Criteria

Text:
Topic:
Display:

Results

Viewing 181 to 210 of 21875
2017-03-28
Journal Article
2017-01-0598
Mohammad Reza Amini, Meysam Razmara, Mahdi Shahbakhti
Electronic throttle control is an integral part of an engine electronic control unit (ECU) that directly affects vehicle fuel economy, drivability, and engine-out emissions by managing engine torque and air-fuel ratio through adjusting intake charge flow to the engine. The highly nonlinear dynamics of the throttle body call for nonlinear control techniques that can be implemented in real-time and are also robust to controller implementation imprecision. Discrete sliding mode control (DSMC) is a computationally efficient controller design technique which can handle systems with high degree of nonlinearity. In this paper, a generic robust discrete sliding mode controller design is proposed and experimentally verified for the throttle position tracking problem. In addition, a novel method is used to predict and incorporate the sampling and quantization imprecisions into the DSMC structure. First, a nonlinear physical model for an electromechanical throttle body is derived.
2017-03-28
Journal Article
2017-01-0596
Vittorio Ravaglioli, Federico Stola, Matteo De Cesare, Fabrizio Ponti, Stefano Sgatti
Abstract Upcoming more stringent emission regulations throughout the world pose a real challenge, especially in regard to Diesel systems for passenger cars, where the need of additional after-treatment has a big impact in terms of additional system costs and available packaging space. Therefore, the need for strategies that allow managing combustion towards lower emissions, that require a precise control of the combustion outputs, is definitely increasing. Acoustic emission of internal combustion engines contains a large amount of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. In particular, recent research from the same authors of this paper demonstrated that combustion noise can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy.
2017-03-28
Journal Article
2017-01-0587
Cetin Gurel, Elif Ozmen, Metin Yilmaz, Didem Aydin, Kerem Koprubasi
Abstract Emissions and fuel economy optimization of internal combustion engines is becoming more challenging as the stringency of worldwide emission regulations are constantly increasing. Aggressive transient characteristics of new emission test cycles result in transient operation where the majority of soot is produced for turbocharged diesel engines. Therefore soot optimization has become a central component of the engine calibration development process. Steady state approach for air-fuel ratio limitation calibration development is insufficient to capture the dynamic behavior of soot formation and torque build-up during transient engine operation. This paper presents a novel methodology which uses transient maneuvers to optimize the air-fuel ratio limitation calibration, focusing on the trade-off between vehicle performance and engine-out soot emissions. The proposed methodology features a procedure for determining candidate limitation curves with smoothness criteria considerations.
2017-03-28
Technical Paper
2017-01-0592
Robin Holmbom, Bohan Liang, Lars Eriksson
1 Turbocharging plays an important role in the downsizing of engines. Model-based approaches for boost control are going to increasing the necessity for controlling the wastegate flow more accurately. In today’s cars, the wastegate is usually only controlled with a duty cycle and without position feedback. Due to nonlinearities and varying disturbances a duty cycle does not correspond to a certain position. Currently the most frequently used feedback controller strategy is to use the boost pressure as the controller reference. This means that there is a large time constant from actuation command to effect in boost pressure, which can impair dynamic performance. In this paper, the performance of an electrically controlled vacuum-actuated waste-gate, subsequently referred to as vacuum wastegate, is compared to an electrical servo-controlled wastegate, also referred to as electric wastegate.
2017-03-28
Technical Paper
2017-01-0721
Michele Bardi, Gilles Bruneaux, André Nicolle, Olivier Colin
Abstract This paper is a contribution to the understanding of the formation and oxidation of soot in Diesel combustion. An ECN spray A injector (single axial-oriented orifice) was tested in a well characterized high-temperature/high-pressure vessel at engine relevant conditions. The size of the test section (>70mm) enables to study the soot formation process in nearly free field conditions, which constitutes an ideal feature for fundamental understanding and model validation. Simultaneous high-speed OH* chemiluminescence imaging and high-speed 2D extinction were performed to link together the information regarding flame chemistry (i.e. lift-off length) and the soot data. The experiments were carried out for a set of fuels with different CN and sooting index (Diesel fuel, Jet fuel, gasoline and n-dodecane) performing parametric variations in the test conditions (ambient temperature and oxygen concentration).
2017-03-28
Journal Article
2017-01-0747
John Storey, Samuel Lewis, Melanie Moses-DeBusk, Raynella Connatser, Jong Lee, Tom Tzanetakis, Kukwon Cho, Matthew Lorey, Mark Sellnau
Abstract Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEPg) to medium load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEPg). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations.
2017-03-28
Journal Article
2017-01-0610
Nicolo Cavina, Francesco Ranuzzi, Matteo De Cesare, Enrico Brugnoni
Abstract The most recent European regulations for two- and three-wheelers (Euro 5) are imposing an enhanced combustion control in motorcycle engines to respect tighter emission limits, and Air-Fuel Ratio (AFR) closed-loop control has become a key function of the engine management system also for this type of applications. In a multi-cylinder engine, typically only one oxygen sensor is installed on each bank, so that the mean AFR of two or more cylinders rather than the single cylinder one is actually controlled. The installation of one sensor per cylinder is normally avoided due to cost, layout and reliability issues. In the last years, several studies were presented to demonstrate the feasibility of an individual AFR controller based on a single sensor. These solutions are based on the mathematical modelling of the engine air path dynamics, or on the frequency analysis of the lambda probe signal.
2017-03-28
Journal Article
2017-01-0607
Nahid Pervez, Ace Koua Kue, Adarsh Appukuttan, John Bogema, Michael Van Nieuwstadt
Abstract Designing a control system that can robustly detect faulted emission control devices under all environmental and driving conditions is a challenging task for OEMs. In order to gain confidence in the control strategy and the values of tunable parameters, the test vehicles need to be subjected to their limits during the development process. Complexity of modern powertrain systems along with the On-Board Diagnostic (OBD) monitors with multidimensional thresholds make it difficult to anticipate all the possible scenarios. Finding optimal solutions to these problems using traditional calibration processes can be time and resource intensive. A possible solution is to take a data driven calibration approach. In this method, a large amount of data is collected by collaboration of different groups working on the same powertrain. Later, the data is mined to find the optimum values of tunable parameters for the respective vehicle functions.
2017-03-28
Technical Paper
2017-01-0611
Viktor Leek, Kristoffer Ekberg, Lars Eriksson
1 ABSTRACT Today’s need for fuel efficient vehicles, together with increasing engine component complexity, makes optimal control a valuable tool in the process of finding the most fuel efficient control strategies. To efficiently calculate the solution to optimal control problems a gradient based optimization technique is desirable, making continuously differentiable models preferable. Many existing control-oriented Diesel engine models do not fully posses this property, often due to signal saturations or discrete conditions. This paper offers a continuously differentiable, mean value engine model, of a heavy-duty diesel engine equipped with VGT and EGR, suitable for optimal control purposes. The model is developed from an existing, validated, engine model, but adapted to be continuously differentiable and therefore tailored for usage in an optimal control environment. The changes due to the conversion are quantified and presented.
2017-03-28
Journal Article
2017-01-0863
Bader Almansour, Sami Alawadhi, Subith Vasu
Abstract The biofuel and engine co-development framework was initiated at Sandia National Labs. Here, the synthetic biologists develop and engineer a new platform for drop-in fuel production from lignocellulosic biomass, using several endophytic fungi. Hence this process has the potential advantage that expensive pretreatment and fuel refining stages can be optimized thereby allowing scalability and cost reduction; two major considerations for widespread biofuel utilization. Large concentrations of ketones along with other volatile organic compounds were produced by fungi grown over switchgrass media. The combustion and emission properties of these new large ketones are poorly known.
2017-03-28
Journal Article
2017-01-0796
J. Felipe Rodriguez, Wai K. Cheng
Abstract The NOx emissions during the crank-start and cold fast-idle phases of a GDI engine are analyzed in detail. The NOx emissions of the first 3 firing cycles are studied under a wide set of parameters including the mass of fuel injected, start of injection, and ignition timing. The results show a strong dependence of the NOx emissions with injection timing; they are significantly reduced as the mixture is stratified. The impact of different valve timings on crank-start NOx emissions was analyzed. Late intake and early exhaust timings show similar potential for NOx reduction; 26-30% lower than the baseline. The combined strategy, resulting in a large symmetric negative valve overlap, shows the greatest reduction; 59% lower than the baseline. The cold fast-idle NOx emissions were studied under different equivalence ratios, injection strategies, combustion phasing, and valve timings. Slightly lean air-fuel mixtures result in a significant reduction of NOx.
2017-03-28
Journal Article
2017-01-1277
Jakobus Groenewald, Thomas Grandjean, James Marco, Widanalage Widanage
Abstract Increasingly international academic and industrial communities desire to better understand, implement and improve the sustainability of vehicles that contain embedded electrochemical energy storage. Underpinning a number of studies that evaluate different circular economy strategies for the electric vehicle (EV) battery system are implicit assumptions about the retained capacity or State-of-Health (SoH) of the battery. International standards and best-practice guides exist that address the performance evaluation of both EV and HEV battery systems. However, a common theme in performance testing is that the test duration can be excessive and last for a number of hours. The aim of this research is to assess whether energy capacity and internal resistance measurements of Li-ion based modules can be optimized, reducing the test duration to a value that may facilitate further End-of-Life (EoL) options.
2017-03-28
Journal Article
2017-01-1273
Qiang Dai, Jarod C. Kelly, Amgad Elgowainy
Abstract Vehicle lightweighting has been a focus of the automotive industry, as car manufacturers seek to comply with corporate average fuel economy (CAFE) and greenhouse gas (GHG) emissions standards for model year (MY) 2017-2025 vehicles. However, when developing a lightweight vehicle design, the automotive industry typically targets maximum vehicle weight reduction at minimal cost increase. In this paper, we consider the environmental impacts of the lightweighting technology options. The materials used for vehicle lightweighting include high-strength steel (HSS), aluminum, magnesium and carbon fiber reinforced plastic (CFRP). Except for HSS, the production of these light materials is more GHG-intensive (on a kg-to-kg basis) compared with the conventional automotive materials they substitute. Lightweighting with these materials, therefore, may partially offset the GHG emission reductions achieved through improved fuel economy.
2017-03-28
Journal Article
2017-01-0899
Paul Dekraker, John Kargul, Andrew Moskalik, Kevin Newman, Mark Doorlag, Daniel Barba
Abstract The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of internal energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been updated utilizing newly acquired data from model year 2013-2016 engines and vehicles. Simulations conducted with ALPHA provide data on the effectiveness of various GHG reduction technologies, and reveal synergies that exist between technologies. The ALPHA model has been validated against a variety of vehicles with different powertrain configurations and GHG reduction technologies.
2017-03-28
Journal Article
2017-01-0935
Christoph Boerensen, Dirk Roemer, Christian Nederlof, Evgeny Smirnov, Frank Linzen, Felix Goebel, Brendan Carberry
Abstract The most significant challenge in emission control for compression ignited internal combustion engines is the suppression of NOx. In the US, NOx-levels have faced a progressive reduction for several years, but recently the introduction of the Real Driving Emissions legislation (RDE) in Europe has not only significantly increased the severity of the required emission reduction but now is in the advent of stretching technology to its limits. Emission control is based on engine-internal optimization to reduce the engine-out emissions in conjunction with aftertreatment technologies, that are either Selective Catalytic Reduction (SCR) or Lean NOx Trap (LNT) based systems. Due to its ability to control high amounts of NOx, SCR is widely used in heavy-duty applications and is becoming more popular in light-duty and passenger car applications as well.
2017-03-28
Journal Article
2017-01-0927
Carl Justin Kamp, Shawn Zhang, Sujay Bagi, Victor Wong, Greg Monahan, Alexander Sappok, Yujun Wang
Abstract Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
2017-03-28
Journal Article
2017-01-0926
Kentaro Iwasaki
Abstract The diesel particulate filter (DPF) has been used in the automobile industry for around a decade. As a key technology for emissions control the DPF design needs to be increasingly optimized to expand its function to deal with any emission not just particulate matter (PM). NOx emission regulations need to be met as well as CO2 targets through minimizing any fuel penalty. Cost is extremely important to deliver an effective after-treatment catalyst. Aluminum titanate and cordierite-based material DPFs are very cost effective in part because their properties allow monolith-manufacturing. Furthermore, geometrical design of the DPF channel structure can contribute to multi-functionalization of the DPF to provide further advantages. Square and asymmetric square-designed channel structures have been utilized on current after-treatment DPF systems.
2017-03-28
Journal Article
2017-01-1278
Keisuke Isomura
Abstract In the automobile industry, interest in the prevention of global warming has always been high. The development of eco cars (HV, EV etc.), aimed at reducing CO2 emissions during operation, has been progressing. In the announcement of its "Toyota Environmental Challenge 2050", Toyota declared its commitment to creating a future in which people, cars, and nature coexist in harmony. In this declaration, Toyota committed to reducing CO2 emissions not only during operation but also over the entire life cycle of vehicles, and to using resources effectively based on a 4 R’s approach (refuse, reduce, reuse, and recycle). Although eco cars decrease CO2 emissions during operation, most of them increase CO2 emissions during manufacturing. For example, the rare-earths (Nd, Dy etc.) used in the magnets of driving motors are extracted through processes that produce a significant amount of CO2 emissions.
2017-03-28
Journal Article
2017-01-0599
Yichao Guo
Abstract Misfire is generally defined as be no or partial combustion during the power stroke of internal combustion engine. Because a misfired engine will dramatically increase the exhaust emission and potentially cause permanent damage to the catalytic converters, California Air Resources Board (CARB), as well as most of other countries’ on-board diagnostic regulations mandates the detection of misfire. Currently almost all the OEMs utilize crankshaft position sensors as the main input to their misfire detection algorithm. The detailed detection approaches vary among different manufacturers. For example, some chooses the crankshaft angular velocity calculated from the raw output of the crankshaft positon sensor as the measurement to distinguish misfires from normal firing events, while others use crankshaft angular acceleration or the associated torque index derived from the crankshaft position sensor readings as the measurement of misfire detection.
2017-03-28
Journal Article
2017-01-0920
Jean P. Roy, Ahmed Ghoniem, Robert Panora, Joseph Gehret, Bruce Falls, David Wallace, Daniel Ott
Abstract All vehicles sold today are required to meet emissions standards based on specific driving cycles. Emissions standards are getting tighter and the introduction of real driving tests is imminent, potentially calling for improved aftertreatment systems. A dual stage catalyst system, with exhaust temperature control, can provide a robust solution to meet challenging modes of operation such as rapid acceleration and other heavy-duty transients. The Ultera® technology, developed and successfully implemented on stationary natural gas CHP (Combined Heat and Power) engines, introduces a second stage catalyst downstream of a three-way catalyst. Air is injected between the two stages to provide oxygen required for the second stage reaction that removes additional CO and NMOG. Critical to the process is to avoid the reformation of NOx.
2017-03-28
Journal Article
2017-01-1316
Dhaval Vaishnav, Mohsen Ehteshami, Vylace Collins, Syed Ali, Alan Gregory, Matthew Werner
Abstract A jet pump (also known as ejector) uses momentum of a high velocity jet (primary flow) as a driving mechanism. The jet is created by a nozzle that converts the pressure head of the primary flow to velocity head. The high velocity primary flow exiting the nozzle creates low pressure zone that entrains fluid from a secondary inlet and transfers the total flow to desired location. For a given pressure of primary inlet flow, it is desired to entrain maximum flow from secondary inlet. Jet pumps have been used in automobiles for a variety of applications such as: filling the Fuel Delivery Module (FDM) with liquid fuel from the fuel tank, transferring liquid fuel between two halves of the saddle type fuel tank and entraining fresh coolant in the cooling circuit. Recently, jet pumps have been introduced in evaporative emission control system for turbocharged engines to remove gaseous hydrocarbons stored in carbon canister and supply it to engine intake manifold (canister purging).
2017-03-28
Journal Article
2017-01-1319
Christoph Huber, Bernhard Weigand, Heinrich Reister, Thomas Binner
Abstract A simulation approach to predict the amount of snow which is penetrating into the air filter of the vehicle’s engine is important for the automotive industry. The objective of our work was to predict the snow ingress based on an Eulerian/Lagrangian approach within a commercial CFD-software and to compare the simulation results to measurements in order to confirm our simulation approach. An additional objective was to use the simulation approach to improve the air intake system of an automobile. The measurements were performed on two test sites. On the one hand we made measurements on a natural test area in Sweden to reproduce real driving scenarios and thereby confirm our simulation approach. On the other hand the simulation results of the improved air intake system were compared to measurements, which were carried out in a climatic wind tunnel in Stuttgart.
2017-03-28
Journal Article
2017-01-1327
Prashant Khapane, Vivek Chavan, Uday Ganeshwade
Abstract Physical testing of a vehicle wading through water is performed to gauge its capability to traverse through shallow to deep levels of water, wherein various vehicle performance parameters are observed, recorded and analysed. Jaguar Land Rover (JLR) has instigated and established a comprehensive CAE test procedure for assessing the same, which makes use of overset mesh (in a CFD environment) for a non-traditional approach to vehicle motion. The paper presents investigations made into the established wading physics, in order to optimise the splashing and water jet modelling. Large Scale Interface model was implemented instead of the previously standardised VOF-VOF fluid phase interaction model, and a comparison is made between the two. The implemented wheel rotation approach was scrutinised as well and appropriate inferences are drawn.
2017-03-28
Journal Article
2017-01-1328
Yoshiteru Tanaka, Jun Yamamura, Atsushi Murakawa, Hiroshi Tanaka, Tsuyoshi Yasuki
Abstract When vehicles run on the flooded road, water enters to the engine compartment and sometimes reaches the position of the air intake duct and electrical parts and causes the reliability problems. Numerical simulation is an effective tool for this phenomenon because it can not only evaluate the water level before experiment but also identify the intrusion route. Recently, the gap around the engine cooling modules tends to become smaller and the undercover tends to become bigger than before in order to enhance the vehicle performance (e.g., aerodynamics, exterior noise). Leakage tightness around the engine compartment becomes higher and causes an increase of the buoyancy force from the water. Therefore the vehicle attitude change is causing a greater impact on the water level. This paper describes the development of a water level prediction method in engine compartment while running on the flooded road by using the coupled multibody and fluid dynamics.
2017-03-28
Journal Article
2017-01-1322
Kunihiko Yoshitake, Hiroyuki Tateyama, Atsushi Ogawa
Abstract Vehicles are required durability in various environments all over the world. Especially water resistance on flooded roads is one of the important issues. To solve this kind of problem, a CFD technology was established in order to predict the water resistance performance of the vehicle at the early development stage. By comparison with vehicle tests on flooded roads, it is clarified the following key factors are required for accurate prediction; the vehicle velocity change, the vehicle height change and the air intake flow rate. Moreover, these three key factors should be appropriately determined from vehicle and engine specification to predict water intrusion for flooded roads at the early stage of development. In this paper, a methodology which determines appropriate analysis conditions mentioned above for flooding simulation from vehicle and engine specification is described. The methodology enables us to determine whether the vehicle provides sufficient waterproofness.
2017-03-28
Journal Article
2017-01-1511
Anton Kabanovs, Graham Hodgson, Andrew Garmory, Martin Passmore, Adrian Gaylard
Abstract The motivation for this paper is to consider the effect of rear end geometry on rear soiling using a representative generic SUV body. In particular the effect of varying the top slant angle is considered using both experiment and Computational Fluid Dynamics (CFD). Previous work has shown that slant angle has a significant effect on wake shape and drag and the work here extends this to investigate the effect on rear soiling. It is hoped that this work can provide an insight into the likely effect of such geometry changes on the soiling of similarly shaped road vehicles. To increase the generality of results, and to allow comparison with previously obtained aerodynamic data, a 25% scale generic SUV model is used in the Loughborough University Large Wind Tunnel. UV doped water is sprayed from a position located at the bottom of the left rear tyre to simulate the creation of spray from this tyre.
2017-03-28
Journal Article
2017-01-1543
Jonathan Jilesen, Adrian Gaylard, Jose Escobar
Abstract Vehicle rear and side body soiling has been a concern since the earliest cars. Traditionally, soiling has been seen to be less importance than vehicle aerodynamics and acoustics. However, increased reliance on sensors and cameras to assist the driver means that there are more surfaces of the vehicle that must be kept clean. Failure to take this into consideration means risking low customer satisfaction with new features. This is because they are likely to fail under normal operating conditions and require constant cleaning. This paper numerically investigates features known to have an influence on side and rear face soiling with a demonstration vehicle. These changes include rim design, diffuser strakes and diffuser sharpening. While an exhaustive investigation of these features is beyond the scope of this study, examples of each feature will be considered.
2017-03-28
Technical Paper
2017-01-0775
Robert Draper, Brendan Lenski, Franz-Joseph Foltz, Roderick Beazley, William Tenny
Abstract With environmental policies becoming ever more stringent, there is heightened interest in natural gas (NG) as a viable fuel for medium to heavy duty engines. Typically, the industry has seen minor changes to the base engine when converting to run on NG, which, in turn historically provides degraded performance. In utilizing the positive properties of NG, Westport Fuel Systems has developed the High Efficiency Spark Ignition (HESI) combustion technology that has been shown to significantly improve performance. The HESI technology leverages a proven combustion system that is capable of generating a knock resistant charge motion while cooling the flame face. In conjunction with high boost for driving high pressure exhaust gas recirculation (EGR), this technology demonstrates the possibility for downsizing strategies while maintaining performance.
2017-03-28
Technical Paper
2017-01-0778
Vishnu Vijayakumar, P. Sakthivel, Bhuvenesh Tyagi, Amardeep Singh, Reji Mathai, Shyam Singh, Ajay Kumar Sehgal
Abstract In the light of major research work carried out on the detrimental health impacts of ultrafine particles (<50 nm), Euro VI emission standards incorporate a limit on particle number, of which ultrafine particles is the dominant contributor. As Compressed Natural Gas (CNG) is a cheaper and cleaner fuel when compared to diesel, there has been a steady increase in the number of CNG vehicles on road especially in the heavy duty segment. Off late, there has been much focus on the nature of particle emissions emanating from CNG engines as these particles mainly fall under the ultrafine particle size range. The combustion of lubricant is considered to be the dominant source of particle emissions from CNG engines. Particle emission due to lubricant is affected by the oil transport mechanisms into the combustion chamber which in turn vary with engine operating conditions as well as with the physico chemical properties of the lubricant.
2017-03-28
Technical Paper
2017-01-0783
Hamid R. Rahai, Yong Lee, Najmeh rahimi, Komal Gada
Abstract The investigation has been divided into two parts. In part one, numerical investigations of the effect of humid air with different levels of humidity on gaseous emissions of a non-premixed combustion have been investigated. This part of the investigation was a feasibility study, focused on how different levels of humidity in the intake air affects the exhaust NO emission. Part two of the investigation was verification of the numerical results with a naturally aspirated engine with natural gas as the fuel. Here, we also investigated the impact of humid air intake on engine’s particulate matter (PM) emission. For the numerical investigations, the non-premixed combustion in a single cylinder was simulated using the presumed probability density function combustion model. Simulations were performed for dry as well as humid intake air for 0%, 15%, and 30% relative humidity (RH).
Viewing 181 to 210 of 21875