Criteria

Text:
Topic:
Display:

Results

Viewing 31 to 60 of 21875
2017-03-28
Technical Paper
2017-01-0983
Masaaki Ito, Frank Katsube, Yasuhiko Hamada, Hiroaki Ishikawa, Tsuyoshi Asako
Abstract Particle Number (PN) regulation was firstly introduced for European light-duty diesel vehicles back in 2011[1]. Since then, PN regulation has been and is being expanded to heavy-duty diesel vehicles and non-road diesel machineries. PN regulation will also be expanded to China and India around 2020 or later. Diesel Particulate Filter (DPF) is significant factor for the above-mentioned PN regulation. This filter technology is to be continuously evolved for the near future tighter PN regulation. Generally, PN filtration performance test for filter technology development is carried out with chassis dynamometer, engine dynamometer or simulator [2]. This paper describes a simplified and relatively quicker alternative PN filtration performance test method for accelerating filter technology development compared to the current test method.
2017-03-28
Journal Article
2017-01-0982
Dhruvang Rathod, Mark A. Hoffman, Simona Onori
Abstract The duration over which a three way catalyst (TWC) maintains proper functionality during lambda excursions is critically impacted by aging, which affects its oxygen storage capacity (OSC). As such, emissions control strategies, which strive to maintain post TWC air-to-fuel ratios at the stoichiometric value, will benefit from an accurate estimation of TWC age. To this end, this investigation examines a method of TWC age estimation suitable for real-world transient operation. Experimental results are harvested from an instrumented test vehicle equipped with a two-brick TWC during operation on a chassis dynamometer. Four differently aged TWCs are instrumented with wideband and switch-type Lambda sensors upstream (Pre TWC location), and downstream (Mid location) of first catalyst brick.
2017-03-28
Journal Article
2017-01-0987
Nathan Ottinger, Niklas Schmidt, Z. Gerald Liu
Abstract Nitrous oxide (N2O), with a global warming potential (GWP) of 297 and an average atmospheric residence time of over 100 years, is an important greenhouse gas (GHG). In recognition of this, N2O emissions from on-highway medium- and heavy-duty diesel engines were recently regulated by the US Environmental Protection Agency (EPA) and National Highway Traffic Safety Administration’s (NHTSA) GHG Emission Standards. Unlike NO and NO2, collectively referred to as NOx, N2O is not a major byproduct of diesel combustion. However, N2O can be formed as a result of unselective catalytic reactions in diesel aftertreatment systems, and the mitigation of this unintended N2O formation is a topic of active research. In this study, a nonroad Tier 4 Final/Stage IV engine was equipped with a vanadium-based selective catalytic reduction (SCR) aftertreatment system. Experiments were conducted over nonroad steady and both cold and hot transient cycles (NRSC and NRTC, respectively).
2017-03-28
Technical Paper
2017-01-0986
Mohd Azman Abas, Shaiful Fadzil Zainal Abidin, Srithar Rajoo, Ricardo Martinez-Botas, Muhammad Izzal Ismail
Abstract Engine stop/start and cylinder deactivation are increasingly in use to improve fuel consumption of internal combustion engine in passenger cars. The stop/start technology switches off the engine to whenever the vehicle is at a stand-still, typically in a highly-congested area of an urban driving. The inherent issue with the implementation of stop/start technology in Southeast Asia, with tropical climate such as Malaysia, is the constant demand for the air-conditioning system. This inevitably reduces the duration of engine switch-off when the vehicle at stop and consequently nullifying the benefit of the stop/start system. On the other hand, cylinder deactivation technology improves the fuel consumption at certain conditions during low to medium vehicle speeds, when the engine is at part load operation only.
2017-03-28
Technical Paper
2017-01-0985
Joachim Demuynck, Cecile Favre, Dirk Bosteels, Heather Hamje, Jon Andersson
Abstract The market share of Gasoline Direct Injection (GDI) vehicles has been increasing, promoted by its positive contribution to the overall fleet fuel economy improvement. It has however been reported that this type of engine is emitting more ultrafine particles than the Euro 6c Particle Number (PN) limit of 6·1011 particles/km that will be introduced in Europe as of September 2017 in parallel with the Real Driving Emission (RDE) procedure. The emissions performance of a Euro 6b GDI passenger car was measured, first in the OEM build without a Gasoline Particulate Filter (GPF) and then as a demonstrator with a coated GPF in the underfloor position. Regulated emissions were measured on the European regulatory test cycles NEDC and WLTC and in real-world conditions with Portable Emissions Measurement Systems (PEMS) according to the published European RDE procedure (Commission Regulation (EU) 2016/427 and 2016/646).
2017-03-28
Technical Paper
2017-01-0984
Wenran Geng, Diming Lou, Ning Xu, Piqiang Tan, Zhiyuan Hu
Abstract Recently Hybrid Electric Buses (HEBs) have been widely used in China for energy saving and emission reduction. In order to study the real road emission performance of HEBs, the emission tests of an in-use diesel-electric hybrid bus (DHEB) are evaluated both on chassis dynamometer over China City Bus Cycles (CCBC) and on-road using Portable Emissions Measurement Systems (PEMS). The DHEB is powered by electric motor alone at speed of 0~20km/h. When the speed exceeds 20km/h, engine gets engaged rapidly and then works corporately with the electric motor to drive the bus. For chassis dynamometer test over CCBC, emissions of NOx, particulate number, particulate mass, and THC of the DHEB are 7.68g/km, 5.88E+11#/km, 0.412mg/km, and 0.062g/km, respectively. They have all decreased greatly compared to those of the diesel bus. But the CO emission which is 3.48g/km has increased significantly.
2017-03-28
Journal Article
2017-01-0953
Jinyong Luo, Yadan Tang, Saurabh Joshi, Krishna Kamasamudram, Neal Currier, Aleksey Yezerets
Abstract Cu/CHA catalysts have been widely used in the industry, due to their desirable performance characteristics including the unmatched hydrothermal stability. While broadly recognized for their outstanding activity at or above 200°C, these catalysts may not show desired levels of NOx conversion at lower temperatures. To achieve high NOx conversions it is desirable to have NO2/NOx close to 0.5 for fast SCR. However even under such optimal gas feed conditions, sustained use of Cu/CHA below 200°C leads to ammonium nitrate formation and accumulation, resulting in the inhibition of NOx conversion. In this contribution, the formation and decomposition of NH4NO3 on a commercial Cu/CHA catalyst have been investigated systematically. First, the impact of NH4NO3 self-inhibition on SCR activity as a function of temperature and NO2/NOx ratios was investigated through reactor testing.
2017-03-28
Journal Article
2017-01-0954
Christopher Sharp, Cynthia C. Webb, Gary Neely, Michael Carter, Seungju Yoon, Cary Henry
Abstract The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
2017-03-28
Journal Article
2017-01-0951
Paul Mentink, Xander Seykens, Daniel Escobar Valdivieso
Abstract To meet future emission targets, it becomes increasingly important to optimize the synergy between engine and aftertreatment system. By using an integrated control approach minimal fluid (fuel and DEF) consumption is targeted within the constraints of emission legislation during real-world operation. In such concept, the on-line availability of engine-out NOx emission is crucial. Here, the use of a Virtual NOx sensor can be of great added-value. Virtual sensing enables more direct and robust emission control allowing, for example, engine-out NOx determination during conditions in which the hardware sensor is not available, such as cold start conditions. Furthermore, with use of the virtual sensor, the engine control strategy can be directly based on NOx emission data, resulting in reduced response time and improved transient emission control. This paper presents the development and on-line implementation of a Virtual NOx sensor, using in-cylinder pressure as main input.
2017-03-28
Technical Paper
2017-01-0957
Ian Smith, Thomas Briggs, Christopher Sharp, Cynthia Webb
Abstract It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
2017-03-28
Journal Article
2017-01-0952
Michael B. Hopka, David Bilby, Michiel Van Nieuwstadt
Abstract The resistive particulate matter sensor (PMS) is rapidly becoming ubiquitous on diesel vehicles as a means to diagnose particulate filter (DPF) leaks. By design the device provides an integrated measure of the amount of PM to which it has been exposed during a defined measurement period within a drive cycle. The state of the art resistive PMS has a large deadband before any valid output related to the accumulated PM is realized. As a result, most DPF monitors that use the PMS consider its output only as an indicator that a threshold quantity of PM has amassed rather than a real-time measure of concentration. This measurement paradigm has the unfortunate side effect that as the PM OBD threshold decreases, or the PMS is used on a vehicle with a larger exhaust volume flow, a longer measurement is required to reach the same PM sensor output. Longer PMS measurement times lead to long particulate filter monitoring durations that may reduce filter monitor completion frequency.
2017-03-28
Journal Article
2017-01-0955
Hai-Ying Chen, Donna Liu, Erich Weigert, Lasitha Cumaranatunge, Kenneth Camm, Patrick Bannon, Julian Cox, Louise Arnold
Abstract The phase-in of US EPA Tier 3 and California LEV III emission standards require further reduction of tailpipe criteria pollutants from automobiles. At the same time, the mandate for reducing Green House Gas (GHG) emissions continuously lowers the exhaust temperature. Both regulations pose significant challenges to emission control catalyst technologies, especially for cold start emissions. The recently developed diesel cold start concept technology (dCSC™) shows promising results. It stores NOx and HC during the cold start period until the downstream catalytic components reach their operating temperatures, when the stored NOx/HC are subsequently released and converted. The technology also has oxidation functions built in and acts as a diesel oxidation catalyst under normal operating conditions. In a US DOE funded project, the diesel cold start concept technology enabled a high fuel efficiency vehicle to achieve emissions targets well below the SULEV30 emission standards.
2017-03-28
Journal Article
2017-01-0958
Christopher Sharp, Cynthia C. Webb, Gary Neely, Jayant V. Sarlashkar, Sankar B. Rengarajan, Seungju Yoon, Cary Henry, Bryan Zavala
Abstract Recent 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, CARB has projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (ARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions. This paper details engine and aftertreatment NOX management requirements and model based control considerations for achieving Ultra-Low NOX (ULN) levels with a heavy-duty diesel engine. Data are presented for several Advanced Technology aftertreatment solutions and the integration of these solutions with the engine calibration.
2017-03-28
Journal Article
2017-01-0956
Christopher Sharp, Cynthia C. Webb, Seungju Yoon, Michael Carter, Cary Henry
Abstract The 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, the California Air Resource Board (ARB) projects that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter (PM) and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
2017-03-28
Journal Article
2017-01-1013
Sunil Kumar Pathak, Yograj Singh, Vineet sood, Salim Abbasbhai Channiwala
Abstract The standard emission protocol including driving cycle is performed for the legislative fuel economy and emission testing of the vehicles in a laboratory. The driving cycles are expected to represent actual driving pattern and energy requirements. However, recent studies showed that the gap between real world driving conditions and the standard driving cycle is widening, as the traffic pattern and vehicle population is varying dynamically and the change in the emission procedures is not synchronized with the same pace. More so, as the process of harmonization of emission legislations is in progress to narrow down the country specific variation of emission regulation, as this will help in the smooth globalization of the automotive business process. The new regulation for in-service conformity is being considered to reduce the emissions in real-world driving.
2017-03-28
Technical Paper
2017-01-1012
Sunil Kumar Pathak, Vineet sood, Yograj Singh, Salim Abbasbhai Channiwala
Abstract In developing countries like India, large numbers of portable gensets are used as a power source due to the scarcity of grid power supply. The portable gensets, ranging from 0.5 kW to 5 kW are very popular in the residential areas, for example, small restaurants, and shopping complexes, etc. These gensets are using various fuels like gasoline, diesel, LPG, and kerosene in small internal combustion engines. Such engines are the significant source of air pollution, as these are running in the vicinity of populated areas and higher human exposure to these pollutants.Theses gensets are regulated by exhaust and noise emissions norms, set by statutory bodies like the ministry of environment and forest and central pollution control board of India.
2017-03-28
Technical Paper
2017-01-1016
Charles Schenk, Paul Dekraker
Abstract EPA has been benchmarking engines and transmissions to generate inputs for use in its technology assessments supporting the Midterm Evaluation of EPA’s 2017-2025 Light-Duty Vehicle greenhouse gas emissions assessments. As part of an Atkinson cycle engine technology assessment of applications in light-duty vehicles, cooled external exhaust gas recirculation (cEGR) and cylinder deactivation (CDA) were evaluated. The base engine was a production gasoline 2.0L four-cylinder engine with 75 degrees of intake cam phase authority and a 14:1 geometric compression ratio. An open ECU and cEGR hardware were installed on the engine so that the CO2 reduction effectiveness could be evaluated. Additionally, two cylinders were deactivated to determine what CO2 benefits could be achieved. Once a steady state calibration was complete, two-cycle (FTP and HwFET) CO2 reduction estimates were made using fuel weighted operating modes and a full vehicle model (ALPHA) cycle simulation.
2017-03-28
Technical Paper
2017-01-1014
David Moyer, Roger Khami, Andrew Bellis, Thomas Luley
Abstract Engine air induction systems hydrocarbon trap (HC trap) designs to limit evaporative fuel emissions, have evolved over time. This paper discusses a range of HC traps that have evolved in engine air induction systems. (AIS) The early zeolite flow through HC trap utilized an exhaust catalyst technology internal stainless steel furnace brazed substrate coated with zeolite media. This HC trap was installed in the AIS clean air tube. This design was heavy, complicated, and expensive but met the urgency of the implementation of the new evaporative emissions regulation. The latest Ford Motor Company HC trap is a simple plastic tray containing activated carbon with breathable non-woven polyester cover. This design has been made common across multiple vehicle lines with planned production annual volume in the millions. The cost of the latest HC trap bypass design is approximately 5% of the original stainless steel zeolite flow through HC trap.
2017-03-28
Journal Article
2017-01-1018
Gianluca Padula, Philipp Schiffmann, Matthieu Lecompte, Olivier Laget
Abstract Ever growing traffic has a detrimental effect on health and environment. In response to climate warming and health concerns, governments worldwide enforce more stringent emission standards. NOx emissions limits are some of the most challenging to meet using fuel-efficient lean-burn engines. The Selective Catalytic Reduction (SCR) is one consolidated NOx after-treatment technique using urea water solution (UWS) injection upstream of the catalytic converter. A recent development of SCR, using gaseous ammonia injection, reduces wall deposit formation and improves the cold-start efficiency. The mixing of gaseous ammonia with the exhaust gases is one of the key challenges that need to be overcome, as the effectiveness of the system is strongly dependent on the mixture uniformity at the inlet of the SCR catalyst.
2017-03-28
Technical Paper
2017-01-1020
Finn Tseng, Imad Makki, Pankaj Kumar, Robert Jentz, Aed Dudar
Abstract Engine-Off Natural Vacuum (EONV) principles based leak detection monitors are designed to determine the presence of a small leak in the fuel tank system. It was introduced to address the ever more stringent emission requirement (currently at 0.02”) for gasoline engine equipped vehicles as proposed by the Environmental Protection Agency (EPA) and California Air Resources Board (CARB) in the United States [2, 3]. Other environmental protection agencies including the ones in EU and China will be adopting similar regulations in the near future. Due to its sensitivity to known noise factors such as the ambient temperature, barometric pressure, drive pattern and parking angle, it has been historically a lower performing monitor that is susceptible to warranty cost or even voluntary recalls. The proposed new model based monitor utilizes production pressure signal and newly instrumented temperature sensors [15].
2017-03-28
Journal Article
2017-01-1017
Michael Rößler, Amin Velji, Corina Janzer, Thomas Koch, Matthias Olzmann
Abstract The proportion of nitrogen dioxide in the engine-out emissions of a Diesel engine is of great importance for the conversion of the total oxides of nitrogen (NOX) emissions in SCR catalysts. Particularly at lower engine loads and lower exhaust temperatures an increase of the already low NO2/NOX fraction will enhance the SCR operation significantly. For this purpose, the understanding of the NO2 formation during the Diesel combustion and expansion stroke is as substantial as being aware of the different thermodynamic impacts and engine operating parameters that affect the formation process. To determine the influences on the NO2 emission level several variation series were performed on a single-cylinder research engine. Especially the charge dilution parameters like the air-fuel ratio and the EGR rate as well as the injection parameters could be identified to be decisive for the NO2 formation.
2017-03-28
Technical Paper
2017-01-1019
Bentolhoda Torkashvand, Andreas Gremminger, Simone Valchera, Maria Casapu, Jan-Dierk Grunwaldt, Olaf Deutschmann
Abstract The effect of increased pressure relevant to pre-turbine catalyst positioning on catalytic oxidation of methane over a commercial Pd-Pt model catalyst under lean conditions is investigated both experimentally and numerically. The possible gas phase reactions due to high temperature and pressure were tested with an inert monolith. Catalyst activity tests were conducted for both wet and dry gas mixtures and the effect of pressure was investigated at 1, 2 and 4 bar. Aside from the water in the inlet stream, the water produced by oxidation of methane in dry feed inhibited the activity of the catalyst as well. Experiments were carried out to check the effect of added water in the concentration range of water produced by methane oxidation on the catalyst activity. Based on the experimental results, a global oxidation rate equation is proposed. The reaction rate expression is first order with respect to methane and -1.15 with respect to water.
2017-03-28
Technical Paper
2017-01-0988
Michael Cunningham, Mi-Young Kim, Venkata Lakkireddy, William Partridge
Abstract Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
2017-03-28
Journal Article
2017-01-0989
Jennifer H. Zhu, Christopher Nones, Yan Li, Daniel Milligan, Barry Prince, Mark Polster, Mark Dearth
Abstract Vehicle interior air quality (VIAQ) measurements are currently conducted using the offline techniques GC/MS and HPLC. To improve throughput, speed of analysis, and enable online measurement, specialized instruments are being developed. These instruments promise to reduce testing cost and provide shortened analysis times at comparable accuracy to the current state of the art offline instruments and methods. This work compares GCMS/HPLC to the Voice200ultra, a specialized real-time instrument utilizing the technique selected ion flow tube mass spectrometry (SIFT-MS). The Voice200ultra is a real-time mass spectrometer that measures volatile organic compounds (VOCs) in air down to the parts-per-trillion level by volume (pptv). It provides instantaneous, quantifiable results with high selectivity and sensitivity using soft chemical ionization.
2017-03-28
Journal Article
2017-01-0990
Carl Paulina, Dan McBryde, Mike Matthews
Abstract Track Road Load Derivations (RLDs) and subsequent load matching on test cell dynamometers has traditionally been conducted using vehicle coastdowns (CDs). Vehicle speed changes during these coastdowns are used to calculate the vehicle mechanical drag forces slowing vehicles when on the road. Track drag force, exerted on a vehicle, can also be quantified by holding a vehicle at a specific steady state speed and measuring the forces required to maintain that speed. This paper focuses on two methods to quantify speed dependent forces which a vehicle must work against when motoring. One method is the traditional coastdown method. The second reference method measures vehicle steady state speed forces necessary to propel the vehicle using both electric vehicle propulsion power flows and dynamometer measured forces. Track CDs require the vehicle to be placed in neutral.
2017-03-28
Technical Paper
2017-01-0991
Sunil Kumar Pathak, Yograj Singh, Vineet sood, Salim Abbasbhai Channiwala
Abstract Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their type approval emission values and reference fuel consumption. Some studies have shown that real world driving emissions are much higher as compared to laboratory measurements. The difference was caused by two important factors, i.e. ambient conditions (temperature and altitude) and actual real-world driving cycles. For this reason, the European Commission had constituted a working group which developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS). RDE test will verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. In RDE test specific boundary conditions of the temperatures, classified as moderate (0 ≤Tamb < 30), Extended (low): -7 ≤Tamb < 0 and Extended (high): 30
2017-03-28
Technical Paper
2017-01-0992
Dereck Dasrath, Richard Frazee, Jeffrey Hwang, William Northrop
Abstract Partially premixed low temperature combustion (LTC) in diesel engines is a strategy for reducing soot and NOX formation, though it is accompanied by higher unburned hydrocarbon (UHC) emissions compared to conventional mixing-controlled diesel combustion. In this work, two independent methods of quantifying light UHC species from a diesel engine operating in early LTC (ELTC) modes were compared: Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). A sampling system was designed to capture and transfer exhaust samples for off-line GC-MS analysis, while the FT-IR sampled and quantified engine exhaust in real time. Three different ELTC modes with varying levels of exhaust gas recirculation (EGR) were implemented on a modern light-duty diesel engine. GC-MS and FT-IR concentrations were within 10 % for C2H2, C2H4, C2H6, and C2H4O. While C3H8 was identified and quantified by the FT-IR, it was not detected by the GCMS.
2017-03-28
Journal Article
2017-01-0994
Tim Nevius, Dario Rauker, Masanobu Akita, Yoshinori Otsuki, Scott Porter, Michael Akard
Abstract Direct measurement of dilution air volume in a Constant Volume emission sampling system may be used to calculate tailpipe exhaust volume, and the total dilution ratio in the CVS. A Remote Mixing Tee (RMT) often includes a subsonic venturi (SSV) flowmeter in series with the dilution air duct. The venturi meter results in a flow restriction and significant pressure drop in the dilution air pipe. An ultrasonic flow meter for a similar dilution air volume offers little flow restriction and negligible pressure drop in the air duct. In this investigation, an ultrasonic flow meter (UFM) replaces the subsonic venturi in a Remote Mixing Tee. The measurement uncertainty and accuracy of the UFM is determined by comparing the real time flow rates and integrated total dilution air volume from the UFM and the dilution air SSV in the RMT. Vehicle tests include FTP and NEDC test cycles with a 3.8L V6 reference vehicle.
2017-03-28
Journal Article
2017-01-0996
Sebastian Gramstat, André Cserhati, Matthias Schroeder, Dmytro Lugovyy
Abstract Brake Particle Emission (BPE) is gaining considerable importance for the friction brake and automotive industry. So far no common approach or legislation for BPE characterization exists although many activities in this field have been started during the last years. Taking this into account, the authors carried out a joint measurement campaign to investigate a new approach regarding the sampling location using a brake dynamometer. During preliminary investigations the influence of the cooling air quality has been examined and a sampling point position validation has been carried out. At first the stabilization behavior for repeated test cycles and variations of volumetric air flow rates are analyzed. As a next step the role of volatile particle emissions is determined. Subsequently, the influence of load history and friction power is studied. Finally results in terms of the role of high temperature applications are presented.
2017-03-28
Journal Article
2017-01-0995
Olle Berg, Lars-Gunnar Simonson
Abstract The Constant Volume Sampler (CVS) is often used to dilute automotive exhaust with ambient air for measurement of emissions from light duty vehicles. A CVS is traditionally equipped with Critical Flow Venturi (CFV) to control and measure total flow. If the CVS is equipped with a Smooth Approach Orifice (SAO) to measure dilution air flow, the exhaust flow of the vehicle can be calculated as the difference between dilution and total flow. Calibration of the CVS and SAO is routinely done using ambient air, but carbon dioxide (CO2) and water vapor in diluted exhaust have an influence on the flow through the CFV. In current US emission legislation the provisions to include water vapor is added. However, if this is done then the effect of carbon dioxide (CO2) in exhaust has not been considered. Further on, when using the CVS to measure exhaust flow, only the CFV will be affected by the diluted exhaust gas composition.
Viewing 31 to 60 of 21875