shows the potential of achieving 55% brake thermal efficiency (BTE), while simultaneously satisfying emission targets for tail pipe emissions. The two-stroke OP Engines are inherently more cost effective due to less engine parts. The OP Engine architecture presented in this paper can meet this performance without the use of waste heat recovery systems or turbo-compounding and hence is the most cost effective technology to deliver this level of fuel efficiency.
2017-03-28
Technical Paper
2017-01-0914
Mengchao Zhang
Abstract Since diesel engines have higher thermal efficiency, superior power capability and better fuel economy than gasoline engines, diesel engines are widely used in vehicles, construction machineries and agricultural machineries. However, they emit more hazardous pollutants than gasoline engines, especially particulate emissions, which have negative impacts on human’s health and air quality in cities. In order to meet future increasingly stringent regulations for particulate emissions, exhaust gas aftertreatment technologies for diesel engines are essential. Particulate emissions from a heavy-duty diesel engine which meets the China national V emission regulation were studied, and the engine was equipped with/without diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF) and selective catalytic reduction (SCR). The fuel used in this article is ultra low sulfur diesel fuel whose sulfur content is less than 10 ppm.
2017-03-28
Technical Paper
2017-01-0778
Vishnu Vijayakumar, P. Sakthivel, Bhuvenesh Tyagi, Amardeep Singh, Reji Mathai, Shyam Singh, Ajay Kumar Sehgal
Abstract In the light of major research work carried out on the detrimental health impacts of ultrafine particles (<50 nm), Euro VI emission standards incorporate a limit on particle number, of which ultrafine particles is the dominant contributor. As Compressed Natural Gas (CNG) is a cheaper and cleaner fuel when compared to diesel, there has been a steady increase in the number of CNG vehicles on road especially in the heavy duty segment. Off late, there has been much focus on the nature of particle emissions emanating from CNG engines as these particles mainly fall under the ultrafine particle size range. The combustion of lubricant is considered to be the dominant source of particle emissions from CNG engines. Particle emission due to lubricant is affected by the oil transport mechanisms into the combustion chamber which in turn vary with engine operating conditions as well as with the physico chemical properties of the lubricant.
2017-03-28
Journal Article
2017-01-0951
Paul Mentink, Xander Seykens, Daniel Escobar Valdivieso
Abstract To meet future emission targets, it becomes increasingly important to optimize the synergy between engine and aftertreatment system. By using an integrated control approach minimal fluid (fuel and DEF) consumption is targeted within the constraints of emission legislation during real-world operation. In such concept, the on-line availability of engine-out NOx emission is crucial. Here, the use of a Virtual NOx sensor can be of great added-value. Virtual sensing enables more direct and robust emission control allowing, for example, engine-out NOx determination during conditions in which the hardware sensor is not available, such as cold start conditions. Furthermore, with use of the virtual sensor, the engine control strategy can be directly based on NOx emission data, resulting in reduced response time and improved transient emission control. This paper presents the development and on-line implementation of a Virtual NOx sensor, using in-cylinder pressure as main input.
2017-03-28
Journal Article
2017-01-0954
Christopher Sharp, Cynthia C. Webb, Gary Neely, Michael Carter, Seungju Yoon, Cary Henry
Abstract The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
2017-03-28
Journal Article
2017-01-0956
Christopher Sharp, Cynthia C. Webb, Seungju Yoon, Michael Carter, Cary Henry
Abstract The 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, the California Air Resource Board (ARB) projects that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter (PM) and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
2017-03-28
Technical Paper
2017-01-0957
Ian Smith, Thomas Briggs, Christopher Sharp, Cynthia Webb
Abstract It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
2017-03-28
Journal Article
2017-01-0958
Christopher Sharp, Cynthia C. Webb, Gary Neely, Jayant V. Sarlashkar, Sankar B. Rengarajan, Seungju Yoon, Cary Henry, Bryan Zavala
Abstract Recent 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, CARB has projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (ARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions. This paper details engine and aftertreatment NOX management requirements and model based control considerations for achieving Ultra-Low NOX (ULN) levels with a heavy-duty diesel engine. Data are presented for several Advanced Technology aftertreatment solutions and the integration of these solutions with the engine calibration.
2017-03-28
Technical Paper
2017-01-0091
Songyao Zhou, Gangfeng Tan, Kangping Ji, Renjie Zhou, Hao Liu
Abstract The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
2017-03-28
Technical Paper
2017-01-0135
Jose Grande, Julio Abraham Carrera, Manuel Dieguez Sr
Abstract Exhaust Gas Recirculation (EGR) is an effective technique for reducing NOx emissions in order to achieve the ever more stringent emissions standards. This system is widely used in commercial vehicle engines in which thermal loads and durability are a critical issue. In addition, the development deadlines of the new engine generations are being considerably reduced, especially for validation test phase in which customers usually require robust parts for engine validation in the first stages of the project. Some of the most critical issues in this initial phases of program development are heavy boiling and thermal fatigue. Consequently it has been necessary to develop a procedure for designing EGR coolers that are sufficiently robust against heavy boiling and thermal fatigue in a short period of time, even when the engine calibration is not finished and the working conditions of the EGR system are not completely defined.
2017-03-28
Technical Paper
2017-01-0611
Viktor Leek, Kristoffer Ekberg, Lars Eriksson
1 ABSTRACT Today’s need for fuel efficient vehicles, together with increasing engine component complexity, makes optimal control a valuable tool in the process of finding the most fuel efficient control strategies. To efficiently calculate the solution to optimal control problems a gradient based optimization technique is desirable, making continuously differentiable models preferable. Many existing control-oriented Diesel engine models do not fully posses this property, often due to signal saturations or discrete conditions. This paper offers a continuously differentiable, mean value engine model, of a heavy-duty diesel engine equipped with VGT and EGR, suitable for optimal control purposes. The model is developed from an existing, validated, engine model, but adapted to be continuously differentiable and therefore tailored for usage in an optimal control environment. The changes due to the conversion are quantified and presented.
2017-03-28
Journal Article
2017-01-0695
Ezio Spessa, Stefano D'Ambrosio, Daniele Iemmolo, Alessandro Mancarella, Roberto Vitolo, Gilles Hardy
Abstract In the present work, different combustion control strategies have been experimentally tested in a heavy-duty 3.0 L Euro VI diesel engine. In particular, closed-loop pressure-based and open-loop model-based techniques, able to perform a real-time control of the center of combustion (MFB50), have been compared with the standard map-based engine calibration in order to highlight their potentialities. In the pressure-based technique, the instantaneous measurement of in-cylinder pressure signal is performed by a pressure transducer, from which the MFB50 can be directly calculated and the start of the injection of the main pulse (SOImain) is set in a closed-loop control to reach the MFB50 target, while the model-based approach exploits a heat release rate predictive model to estimate the MFB50 value and sets the corresponding SOImain in an open-loop control. The experimental campaign involved both steady-state and transient tests.
2017-03-28
Technical Paper
2017-01-1400
Keyu Qian, Gangfeng Tan, Renjie Zhou, Binyu Mei, Wanyang XIA
Abstract Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
2017-03-28
Technical Paper
2017-01-1000
Jong Lee, Yu Zhang, Tom Tzanetakis, Michael Traver, Melanie Moses-DeBusk, John Storey, William Partridge, Michael Lance
Abstract Greenhouse gas regulations and global economic growth are expected to drive a future demand shift towards diesel fuel in the transportation sector. This may create a market opportunity for cost-effective fuels in the light distillate range if they can be burned as efficiently and cleanly as diesel fuel. In this study, the emission performance of a low cetane number, low research octane number naphtha (CN 34, RON 56) was examined on a production 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using only production hardware, both the engine-out and tailpipe emissions were examined during the heavy-duty emission testing cycles using naphtha and ultra-low-sulfur diesel (ULSD) fuels. Without any modifications to the hardware and software, the tailpipe emissions were comparable when using either naphtha or ULSD on the heavy duty test cycles.
2017-01-10
Technical Paper
2017-26-0230
Timothy Dallmann, Zhenying Shao, Aparna Menon, Anup Bandivadekar
Abstract Diesel engines used in non-road vehicles and equipment are a significant source of pollutant emissions that contribute to poor air quality, negative human health impacts, and climate change. Efforts to mitigate the emissions impact of these sources, such as regulatory control programs, have played a key role in air quality management strategies around the world, and have helped to spur the development of advanced engine and emission control technologies. As non-road engine emissions control programs are developed in a growing number of countries around the world, it is instructive to look at the development of programs in two of the regions that have progressed furthest in controlling emissions from non-road engines, the United States (U.S.) and European Union (EU).
2017-01-10
Technical Paper
2017-26-0234
Arun Narayanan, Sagar Bhojne
Abstract In Earth Moving Machines, performance of an attachments play crucial role in determining the machine performance. Application of the machine is one of the main factors to be considered for bucket design. Different types of buckets are offered in the market to suit the particular application. Trenching, digging, moving loose material are some of the operations done with the backhoe bucket. While operating in these areas bucket handles intact soil, granules, loose rocks etc. Properties of these materials play important role in bucket design methodology. In this paper efforts are made towards understanding the properties of soil along with soil failure mechanism and utilizing these inputs to design a backhoe bucket for better machine productivity. Mathematical modeling and Discrete Element Modeling (DEM) are the tools used for design and validation of this work.
2017-01-10
Technical Paper
2017-26-0032
Anuroopa Varsha, Andreas Rainer, Prabhu Santiago, Ramdas Umale
Abstract Modern day diesel engines use systems like Exhaust Gas Recirculation (EGR), Variable Geometric Turbo Charger (VGT), inlet throttle for air regulation, multiple injection strategies, high pressure rail systems for fuel regulation to optimize the combustion for meeting the strict emission and fuel consumption demands. Torque based ECU structures which are commonly used for diesel engines require a large amount of calibration work. Conventional manual methods for emission and fuel consumption optimization (Full factorial or Line search method) results in increased test bed usage and it is almost impossible to use these methods as the number of parameters to optimize are very high. The conventional DoE tests have been limited by the necessity of calibration engineer’s expertise and manual prescreening of test points to be within thermal & mechanical limits of engine systems. This subsequently leads to excessive screening of variables; which is time consuming.
2017-01-10
Technical Paper
2017-26-0120
Kevin Hallstrom, Sandip D. Shah
Abstract The legislative decision to accelerate the implementation of regulations requiring advanced emissions control in India have accelerated the need to advanced emissions control systems. Particulate filters and NOx abatement technology will be needed to meet the new BSVI standards. Integration of these emission control technologies into engine design poses new challenges to the Indian Heavy Duty Diesel Truck Industry. Each new market that implements advanced emission regulations faces challenges that are unique to the local regulation, the local vehicle design, and the local operating conditions. This paper will review the technology options available for BSVI, their strengths and weaknesses, and potential system designs. Additionally this paper will review how critical design factors such as filter regeneration conditions, duty cycle temperatures, and urea injection can affect the system design and catalyst selection.
2017-01-10
Technical Paper
2017-26-0118
Satoshi Sumiya, David Bergeal, Kenan Sager
Abstract The Indian government has announced that India will skip BS V legislation and move to BS VI from 2020. In order to meet this NOx emission standard, most vehicles will need to adopt either NOx Storage Catalyst (NSC) or Selective Catalytic Reduction (SCR). It is shown that these two devices have different NOx reduction temperature windows and different sulfur tolerance. In the LDD application, it is highly important to deal with NOx in the low temperature region directly after a cold start. NSC works in this region with better performance than SCR, but its sulfur tolerance is weaker than SCR. To improve the weakness in low temperature NOx control on SCR, SCRF® which is SCR coated Diesel Particulate Filter (DPF) was developed and it demonstrated an advantage in light-off performance, due to the advantage in temperature conditions, by minimizing heat loss upstream of the SCR device.
2017-01-10
Technical Paper
2017-26-0124
Vikram Betageri, R Mahesh
Abstract BS VI or Euro VI Norms mandates the RDE emission compliance for the diesel commercial vehicles. Development of the engine- after treatment system for meeting these requirements needs a greater insight into the emission behavior of the vehicle under current norms i.e. BS IV and Euro V. In other words, quantifying the on road emission of current vehicle will be helpful in developing engine/vehicle for RDE emission compliance. In the current study, the focus is on the assessment of real road NOx emission of a BS IV and Euro V complaint diesel commercial vehicle. The real road emissions of vehicle have been quantified using the onboard NOx sensor mounted on the after treatment system outlet along with a validated exhaust gas model developed and parameterized in engine control unit. The real road NOx emissions were compared with the test bench emissions for various conditions.
2017-01-10
Technical Paper
2017-26-0284
Anand Subramaniam, Ravindra Shah, Swapnil Ghugal, Ujjwala Shailesh Karle, Anand Deshpande
Abstract On-board diagnostics (OBD) is a term referring to a vehicle's self-diagnostic and reporting capability. It is a system originally designed to reduce emissions by monitoring the performance of major emission related components. There are two kinds of on-board diagnostic systems: OBD-I and OBD-II. In India OBD I was implemented from April 2010 for BS IV vehicles. OBD II was implemented from April 2013 for BS IV vehicles. Apart from the comprehensive component monitors, OBD II system also has noncontinuous monitors like Catalyst monitoring, Lambda monitoring, and other after treatment system monitors. For OBD II verification and Validation, it is required to test all the sensors and actuators that are present in the engine, for all possible failures. From an emissions point of view there are lists of critical failures that are caused due to malfunction of sensors and actuators.
2017-01-10
Technical Paper
2017-26-0128
Om Parkash Bhardwaj, Ketan Krishnamurthy, David Blanco-Rodriguez, Bastian Holderbaum, Thomas Körfer
Abstract Despite the trend in increased prosperity, the Indian automotive market, which is traditionally dominated by highly cost-oriented producion, is very sensitive to the price of fuels and vehicles. Due to these very specific market demands, the U-LCV (ultra-light commercial vehicle) segment with single cylinder natural aspirated Diesel engines (typical sub 650 cc displacement) is gaining immense popularity in the recent years. By moving to 2016, with the announcement of leapfrogging directly to Bharat Stage VI (BS VI) emission legislation in India, and in addition to the mandatory application of Diesel particle filters (DPF), there will be a need to implement effective NOx aftertreament systems. Due to the very low power-to-weight ratio of these particular applications, the engine operation takes place under full load conditions in a significant portion of the test cycle.
2017-01-10
Technical Paper
2017-26-0043
Peter Heuser, Stefano Ghetti, Devising Rathod, Sebastian Petri, Sascha Schoenfeld
Abstract The Bharat Stage VI (BS-VI) emission legislation will come into force in 2020, posing a major engineering challenge in terms of system complexity, reliability, cost and development time. Solutions for the EURO VI on-road legislation in Europe, from which the BS-VI limits are derived, have been developed and have already been implemented. To a certain level these European solutions can be transferred to the Indian market. However, several market-specific challenges are yet to be defined and addressed. In addition, a very strict timeline has to be considered for application of advanced technologies and processes during the product development. In this paper, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the exhaust aftertreatment side. This includes boosting and fuel injection technologies as well as different exhaust gas recirculation methods.
2017-01-10
Technical Paper
2017-26-0125
Sougato Chatterjee, Mojghan Naseri, Jianquan Li
Abstract The next generation advanced emission regulations have been proposed for the Indian heavy duty automotive industry for implementation from 2020. These BS VI emission regulations will require both advanced NOx control as well as advanced PM (Particulate Matter) control along with Particle Number limitations. This will require implementation of full DPF (Diesel Particulate Filter) and simultaneous NOx control using SCR technologies. DPF technologies have already been successfully implemented in Euro VI and US 10 HDD systems. These systems use low temperature NO2 based passive DPF regeneration as well as high temperature oxygen based active DPF regeneration. Effective DPF and DOC designs are essential to enable successful DPF regeneration (minimize soot loading in the DPF) while operating HDD vehicles under transient conditions. DOC designs are optimized to oxidize engine out NO into NO2, which helps with passive DPF regeneration.
2017-01-10
Journal Article
2017-26-0056
Suramya Naik, David Johnson, Laurence Fromm, John Koszewnik, Fabien Redon, Gerhard Regner, Neerav Abani
Abstract The government of India has decided to implement Bharat Stage VI (BS-VI) emissions standards from April 2020. This requires OEMs to equip their diesel engines with costly after-treatment, EGR systems and higher rail pressure fuel systems. By one estimate, BS-VI engines are expected to be 15 to 20% more expensive than BS-IV engines, while also suffering with 2 to 3 % lower fuel economy. OEMs are looking for solutions to meet the BS-VI emissions standards while still keeping the upfront and operating costs low enough for their products to attract customers; however traditional engine technologies seem to have exhausted the possibilities. Fuel economy improvement technologies applied to traditional 4-stroke engines bring small benefits with large cost penalties. One promising solution to meet both current, and future, emissions standards with much improved fuel economy at lower cost is the Opposed Piston (OP) engine.
2017-01-10
Journal Article
2017-26-0053
Sumit Rawat, Kumar Patchappalam, Abhijit Sahare
Abstract BSIV implementation for commercial vehicle in pans India effectively from April 2017. It’s very challenging job for performance and emission engineer to meet engine performance & fuel economy with stringent emission norms for high power and torque density HD diesel engine. In Altitude, lack of air availability & combustion energy passes by mechanical waste gate, lead to lower boost at partial load in waste gate region; which in turn leads to poor engine performance & fuel efficiency and higher turbo speed. To control the turbocharger design speed limit various methodologies adopted like engine derating or optimizing the combustion parameters leads to poor vehicle performance. Combustion parameter optimsation is having limited scope for turbocharger speed control.
2017-01-10
Journal Article
2017-26-0119
Ragupathi Soundara Rajan, Vijay Sharma, Ashraf Emran, Devising Rathod, John Henry Kwee, Thorsten Michaelis-Hauswaldt, Thomas Körfer
Abstract The emission legislations are becoming increasingly strict all over the world and India too has taken a big leap in this direction by signaling the migration from Bharat Stage 4 (BS 4) to BS 6 in the year 2020. This decision by the Indian government has provided the Indian automotive industry a new challenge to find the most optimal solution for this migration, with the existing BS 4 engines available in their portfolio. Indian market for the LCV segment is highly competitive and cost sensitive where the overall vehicle operation cost (vehicle cost + fluid consumption cost) is the most critical factor. The engine and after-treatment technology for BS 6 emission levels should consider the factors of minimizing the additional hardware cost as well as improving the fuel efficiency. Often both of which are inversely proportional. The presented study involves the optimization of after treatment component size, layout and various systems for NOx and PM reduction.
2017-01-10
Journal Article
2017-26-0116
Mahesh Govindareddy, Achim Heibel
Abstract With Bharat Stage VI (BSVI) regulations on the horizon [3],[4]tighter particulate matter (PM) regulations will require the use of wall flow diesel particulate filters for on-road heavy duty (HD) diesel engines in India. The Indian HD vehicle market is very cost sensitive, especially with the majority of engine displacement being less than 7L [5] therefore, after treatment cost plays a significant role in design of the system. Robust wall flow diesel particulate filter solutions with the ability to deliver high filtration requirements required for particle number regulations can be designed in a cost-efficient manner. In this paper advanced design for diesel particulate filters with pressure drop, ash capacity, regeneration, and filtration performance are discussed. Corning’s asymmetric cell technology (ACT) was created to improve ash capacity and reduce pressure drop and has the potential to downsize up to 45%.
2016-10-25
Technical Paper
2016-36-0153
Bernardo Luiz Harry Diniz Lemos, Eduardo Abreu Salomão, Matheus Philipe Ribeiro Viana, Rogério Jorge Amorim
Abstract Two-stroke engines are used in several purposes, such as lawn mowers, chainsaws, power generators and for motorcycles in some dirt tracks competitions. In addition, small Wankel engines are used in snowmobiles, motorized paragliders and range extenders. Both types of engines are known for the great power produced per displacement, ideal for the purposes aforementioned, but its bigger emissions due to lubricating oil mixed with fossil fuels, such as gasoline, do not pass legislation's standards, which limits their use. In order to reduce emissions, tests with ethanol and castor oil, eco-friendly fuel and lubricant, respectively, will be presented to adequate these organic compounds to the engine's operation.
2016-10-25
Technical Paper
2016-36-0167
Fábio Coelho Barbosa
Abstract Emissions from motor vehicles have been a subject of concern in urban areas, as great amounts of population have been permanently exposed to large amounts of pollutants, with intrinsic adverse health effects. In this context, in the last two decades, stringent emissions standards have been developed to control the maximum emission limits of the so called regulated pollutants. This continuous reduction of emission targets has imposed a great effort to engine and vehicle manufacturer in the development of technological solutions for emission limits compliance, which can be done by reducing engine-out emissions through improvements in combustion process and fuel management system, as well as by using aftertreatment devices in the exhaust system.
Viewing 1 to 30 of 1148