Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 21878
2017-06-05
Technical Paper
2017-01-1782
Jobin Puthuparampil, Henry Pong, Pierre Sullivan
Large-scale emergency or off-grid power generation is typically achieved through diesel or natural gas generators. To meet governmental emission requirements, emission control systems (ECS) are required. In operation, effective control over the generator’s acoustic emission is also necessary, and can be accomplished within the ECS system. Plug flow mufflers are commonly used, as they provide a sufficient level of noise attenuation in a compact structure. The key design parameter is the transmission loss of the muffler, as this dictates the level of attenuation at a given frequency. This work implements an analytically decoupled solution, using multiple perforate impedance models, through the transfer matrix method (TMM) to predict the transmission loss based on the muffler geometry. An equivalent finite element model is implemented for numerical simulation. The analytical results and numerical results are then evaluated against experimental data from literature.
2017-03-28
Technical Paper
2017-01-1282
Ashish Jaiswal, Tarun Mehra, Monis Alam, Jatin Agarwal, Harshil Kathpalia
Abstract Dependency and increase in use of fossil fuels is leading to its depletion and raises serious environmental concerns. There are international obligations to reduce emissions and requirements to strengthen security of fuel supply which is pressuring the automobile industry to use cleaner and more sustainable fuels. Hydrogen fits these criteria as it is not just an abundant alternative but also a clean propellant and Hydrogen engines represent an economic alternative to fuel cells. In the present investigation, EGR has been used on hydrogen boosted SI engine running on gasoline-methanol and ethanol-gasoline blends to determine the additional advantages of the same compared to pure gasoline operation and gasoline-methanol and ethanol-gasoline blends without EGR.
2017-03-28
Technical Paper
2017-01-1217
Jiangong Zhu, Zechang Sun, Xuezhe Wei, Haifeng Dai
Abstract An alternating current (AC) heating method for a NMC lithium-ion battery with 8Ah capacity is proposed. The effects of excitation frequency, current amplitudes, and voltage limit condition on the temperature evolution are investigated experimentally. Current amplitudes are set to 24A(3C), 40(5C), and 64A(8C), and excitation frequencies are set to 300Hz, 100Hz, 30Hz, 10Hz, 5Hz, and 1Hz respectively. The voltage limitations are necessary to protect cells from overcharge and over-discharge. Therefore the voltage limit condition (4.2V/2.75V, 4.3V/2.65V, and 4.4V/2.55V) are also considered in depth to verify the feasibility of the AC heating method. The temperature rises prominently as the current increases, and the decrement of frequencies also lead to the obvious growth of battery temperature. The battery obtain the maximum temperature rise at 64A and 1Hz, which takes 1800s to heat up the battery from -25°C to 18°C.
2017-03-28
Technical Paper
2017-01-1444
Mitali Chakrabarti, Alfredo Perez Montiel, Israel Corrilo, Jing He, Angelo Patti, James Gebbie, Loren Lohmeyer, Bernd Dienhart, Klaus Schuermanns
CO2 is an alternative to replace the conventional refrigerant (R134a) for the air-conditioning system, due to the high Global Warming Potential (GWP) of R134a. There are concerns with the use of CO2 as a refrigerant due to health risks associated with exposure to CO2, if the concentration of CO2 is over the acceptable threshold. For applications with CO2 as the refrigerant, the risk of CO2 exposure is increased due to the possibility of CO2 leakage into the cabin through the duct system; this CO2 is in addition to the CO2 generated from the respiration of the occupants. The initiation of the leak could be due to a crash event or a malfunction of the refrigerant system. In an automobile, where the interior cabin is a closed volume (with minimal venting), the increase in concentration can be detrimental to the customer but is hard to detect.
2017-03-28
Technical Paper
2017-01-1320
Yucheng Liu
Abstract A cost effective, portable particulate management system was developed, prototyped, and evaluated for further application and commercialization, which could remove and dispose particulate matter suspended in air efficiently and safely. A prototype of the present system was built for experimental assessment and validation. The experimental data showed that the developed particulate management system can effectively clean the air by capturing the particles inside it. Effects of viscosity of filter medium on the performance of the developed system were also discussed. The present system is very flexible, whose size and shape can be scaled and changed to be fit for different applications. Its manufacturing cost is less than $10. Based on the experimental validation results, it was found that the present system can be further developed, commercialized, and applied for a variety of industries.
2017-03-28
Technical Paper
2017-01-1318
Prashant Khapane, Suresh Bhosale
Abstract Robustness to sand dune impact is one of the key requirements for Jaguar Land Rover products. Historically off road vehicles were built on a ladder sub frame; and the steel cross beam at the front provided robust protection for the cooling pack. With the move to monocoque construction, the cooling pack became vulnerable to low speed grounding damage. Unfortunately this vulnerability is not confirmed until later in the program when fully representative vehicles are available, which results in late engineering changes that are expensive, time consuming and stressful. Like all late changes it is rarely optimised for cost and weight. With no historic literature or procedure available, the challenge was to model the physics of sand media and also solve the complex multi-physics problem of impact of the whole vehicle with the sand dune.
2017-03-28
Technical Paper
2017-01-1725
Tanawat Tessathan, Chutiphon Thammasiri, Prabhath De Silva, Rehan Hussain, Nuksit Noomwongs
Abstract It is common for users of commuting passenger cars in Thailand to use the vehicle’s HVAC (Heating, Ventilating and Air Conditioning) system predominantly in recirculation (REC) mode. This minimizes the compressor work, thereby saving fuel, and reduces dust and odor infiltration into the vehicle cabin. The car windows are rarely opened for ventilation purposes, except for exchanges at service stations such as garage entrances and tollway booths. As such, there are few opportunities for fresh air to enter the cabin with the consequent accumulation of CO2 in vehicle cabins due to occupants’ exhalations being well documented. Field experiments conducted showed that the in-vehicle CO2 concentrations could reach up to 15 times that of the ambient concentration level during typical city commutes. Preliminary experiments were also conducted to quantify the air exchanges between the cabin and the ambient when the doors are opened for occupant egression.
2017-03-28
Technical Paper
2017-01-0778
Vishnu Vijayakumar, P. Sakthivel, Bhuvenesh Tyagi, Amardeep Singh, Reji Mathai, Shyam Singh, Ajay Kumar Sehgal
Abstract In the light of major research work carried out on the detrimental health impacts of ultrafine particles (<50 nm), Euro VI emission standards incorporate a limit on particle number, of which ultrafine particles is the dominant contributor. As Compressed Natural Gas (CNG) is a cheaper and cleaner fuel when compared to diesel, there has been a steady increase in the number of CNG vehicles on road especially in the heavy duty segment. Off late, there has been much focus on the nature of particle emissions emanating from CNG engines as these particles mainly fall under the ultrafine particle size range. The combustion of lubricant is considered to be the dominant source of particle emissions from CNG engines. Particle emission due to lubricant is affected by the oil transport mechanisms into the combustion chamber which in turn vary with engine operating conditions as well as with the physico chemical properties of the lubricant.
2017-03-28
Technical Paper
2017-01-0872
Sunil Kumar Pathak, Vineet sood, Yograj Singh, Shubham Gupta, Salim Abbasbhai Channiwala
Abstract In this study, A Gasoline Passenger car (Euro IV) was experimentally investigated for performance and emissions on three different fuels i.e. Gasoline, LPG (Liquefied Petroleum Gas) and DME (Di-methyl ether) blend with a concentration of 20% by mass in LPG (DME20). In particular, emission characteristics (including Hydrocarbon, CO, NOx, and CO2) over the Modified Indian Driving Cycle (MIDC) and fuel economy were investigated at the Vehicle Emission Laboratory (VEL) at the CSIR- Indian Institute of Petroleum, Dehradun, India. The experimental results showed that Vehicle complies with Euro IV legislation on gasoline and LPG fuel, however, showed higher NOx Emissions on DME 20 fuel. LPG kit was reconfigured for DME and LPG blend to bring down the emissions within the specified emission limits. The Emission values observed for DME20 were 0.635 g/km (CO), 0.044 g/km (THC), and 0.014 g/km (NOx) against the Euro IV limits of 1.0 g/km, 0.1 g/km and 0.08 g/km, respectively.
2017-03-28
Technical Paper
2017-01-0875
Valentin Soloiu, Jose Moncada, Martin Muinos, Aliyah Knowles, Remi Gaubert, Thomas Beyerl, Gustavo Molina
Abstract This paper investigates the performance of an indirect injection (IDI) diesel engine fueled with Bu25, 75% ultra-low sulfur diesel (ULSD#2) blended with 25% n-butanol by mass. N-butanol, derivable from biomass feedstock, was used given its availability as an alternative fuel that can supplement the existing limited fossil fuel supply. Combustion and emissions were investigated at 2000 rpm across loads of 4.3-7.2 bar indicated mean effective pressure (IMEP). Cylinder pressure was collected using Kistler piezoelectric transducers in the precombustion (PC) and main combustion (MC) chambers. Ignition delays ranged from 0.74 - 1.02 ms for both operated fuels. Even though n-butanol has a lower cetane number, the high swirl in the separate combustion chamber would help advance its premixed combustion. The heat release rate of Bu25 became initially 3 J/crank-angle-degree (CAD) higher than that of ULSD#2 as load increased to 7.2 bar IMEP.
2017-03-28
Technical Paper
2017-01-0957
Ian Smith, Thomas Briggs, Christopher Sharp, Cynthia Webb
Abstract It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
2017-03-28
Technical Paper
2017-01-0961
Ray Host, Paul Ranspach, Bruce Anderson, Michael Collareno, George Tapos, Cornelius Henderson
Abstract In recent years, the EPA has implemented a requirement for monitoring the air fuel ratio balance in multi-cylinder engines such that those imbalances may not be so great as to cause the tailpipe emissions level to exceed 1.5 times the nominal emissions standard. Such imbalances may be the result of production fuel injector variation, contamination, leaks, or other malfunctions which cause the air or fuel rate to vary across the cylinders controlled by a single oxygen sensor. For many diagnostic systems that rely on the signal from the oxygen sensor, to achieve compliance to the new diagnostic standard, the sensor must see the signal from each cylinder equally. The aftertreatment system must also be robust to individual cylinder air fuel ratio variation. This paper introduces the concept of catalyst zone flow, a condition in which different cylinders of a multi-cylinder engine use different portions of the catalyst brick.
2017-03-28
Technical Paper
2017-01-0908
Fanxu Meng, Asanga Wijesinghe, John Colvin, Carolyn LaFleur, Richard Haut
Abstract Natural gas (NG), which consists of mostly methane, can be co-combusted with diesel fuel in existing compression ignition engines through dual fuel technology with reasonable engine modifications. The removal of short-chain alkanes (e.g. CH4, C2H6 and C3H8) of a dual fuel (natural gas and diesel) engine raises a distinctive topic to the exhaust aftertreatment system (ATS). However, there are few studies reported based on tests with real engine exhaust. This present study focuses on the conversion of short-chain alkanes by Co, Ni and Cu/ZSM-5 catalysts, which are commonly used for oxidation/partial oxidation and reforming. These catalysts are tested with exhaust of a dual-fuel (natural gas and diesel) engine. The complicated and dynamic exhaust composition, determined by the engine loading and natural gas substitution, can result in different components in the exhaust and various conversions for species.
2017-03-28
Technical Paper
2017-01-0580
Zainal Abidin, Kevin Hoag, Nicholas Badain
Abstract The promising D-EGR gasoline engine results achieved in the test cell, and then in a vehicle demonstration have led to exploration of further possible applications. A study has been conducted to explore the use of D-EGR gasoline engines as a lower cost replacement for medium duty diesel engines in trucks and construction equipment. However, medium duty diesel engines have larger displacement, and tend to require high torque at lower engine speeds than their automobile counterparts. Transmission and final drive gearing can be utilized to operate the engine at higher speeds, but this penalizes life-to-overhaul. It is therefore important to ensure that D-EGR combustion system performance can be maintained with a larger cylinder bore, and with high specific output at relatively low engine speeds.
2017-03-28
Technical Paper
2017-01-0636
Vijai Shankar Bhavani Shankar, Nhut Lam, Arne Andersson, Bengt Johansson
Abstract The concept of double compression, and double expansion engine (DCEE) for improving the efficiency of piston reciprocating engines was introduced in SAE Paper 2015-01-1260. This engine configuration has separate high, and low pressure units thereby effectively reducing friction losses for high effective compression ratios. The presence of an additional expander stage also theoretically allows an extra degree of freedom to manipulate the combustion heat release rate so as to achieve better optimum between heat transfer, and friction losses. This paper presents a 1-D modeling study of the engine concept in GT-Power for assessing the sensitivity of engine losses to heat release rate. The simulations were constrained by limiting the maximum pressure to 300 bar.
2017-03-28
Technical Paper
2017-01-0638
Neerav Abani, Nishit Nagar, Rodrigo Zermeno, Michael chiang, Isaac Thomas
Abstract Heavy-duty vehicles, currently the second largest source of fuel consumption and carbon emissions are projected to be fastest growing mode in transportation sector in future. There is a clear need to increase fuel efficiency and lower emissions for these engines. The Opposed-Piston Engine (OP Engine) has the potential to address this growing need. In this paper, results are presented for a 9.8L three-cylinder two-stroke OP Engine that shows the potential of achieving 55% brake thermal efficiency (BTE), while simultaneously satisfying emission targets for tail pipe emissions. The two-stroke OP Engines are inherently more cost effective due to less engine parts. The OP Engine architecture presented in this paper can meet this performance without the use of waste heat recovery systems or turbo-compounding and hence is the most cost effective technology to deliver this level of fuel efficiency.
2017-03-28
Journal Article
2017-01-0052
Andre Kohn, Rolf Schneider, Antonio Vilela, Udo Dannebaum, Andreas Herkersdorf
Abstract A main challenge when developing next generation architectures for automated driving ECUs is to guarantee reliable functionality. Today’s fail safe systems will not be able to handle electronic failures due to the missing “mechanical” fallback or the intervening driver. This means, fail operational based on redundancy is an essential part for improving the functional safety, especially in safety-related braking and steering systems. The 2-out-of-2 Diagnostic Fail Safe (2oo2DFS) system is a promising approach to realize redundancy with manageable costs. In this contribution, we evaluate the reliability of this concept for a symmetric and an asymmetric Electronic Power Steering (EPS) ECU. For this, we use a Markov chain model as a typical method for analyzing the reliability and Mean Time To Failure (MTTF) in majority redundancy approaches. As a basis, the failure rates of the used components and the microcontroller are considered.
2017-03-28
Technical Paper
2017-01-0084
Jiantao Wang, Bo Yang, Jialiang Liu, Kangping Ji, Qilu Wang
Abstract Studies show that driving in foggy environment is a security risk, and when driving in foggy environment, the drivers are easy to accelerate unconsciously. The safety information prompted to the driver is mainly from fog lights, road warning signs and the traffic radio. In order to increase the quality of the safety tips to prevent drivers from unintended acceleration and ensure the security of driving in foggy environment, the study proposes a safety speed assessment method for driving in foggy environment, combining the information of driving environment, vehicle’s speed and the multimedia system. The method uses camera which is installed on the front windshield pillar to collect the image about the environment, and uses the dark channel prior theory to calculate the visibility. And by using the environment visibility, the safety speed can be calculated based on the kinematics theory. And it is appropriate for vehicles which have different braking performance.
2017-03-28
Technical Paper
2017-01-0091
Songyao Zhou, Gangfeng Tan, Kangping Ji, Renjie Zhou, Hao Liu
Abstract The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
2017-03-28
Technical Paper
2017-01-0135
Jose Grande, Julio Abraham Carrera, Manuel Dieguez Sr
Abstract Exhaust Gas Recirculation (EGR) is an effective technique for reducing NOx emissions in order to achieve the ever more stringent emissions standards. This system is widely used in commercial vehicle engines in which thermal loads and durability are a critical issue. In addition, the development deadlines of the new engine generations are being considerably reduced, especially for validation test phase in which customers usually require robust parts for engine validation in the first stages of the project. Some of the most critical issues in this initial phases of program development are heavy boiling and thermal fatigue. Consequently it has been necessary to develop a procedure for designing EGR coolers that are sufficiently robust against heavy boiling and thermal fatigue in a short period of time, even when the engine calibration is not finished and the working conditions of the EGR system are not completely defined.
2017-03-28
Technical Paper
2017-01-0123
Saiful Bari
Abstract In general, diesel engines have an efficiency of about 35% and hence, a considerable amount of energy is expelled to the ambient air. In water-cooled engines, about 25%, 33% and 7% of the input energy are wasted in the coolant, exhaust gas, and friction, respectively. The heat from the exhaust gas of diesel engines can be an important heat source to provide additional power and improve overall engine efficiency. Studies related to the application of recoverable heat to produce additional power in medium capacity diesel engines (< 100 kW) using separate Rankine cycle are scarce. To recover heat from the exhaust of the engine, an efficient heat exchanger is necessary. For this type of application, the heat exchangers are needed to be designed in such a way that it can handle the heat load with reasonable size, weight and pressure drop. This paper describes the study of a diesel generator-set attached with an exhaust heat recovery system.
2017-03-28
Technical Paper
2017-01-0127
Norimitsu Matsudaira, Mitsuru Iwasaki, Junichiro Hara, Tomohiko Furuhata, Tatsuya Arai, Yasuo Moriyoshi, Naohiro Hasegawa
Abstract Among the emerging technologies in order to meet ever stringent emission and fuel consumption regulations, Exhaust Gas Recirculation (EGR) system is becoming one of the prerequisites particularly for diesel engines. Although EGR cooler is considered to be an effective measure for further performance enhancement, exhaust gas soot deposition may cause degradation of the cooling. To address this issue, the authors studied the visualization of the soot deposition and removal phenomena to understand its behavior. Based on thermophoresis theory, which indicates that the effect of thermophoresis depends on the temperature difference between the gas and the wall surface exposed to the gas, a visualization method using a heated glass window was developed. By using glass with the transparent conductive oxide: tin-doped indium oxide, temperature of the heated glass surface is raised.
2017-03-28
Technical Paper
2017-01-0154
Sudhi Uppuluri, Hemant R Khalane, Ajay Naiknaware
Abstract With the upcoming regulations for fuel economy and emissions, there is a significant interest among vehicle OEMs and fleet managers in developing computational methodologies to help understand the influence and interactions of various key parameters on Fuel Economy and carbon dioxide emissions. The analysis of the vehicle as a complete system enables designers to understand the local and global effects of various technologies that can be employed for fuel economy and emission improvement. In addition, there is a particular interest in not only quantifying the benefit over standard duty-cycles but also for real world driving conditions. The present study investigates impact of exhaust heat recovery system (EHRS) on a typical 1.2L naturally aspirated gasoline engine passenger car representative of the India market.
2017-03-28
Technical Paper
2017-01-0169
Ward J. Atkinson, William Raymond Hill, Gursaran D. Mathur
Abstract The EPA has issued regulations in the Final Rulemaking for 2017-2025 Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards (420r12901-3). This document provides credits against the fuel economy regulations for various Air Conditioning technologies. One of these credits is associated with increased use of recirculation air mode, when the ambient is over 24°C (75°F.). The authors want to communicate the experiences in their careers that highlighted issues with air quality in the interior of the vehicle cabin. Cabin contamination sources may result in safety and health issues for both younger and older drivers. Alertness concerns may hinder their ability to operate a vehicle safely.
2017-03-28
Technical Paper
2017-01-0179
Saravanan Sambandan, Manuel Valencia, Sathish Kumar S
Abstract In an automotive air-conditioning (AC) system, the heater system plays a major role during winter condition to provide passenger comforts as well as to clear windshield defogging and defrost. In order to meet the customer satisfaction the heater system shall be tested physically in severe cold conditions to meet the objective performance in wind tunnel and also subjective performance in cold weather regions by conducting on road trials. This performance test is conducted in later stage of the program development, since the prototype or tooled up parts will not be available at initial program stage. The significance of conducting the virtual simulation is to predict the performance of the HVAC (Heating ventilating air-conditioning) system at early design stage. In this paper the development of 1D (One dimensional) model with floor duct systems and vehicle cabin model is studied to predict the performance. Analysis is carried out using commercial 1D simulation tool KULI®.
2017-03-28
Technical Paper
2017-01-0524
Lei Liang, Huaqi Ge, Haiwen Ge, Peng Zhao
Abstract The thermal efficiency of spark-ignition engines can be enhanced by increasing the rate of exhaust gas recirculation (EGR) such that the low temperature combustion regime could be achieved. However, there is an upper limit on the amount of EGR rate, beyond which flame speed becomes slow and unstable, and local quenching starts to hurt the combustion stability, efficiency, and emission. To resolve this issue, the concept of dedicated EGR has been proposed previously to be an effective way to enhance flame propagation under lean burn condition with even higher levels of EGR with reformate hydrogen and carbon monoxide. In this study, the effects of thermochemical fuel reforming on the reformate composition under rich conditions (1.0 < ϕ < 2.0) have been studied using detailed chemistry for iso-octane, as the representative component for gasoline.
2017-03-28
Technical Paper
2017-01-0679
Kelvin Xie, Shui Yu, Xiao Yu, Geraint Bryden, Ming Zheng, Mengzhu Liu
Abstract In order to meet the future carbon dioxide legislation, advanced clean combustion engines are tending to employ low temperature diluted combustion strategies along with intensified cylinder charge motion. The diluted mixtures are made by means of excess air admission or exhaust gas recirculation. A slower combustion speed during the early flame kernel development because of the suppressed mixture reactivity will reduce the reliability of the ignition process and the overall combustion stability. In an effort to address this issue, an ignition strategy using a multi-pole spark igniter is tested in this work. The igniter uses three electrically independent spark gaps to allow three spatially distributed spark discharges. The multi-pole spark strategy displayed more advanced combustion phasing and lower phasing variability compared to single spark discharges.
2017-03-28
Technical Paper
2017-01-0740
Yu Zhang, Yuanjiang Pei, Nayan Engineer, Kukwon Cho, David Cleary
Abstract The current study utilized 3-D computational fluid dynamics (CFD) combustion analysis to guide the development of a viable full load range combustion strategy in a light-duty gasoline compression ignition (GCI) engine. A higher reactivity gasoline that has a research octane number (RON) of 70 was used for the combustion strategy development. The engine has a geometric compression ratio of 14.5 with a piston bowl designed to accommodate different combustion strategies and injector spray patterns. Detailed combustion optimization was focused on 6 and 18 bar gross indicated mean effective pressure (IMEPg) at 1500 rpm through a Design of Experiments approach. Two different strategies were investigated: (a) a late triggering fuel injection with a wide spray angle (combustion strategy #1); and (b) an early triggering fuel injection with a narrow spray angle (combustion strategy #2).
2017-03-28
Technical Paper
2017-01-0741
Xinlei Liu, Laihui Tong, Hu Wang, Zunqing Zheng, Mingfa Yao
Abstract In this work the gasoline compression ignition (GCI) combustion characterized by both premixed gasoline port injection and gasoline direct injection in a single-cylinder diesel engine was investigated experimentally and computationally. In the experiment, the premixed ratio (PR), injection timing and exhaust gas recirculation (EGR) rate were varied with the pressure rise rate below 10 bar/crank angle. The experimental results showed that higher PR and earlier injection timing resulted in advanced combustion phasing and improved thermal efficiency, while the pressure rise rates and NOx emissions increased. Besides, a lowest ISFC of 176 g/kWh (corresponding to IMEP =7.24 bar) was obtained, and the soot emissions could be controlled below 0.6 FSN. Despite that NOx emission was effectively reduced with the increase of EGR, HC and CO emissions were high. However, it showed that GCI combustion of this work was sensitive to EGR, which may restrict its future practical application.
2017-03-28
Technical Paper
2017-01-0702
Raouf Mobasheri, Mahdi Seddiq
Abstract The simultaneous effects of pilot fuel quantity and pilot injection timing on engine performance and amount of pollutant emission have been computationally investigated in a High Speed Direct Injection (HSDI) diesel engine. In this study, a modified parameter called “Homogeneity Factor of in-cylinder charge (HF)” has been applied to analyze the air-fuel mixing and combustion processes. For this purpose, the simulated results has been firstly compared with the experimental data and a good agreement has been achieved for simulating the in-cylinder pressure and the amount of pollutant emissions. Then, nine different strategies based on two variables (the amount of fuel mass in pilot and main injection as well as the dwell between two injections) have been investigated.
Viewing 1 to 30 of 21878