Criteria

Text:
Topic:
Display:

Results

Viewing 91 to 120 of 22026
2017-09-04
Technical Paper
2017-24-0066
Maria Cristina Cameretti, Roberta De Robbio, Raffaele Tuccillo
Abstract The present study deals with the simulation of a Diesel engine fuelled by natural gas/diesel in dual fuel mode to optimize the engine behaviour in terms of performance and emissions. In dual fuel mode, the natural gas is introduced into the engine’s intake system. Near the end of the compression stroke, diesel fuel is injected and ignites, causing the natural gas to burn. The engine itself is virtually unaltered, but for the addition of a gas injection system. The CO2 emissions are considerably reduced because of the lower carbon content of the fuel. Furthermore, potential advantages of dual-fuel engines include diesel-like efficiency and brake mean effective pressure with much lower emissions of oxides of nitrogen and particulate matter. In previous papers, the authors have presented some CFD results obtained by two 3D codes by varying the diesel/NG ratio and the diesel pilot injection timing at different loads.
2017-09-04
Technical Paper
2017-24-0070
Stefano D'Ambrosio, Daniele Iemmolo, Alessandro Mancarella, Nicolò Salamone, Roberto Vitolo, Gilles Hardy
Abstract A precise estimation of the recirculated exhaust gas rate and oxygen concentration as well as a predictive evaluation of the possible EGR unbalance among cylinders are of paramount importance, especially if non-conventional combustion modes, which require high EGR flow-rates, are implemented. In the present paper, starting from the equation related to convergent nozzles, the EGR mass flow-rate is modeled considering the pressure and the temperature upstream of the EGR control valve, as well as the pressure downstream of it. The restricted flow-area at the valve-seat passage and the discharge coefficient are carefully assessed as functions of the valve lift. Other models were fitted using parameters describing the engine working conditions as inputs, following a semi-physical and a purely statistical approach. The resulting models are then applied to estimate EGR rates to both conventional and non-conventional combustion conditions.
2017-09-04
Technical Paper
2017-24-0075
Felix Leach, Riyaz Ismail, Martin Davy, Adam Weall, Brian Cooper
Abstract Modern diesel cars, fitted with state-of-the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant cost, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder, both during the injection and combustion events and also due to the induced air motion in and around the bowl prior to injection. In this paper the effect of two different piston bowl shapes are investigated.
2017-09-04
Technical Paper
2017-24-0123
Christopher Eck, Futoshi Nakano
Abstract Small commercial vehicles (SCV) with Diesel engines require efficient exhaust aftertreatment systems to reduce the emissions while keeping the fuel consumption and total operating cost as low as possible. To meet current emission legislations in all cases, a DOC and DPF and some NOx treatment device (e,g. lean NOx trap or SCR) are required. Creating a cost-effective SCV also requires keeping the cost for the exhaust aftertreatment system as low as possible because the contribution to total vehicle cost is high. By using more sophisticated and more robust operating strategies and control algorithms, the hardware cost can be reduced. To keep the calibration effort at a low level, it is necessary to apply only algorithms which have a time-efficient calibration procedure. This paper will focus on the active regeneration of the DPF. For safe and efficient DPF regeneration, a very reliable and stable DOC out temperature control is required.
2017-09-04
Technical Paper
2017-24-0125
Angelo Algieri, Pietropaolo Morrone, Jessica Settino, Teresa Castiglione, Sergio Bova
Abstract The aim of the present work is to analyse and compare the energetic performances and the emissions conversion capability of active and passive aftertreatment systems for lean burn engines. To this purpose, a computational one-dimensional transient model has been developed and validated. The code permits to assess the heat exchange between the solid and the exhaust gas, to evaluate the conversion of the main engine pollutants, and to estimate the energy effectiveness. The response of the systems to variations in engine operating conditions have been investigated considering standard emission test cycles. The analysis highlighted that the active flow control tends to increase the thermal inertia of the apparatus and then it appears more suitable to maintain higher temperature level and to guarantee higher pollutants conversion at low engine loads after long full load operation.
2017-09-04
Technical Paper
2017-24-0126
Christian Zöllner, Dieter Brueggemann
Abstract The removal of particulate matter (PM) from diesel exhaust is necessary to protect the environment and human health. To meet the strict emission standards for diesel engines an additional exhaust aftertreatment system is essential. Diesel particulate filters (DPF) are established devices to remove emitted PM from diesel exhaust. But the deposition and the accumulation of soot in the DPF influence the filter back pressure and therefore the engine performance and the fuel consumption. Thus a periodical regeneration through PM oxidation is necessary. The oxidation behavior should result in an effective regeneration mode that minimizes the fuel penalty and limits the temperature rise while maintaining a high regeneration efficiency. Excessive and fast regenerations have to be avoided as well as uncontrolled oxidations, which may lead to damages of the filter and fuel penalty.
2017-09-04
Technical Paper
2017-24-0127
Lauretta Rubino, Dominic Thier, Torsten Schumann, Stefan Guettler, Gerald Russ
Abstract With the increased use of engines utilizing direct fuel injection and the upcoming introduction of more stringent emissions legislation that regulates not only particulate mass (PM) but also particulate number (PN), the emissions from Direct Injection Spark Ignition Engines (DISI) are an increasing concern. Gasoline Particle Filters (GPF) represent a potential way to reduce particle number emissions from DISI engines and are particularly effective considering the tough performance requirements during cold start and over RDE operation. Even though some learning from the development and application of particulate filters to diesel engines can be transferred to gasoline engines, the particle composition, mass to number ratio as well as the exhaust gas temperature and composition from gasoline engines are significantly different to diesel engines. Therefore, there is the need to study the application of particulate filters to gasoline engines in more depth.
2017-09-04
Technical Paper
2017-24-0133
Jelica Pavlovic, Alessandro Tansini, Georgios Fontaras, Biagio Ciuffo, Marcos Garcia Otura, Germana Trentadue, Ricardo Suarez Bertoa, Federico Millo
Abstract Plug-in Hybrid Electric Vehicles (PHEVs) are one of the main technology options for reducing vehicle CO2 emissions and helping vehicle manufacturers (OEMs) to meet the CO2 targets set by different Governments from all around the world. In Europe OEMs have introduced a number of PHEV models to meet their CO2 target of 95 g/km for passenger cars set for the year 2021. Fuel consumption (FC) and CO2 emissions from PHEVs, however, strongly depend on the way they are used and on the frequency with which their battery is charged by the user. Studies have indeed revealed that in real life, with poor charging behavior from users, PHEV FC is equivalent to that of conventional vehicles, and in some cases higher, due to the increased mass and the need to keep the battery at a certain charging level.
2017-09-04
Technical Paper
2017-24-0130
Antonio Paolo Carlucci, Marco Benegiamo, Sergio Camporeale, Daniela Ingrosso
Abstract 1 Nowadays, In-Cylinder Pressure Sensors (ICPS) have become a mainstream technology that promises to change the way the engine control is performed. Among all the possible applications, the prediction of raw (engine-out) NOX emissions would allow to eliminate the NOX sensor currently used to manage the after-treatment systems. In the current study, a semi-physical model already existing in literature for the prediction of engine-out nitric oxide emissions based on in-cylinder pressure measurement has been improved; in particular, the main focus has been to improve nitric oxide prediction accuracy when injection timing is varied. The main modification introduced in the model lies in taking into account the turbulence induced by fuel spray and enhanced by in-cylinder bulk motion.
2017-09-04
Technical Paper
2017-24-0135
Shuxia Miao, Lin Luo, Yan Liu, Zhangsong Zhan
New emissions regulations of light-duty vehicles (China 6) will be implemented in China from July 1, 2020. This standard includes two stages, China 6a and China 6(b), in which the PM limits of 4.5 mg/km and 3.0 mg/km are introduced respectively; the PN limit is set to be 6×1011 #/km for both stages. The WLTC testing cycle will be implemented in China 6 regulation as well. In this study a light-duty vehicle satisfying China 6(b) emission standards was developed by improving the engine raw emissions, optimizing the calibration and adding a coated GPF to the after-treatment system. The impacts of ash content and consumption of engine oil and the fast ash accumulation to vehicle emissions and backpressure were analyzed through dynamometer testing. The vehicle after-treatment system was then designed and developed to meet China 6(b) emission standards. The characteristics of soot accumulated through mimicking routine driving under cold environments were tested.
2017-09-04
Technical Paper
2017-24-0131
Sergio Mario Camporeale, Patrizia D. Ciliberti, Antonio Carlucci, Daniela Ingrosso
Abstract The incoming RDE regulation and the on-board diagnostics -OBD- pushes the research activity towards the set-up of a more and more efficient after treatment system. Nowadays, the most common after treatment system for NOx reduction is the selective catalytic reduction -SCR- . This system requires as an input the value of engine out NOx emission -raw- in order to control the Urea dosing strategy. In this work, an already existing grey box NOx raw emission model based on in-cylinder pressure signal (ICPS) is validated on two standard cycles: MNEDC and WLTC using an EU6 engine at the test bench. The overall results show a maximum relative error of the integrated cumulative value of 12.8% and 17.4% for MNEDC and WLTC respectively. In particular, the instantaneous value of relative error is included in the range of ± 10% in the steady state conditions while during transient conditions is less than 20% mainly.
2017-09-04
Technical Paper
2017-24-0138
Giovanni Meccariello, Livia Della Ragione
Abstract In the context of a transport sustainability, some solutions could be proposed from the integration of many disciplines, architects, environmentalists, policy makers, and consequently it may be addressed with different approaches. These solutions would be applied at different geographical levels, i.e. national, regional or urban scale. Moreover, the assessment of cars emissions in real use plays a fundamental role for their reductions. This is also the direction of the new harmonized test procedures (WLTP). Furthermore, it is fundamental to keep in mind that the new WLTC cycle will reproduce a situation closer to the reality comparing to the EUDC/NEDC driving cycle. In this paper, we will be focused on vehicle kinematic evaluation aimed at valuation of traffic situation and emissions.
2017-09-04
Technical Paper
2017-24-0139
Francesco Barba, Alberto Vassallo, Vincenzo Greco
Abstract The aim of the present study is to improve the effectiveness of automotive diesel engine and aftertreatment calibration process through the critical evaluation of several methodologies to estimate the soot mass flow produced by diesel engines fueled by petroleum fuels and filtered by Diesel Particulate Filters (DPF). In particular, its focus has been the development of a reliable simulation method for the accurate prediction of the engine-out soot mass flow starting from Filter Smoke Number (FSN) measurements executed in steady state conditions, in order to predict the DPF loading considering different engine working conditions corresponding to NEDC and WLTP cycles. In order to achieve this goal, the study was split into two main parts: Correlation between ‘wet PM’ (measured by soot filter weighing) and the ‘dry soot’ (measured by the Micro Soot Sensor MSS).
2017-09-04
Technical Paper
2017-24-0136
Kurtis James Irwin, Roy Douglas, Jonathan Stewart, Andrew Pedlow, Rose Mary Stalker, Andrew Woods
Abstract With emission legislations becoming ever more stringent there is an increased pressure on the after-treatment systems, and more specifically the three-way catalysts. With recent developments in emission legislations, there is requirement for more complex after-treatment systems and understanding of the aging process. With future legislation introducing independent inspection of emissions at any time under real world driving conditions throughout a vehicle life cycle this is going to increase the focus on understanding catalyst behavior during any likely conditions throughout its lifetime and not just at the beginning and end. In recent years it has become a popular approach to use accelerated aging of the automotive catalysts for the development of new catalytic formulations and for homologation of new vehicle emissions.
2017-09-04
Technical Paper
2017-24-0143
Sathaporn Chuepeng, Kampanart Theinnoi, Manida Tongroon
Abstract The main aim of this work is to characterize the combustion phenomena and particulate matter in nano-size from the reactivity controlled compression ignition (RCCI) engine using neat hydrous ethanol as a low reactivity fuel. A four-cylinder diesel engine fueled with diesel (the volumetric blend of 95% petroleum diesel and 5% palm-based biodiesel) was operated on low and medium loads at 2,500 rpm without main diesel fuel injection modification and exhaust gas recirculation. Ethanol was injected at 1 bar pressure into the intake manifold while the w/w ratios of ethanol:diesel were varied between 0 and 0.77. An engine indicating system composed of an in-cylinder pressure transducer and a shaft encoder was used to investigate combustion characteristics using the first law of thermodynamics. A Scanning Mobility Particle Sizer and an Optical Particle Sizer were used to determine the particle number concentration and distribution over nano-size range.
2017-09-04
Technical Paper
2017-24-0137
Zhen Zhang, Luigi del Re, Richard Fuerhapter
Abstract During transients, engines tend to produce substantially higher peak emissions like soot - the main fraction of particular matter (PM) - which are the longer the more important as the steady state emissions are better controlled. While Diesel particulate filters are normally able to block them, preventing their occurrence would of course be more important. In order to achieve this goal, however, they must be measurable. While for most emissions commercial sensors of sufficient speed and performance are available, the same is not true for PMs, especially for production engines. Against this background, in the last years the possible use of a full stream 50Hz sensor based on Laser Induced Incandescence (LII) was investigated, and the results were very encouraging, showing that the sensor could recognize transient changes undetected by conventional measurement systems (like the AVL Opacimeter) but confirmed by the analysis of combustion.
2017-09-04
Technical Paper
2017-24-0141
Riccardo Amirante, Elia Distaso, Silvana Di Iorio, Davide Pettinicchio, Paolo Sementa, Paolo Tamburrano, Bianca Maria Vaglieco
Abstract The aim of the present work is to provide further guidance into better understanding the production mechanisms of soot emissions in Spark-Ignition SI engines fueled with compressed natural gas. In particular, extensive experimental investigations were designed with the aim to isolate the contribution of the fuel from that of lubricant oil to particle emissions. This because the common thought is that particulate emerging from the engine derives mainly from fuel, otherwise the contribute of lubricant oil cannot be neglected or underestimated, especially when the fuel itself produces low levels of soot emissions, such as in the case of premixed natural gas. The fuel-derived contribution was studied by analyzing the influence that natural gas composition has on soot emitted from a single cylinder Spark-Ignition (SI) engine. To achieve this purpose, methane/propane mixtures were realized and injected into the intake manifold of a Single-Cylinder SI engine.
2017-09-04
Technical Paper
2017-24-0148
Srinivas Padala, Shashank Nagaraja, Yuji Ikeda, Minh Khoi Le
Abstract Exhaust gas recirculation (EGR) has proven to be beneficial for not only fuel economy improvement but also knock and emissions reduction. Combined with lean burning, it can assist gasoline engines to become cleaner, more efficient and to meet the stringent emissions limit. However, there is a practical limit for EGR percentage in current engines due to many constraints, one of which being the ignition source. The Microwave Discharge Igniter (MDI), which generates, enhances and sustains plasma discharge using microwave (MW) resonance was tested to assess its ability in extending the dilution limit. A combination of high-speed Schlieren imaging and pressure measurements were performed for propane-air mixture combustion inside a constant volume chamber to compare the dilution limits between MDI and conventional spark plug. Carbon dioxide addition was carried out during mixture preparation to simulate the dilution condition of EGR and limit the oxygen fraction.
2017-09-04
Technical Paper
2017-24-0145
Marco Piumetti, Debora Fino, Nunzio Russo, Samir Bensaid, Melodj Dosa
Abstract In this work, several nanostructured ceria-based catalysts were prepared by the hydrothermal technique varying two synthesis parameters (namely, temperature and pH). Then, cerias with different shapes (i.e., cubes, rods, combination of them, other polyhedra) and structural properties were obtained. The prepared materials were tested for the CO oxidation and soot oxidation efficiency. The results have shown that, for the CO oxidation, activities depend on the surface properties of the catalysts. Conversely, for the soot oxidation, the most effective catalysts exhibit better soot-catalyst contact conditions.
2017-09-04
Technical Paper
2017-24-0146
Vincent Raimbault, Jerome Migaud, David Chalet, Michael Bargende, Emmanuel Revol, Quentin Montaigne
Abstract Upcoming regulations and new technologies are challenging the internal combustion engine and increasing the pressure on car manufacturers to further reduce powertrain emissions. Indeed, RDE pushes engineering to keep low emissions not only at the bottom left of the engine map, but in the complete range of load and engine speeds. This means for gasoline engines that the strategy used to increase the low end torque and power by moving out of lambda one conditions is no longer sustainable. For instance scavenging, which helps to increase the enthalpy of the turbine at low engine speed cannot be applied and thus leads to a reduction in low-end torque. Similarly, enrichment to keep the exhaust temperature sustainable in the exhaust tract components cannot be applied any more. The proposed study aims to provide a solution to keep the low end torque while maintaining lambda at 1.
2017-09-04
Technical Paper
2017-24-0081
Luigi De Simio, Michele Gambino, Sabato Iannaccone
Abstract In recent years the use of alternative fuels for internal combustion engines has had a strong push coming from both technical and economic-environmental aspects. Among these, gaseous fuels such as liquefied petroleum gas and natural gas have occupied a segment no longer negligible in the automotive industry, thanks to their adaptability, anti-knock capacity, lower toxicity of pollutants, reduced CO2 emissions and cost effectiveness. On the other hand, diesel engines still represent the reference category among the internal combustion engines in terms of fuel consumptions. The possibility offered by the dual fuel systems, to combine the efficiency and performance of a diesel engine with the environmental advantages of gaseous fuels, has been long investigated. However the simple replacement of diesel fuel with natural gas does not allow to optimize the performance of the engine due to the high THC emissions particularly at lower loads.
2017-09-04
Technical Paper
2017-24-0153
Sergey Shcherbanev, Alexandre De Martino, Andrey Khomenko, Svetlana Starikovskaia, Srinivas Padala, Yuji Ikeda
Abstract Requirements for reducing consumption of hydrocarbon fuels, as well as reducing emissions force the scientific community to develop new ignition systems. One of possible solutions is an extension of the lean ignition limit of stable combustion. With the decrease of the stoichiometry of combustible mixture the minimal size of the ignition kernel (necessary for development of combustion) increases. Therefore, it is necessary to use some special techniques to extend the ignition kernel region. Pulsed microwave discharge allows the formation of the ignition kernels of larger diameters. Although the microwave discharge igniter (MDI) was already tested for initiation of combustion and demonstrated quite promising results, the parameters of plasma was not yet studied before. Present work demonstrates the results of the dynamics of spatial structure of the MDI plasma with nanosecond time resolution.
2017-09-04
Technical Paper
2017-24-0163
Apostolos Pesiridis, Angelo Saccomanno, Raffaele Tuccillo, Alfredo Capobianco
Abstract The modern automotive industry is under strict regulations to reduce emissions to comply with the Kyoto Protocol, a universally acknowledged treaty aiming at reducing exhaust gas emissions. In order to achieve the required future emission reduction targets, further developments on gasoline engines are required. One of the main methods to achieve this goal is the application of engine downsizing. Turbocharging is a cost-effective method of downsizing an engine whilst reducing exhaust gas emissions, reducing fuel consumption and maintaining prior performance outputs. For these reasons, the turbocharging is becoming the most widely adopted technology in the automotive markets. In 2012, 32% of passenger and commercial vehicles sold had a turbocharger installed, and is predicted to be 40% of 2017 [1]. Even if the engine turbocharging is a widespread technology, there are still drawbacks present in current turbocharging systems.
2017-09-04
Technical Paper
2017-24-0179
Marco Tonetti, Giorgio Rustici, Massimo Buscema, Luca Ferraris
Abstract Final Euro6d emission legislation with the new homologation cycle and Real Driving Emission requirements has set a strong challenge for the ICE Passenger Car applications. Thanks to their well-known low fuel consumption characteristics, Diesel Engines can play a key role for the fulfillment of the European 2020 CO2 fleet target but need to confirm their capability to fully control noxious emissions even in extreme operating conditions, while restraining the overall engine costs and complexity. CO2 and NOx emissions reduction are considered the main drivers for diesel engine evolution. In this perspective, Exhaust Gas After-treatment and Combustion System have been identified as the two main technology aspects to be developed. The purpose of this paper is to describe the evolution paths of these two technologies and the results achieved so far in terms of noxious emissions reduction.
2017-09-04
Technical Paper
2017-24-0009
Federico Millo, Giulio Boccardo, Andrea Piano, Luigi Arnone, Stefano Manelli, Giuseppe Tutore, Andrea Marinoni
Abstract To comply with Stage IV emission standard for off-road engines, Kohler Engines has developed the 100kW rated KDI 3.4 liters diesel engine, equipped with DOC and SCR. Based on this engine, a research project in collaboration between Kohler Engines, Ricardo, Denso and Politecnico di Torino was carried out to exploit the potential of new technologies to meet the Stage IV and beyond emission standards. The prototype engine was equipped with a low pressure cooled EGR system, two stage turbocharger, high pressure fuel injection system capable of very high injection pressure and DOC+DPF aftertreatment system. Since the Stage IV emission standard sets a 0.4 g/kWh NOx limit for the steady state test cycle (NRSC), that includes full load operating conditions, the engine must be operated with very high EGR rates (above 30%) at very high load.
2017-09-04
Technical Paper
2017-24-0011
Giulio Boccardo, Federico Millo, Andrea Piano, Luigi Arnone, Stefano Manelli, Cristian Capiluppi
Abstract Nowadays stringent emission regulations are pushing towards new air management strategies like LP-EGR and HP/LP mix both for passenger car and heavy duty applications, increasing the engine control complexity. Within a project in collaboration between Kohler Engines EMEA, Politecnico di Torino, Ricardo and Denso to exploit the potential of EGR-Only technologies, a 3.4 liters KDI 3404 was equipped with a two stage turbocharging system, an extremely high pressure FIS and a low pressure EGR system. The LP-EGR system works in a closed loop control with an intake oxygen sensor actuating two valves: an EGR valve placed downstream of the EGR cooler that regulates the flow area of the bypass between the exhaust line and the intake line, and an exhaust flap to generate enough backpressure to recirculate the needed EGR rate to cut the NOx emission without a specific aftertreatment device.
2017-09-04
Journal Article
2017-24-0052
Nicolo Cavina, Nahuel Rojo, Andrea Businaro, Alessandro Brusa, Enrico Corti, Matteo De Cesare
Abstract This paper presents simulation and experimental results of the effects of intake water injection on the main combustion parameters of a turbo-charged, direct injection spark ignition engine. Water injection is more and more considered as a viable technology to further increase specific output power of modern spark ignition engines, enabling extreme downsizing concepts and the associated efficiency increase benefits. The paper initially presents the main results of a one-dimensional simulation analysis carried out to highlight the key parameters (injection position, water-to-fuel ratio and water temperature) and their effects on combustion (in-cylinder and exhaust temperature reduction and knock tendency suppression). The main results of such study have then been used to design and conduct preliminary experimental tests on a prototype direct-injection, turbocharged spark ignition engine, modified to incorporate a new multi-point water injection system in the intake runners.
2017-09-04
Journal Article
2017-24-0061
James P. Szybist, Scott W. Wagnon, Derek Splitter, William J. Pitz, Marco Mehl
Abstract Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions [1]. In this study, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn’t allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressive pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects.
2017-09-04
Journal Article
2017-24-0057
Roberto Finesso, Omar Marello, Ezio Spessa, Yixin Yang, Gilles Hardy
Abstract A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent.
2017-09-04
Journal Article
2017-24-0051
Ferdinando Taglialatela, Mario Lavorgna, Silvana Di Iorio, Ezio Mancaruso, Bianca Maria Vaglieco
Abstract In order to meet the increasingly strict emission regulations, several solutions for NOx and PM emissions reduction have been studied. Exhaust gas recirculation (EGR) technology has become one of the more used methods to accomplish the NOx emissions reduction. However, actual control strategies do not consider, in the definition of optimal EGR, its effect on particle size and density. These latter have a great importance both for the optimal functioning of after-treatment systems, but also for the adverse effects that small particles have on human health. Epidemiological studies, in fact, highlighted that the toxicity of particulate particles increases as the particle size decreases. The aim of this paper is to present a Neural Network model able to provide real time information about the characteristics of exhaust particles emitted by a Diesel engine.
Viewing 91 to 120 of 22026