Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 20844
2016-09-27
Technical Paper
2016-01-2143
Yury Zhuk
The EU REACH regulations set September 2017 as a “sunset date” for the use of toxic Hexavalent Chromium salts, and as this date is approaching the aerospace manufacturers are looking for alternative coatings to replace Hard Chrome plating (HCP). HCP is widely used in the aircraft industry to protect steel components against wear, corrosion and galling. Hardide-A CVD Tungsten/Tungsten Carbide coating has met the technical performance requirements as a potential alternative to HCP on some specific Airbus aircraft components. This newly-developed CVD coating is crystallized from the gas phase atom-by-atom, forming a uniform layer on both internal and external surfaces and complex shaped parts, which are impossible to coat by thermal spray coatings, considered to be the best available alternative to HCP. Hardide coating consists of Tungsten Carbide nano-particles dispersed in metal Tungsten matrix, combining hardness with toughness and crack-resistance.
2016-09-27
Technical Paper
2016-01-2144
Galina M. Susova, Rostislav Sirotkin
FMEA methodology is widely used today for solution of practical analysis problems, quality (reliability, risks) evaluation and assurance etc., owing to a clear and simple algorithm and the absence of restrictions on a subject of analysis (i.e., systems, processes, products). However, the efficiency of applying FMEA methodology for problems solution is determined by the choice of elements of analysis, completeness of identification of potential non-conformities, their causes, frequencies and effects. Quality of manufacture is determined by deviations from requirements of design and manufacturing documentation including drawings. In this article a task of ensuring a steady reduction of deviations from these requirements during manufacture through implementation of preventive actions combined with control of time and costs for correction of non-conformances is considered.
2016-09-27
Technical Paper
2016-01-2142
Pavel Lykov PhD, Artem Leyvi, Rustam M. Baytimerov, Aleksei Doikin, Evgeny Safonov
Nowadays the treatment of solid surface by powerful streams of charged particles accelerated with power density of ≥106 W/сm2 is widely used for modifications of different materials properties. Fast electron beam power entry into the target material causes intense thermal and deformation processes. The changing of the structure, the phase composition, the microrelief of the treated surface consequently happens. It is often accompanied by the hardening and increase of the wearing properties. Low-energy high-current electron beam usage is proposed as a finishing treatment of product obtained by selective laser melting of heat-resistant nickel alloy EP648. The subject of the research is the surface properties of the product.
2016-09-27
Technical Paper
2016-01-8014
David A. Schaller, Michael D. Roeth
Fuel efficiency has always been important to fleets and as fuel costs have risen, a plethora of technologies emerged. The industry also cares about sustainability and emissions reductions and now Greenhouse gas regulations exist to even further encourage development and adoption. Recent history has shown a variety of paths and success levels including SCR aftertreatment, 6x2 axles, automated manual transmissions, trailer skirts, low rolling resistance and wide-base tires, idle reduction, alternative fuels and many more. Lab and fleet testing are challenging with a wide variety of applications, configurations and test methods. Real world results don’t always match expectations as some exceed, while others disappoint. We will overview recent fleet history of technical solution adoption rates from detailed fleet surveys. Manufacturers’ contributions in terms of technology development, cost reduction, durability and refinement will be discussed.
2016-09-27
Technical Paper
2016-01-8137
Amrut A. Patki
The overall cost of ownership of a product is dependent on life of the product and cost. To keep the cost of ownership down, it is important to understand how to increase life of product and lower down the required cost at the same time. We are also challenged to reduce the carbon footprint, improved energy requirements to become more sustainable and green. How to achieve both of these necessities? “Remanufacturing” is a simple answer to this complex question. Remanufacturing can improve the useable life of a part or product by multiple times. It is cost effective compare to new part production and reasonably cheaper to end customer. The required energy for remanufacturing is lesser compare to its original manufacturing. Remanufacturing reuses/salvages most of the original contain. Design for Remanufacturing is a fundamental change in design engineering process to meet remanufacturing requirements.
2016-09-20
Technical Paper
2016-01-2004
M. Parvez Alam, Dinesh Manoharan
Design and development of an "Autonomous Amphibious Unmanned Aerial Vehicle (AAUAV)" that can fly autonomously to the polluted water areas where human accessibility is formidable to test the water quality. The AAUAV system is an integrated Multi-copter with a Hovercraft base to facilitate easy landing and navigation on the water surface. The innovative L1 adaptive control strategy will enable the vehicle to switch between the Multi-copter and Hovercraft dynamics automatically. This robust system will have both Hyper Spectral Imaging sensors & Water Quality Analyzing Sensors on-board to analyze the polluted content of the water in real time and it can be Geo-tagged. This system also offers the collection and storage of water samples from the polluted sites for the further comprehensive research at the laboratory. AAUAV system is a novel solution to the polluted environment by a complete integrated system.
2016-09-18
Technical Paper
2016-01-1959
Laura Sguotti, Davide Olivieri, Domenico Bosco
For the first time in history, in December 2015, 195 countries reached a universal and legally binding global climate agreement at the Paris climate conference (COP21). The agreement is challenging, as the target is to keep the global warming below two degrees Celsius by 2100, compared to the temperature in pre-industrial levels. Without a global action, current previsions for global warming are above four degree Celsius. Two thirds of the greenhouse gases, responsible for the global warming, are carbon dioxide (CO2) mainly coming from the combustion of fossil fuels. Transportation contributes to around 30% (reference U.S.) of the CO2 emissions. It is clear how important it is for original equipment manufacturers (OEMs) to reduce the emission of their vehicles. SKF is firmly committed to take its responsibility to actively contribute to a better, cleaner future. SKF BeyondZero is the Group's strategy to increase the positive impact on the environment.
2016-09-18
Technical Paper
2016-01-1914
Pavlina Peikertova, Miroslava Kuricova, Alena Kazimirova, Jana Tulinska, Magdalena Barancokova, Aurelia Liskova, Marta Staruchova, Mira Horvathova, Silvia Ilavska, Eva Jahnova, Michaela Szabova, Miroslav Vaculik, Jana Kukutschova, Karla Kucova, Maria Dusinska, Peter Filip
Particulate air pollution from road traffic currently represents significant environmental and health issue. Attention is also paid to the “non-exhaust pollution sources,” which includes brake wear debris. During each brake application, the airborne and nonairborne particles are emitted into the environment due to wear. High temperatures and pressures on the friction surfaces initiate chemical and morphological changes of the initial components of brake pads and rotating counterparts. Understanding of impact of matter released from brakes on health is vital. Numerous studies clearly demonstrated that particulate matter caused potential adverse effects related to cytotoxicity, oxidative stress, stimulation of proinflammatory factors, and mutagenicity on the cellular level. This paper compiles our main results in the field of genotoxicity, immunotoxicity, and aquatic toxicity of airborne brake wear particles.
2016-06-15
Technical Paper
2016-01-1761
Antonio Acri, Guenter Offner, Thomas Resch, Eugene Nijman, Roberto Corradi
Abstract For vibration and acoustics vehicle development, one of the main challenges is the identification and the analysis of the noise sources, which is required in order to increase the driving comfort and to meet the stringent legislative requirements for the vehicle noise emission. Transfer Path Analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. This technique is commonly applied on test measurements, based on prototypes, at the end of the design process. In order to apply such methodology already within the design process, a contribution analysis method based on dynamic substructuring of a multibody system is proposed with the aim of improving the quality of the design process for vehicle NVH assessment and to shorten development time and cost.
2016-06-15
Technical Paper
2016-01-1841
Peter R. Hooper
Powertrain system duplication for hybrid electric vehicles and range-extenders presents serious cost challenges. Cost increase can be mitigated by reducing the number of cylinders but this usually has a negative impact on noise, vibration and harshness (NVH) of the vehicle system. This paper considers a novel form of two-stroke cycle engine offering potential for low emissions, reduced production cost and high potential vehicle efficiency. The engine uses segregated pump charging via the use of stepped pistons offering potential for low emissions. Installation as a power plant for automotive hybrid electric vehicles or as a range-extender for electric vehicles could present a low mass solution addressing the drive for vehicle fleet CO2 reduction. Operation on the two-stroke cycle enables NVH advantages over comparable four-stroke cycle units, however the durability of conventional crankcase scavenged engines can present significant challenges.
2016-06-15
Technical Paper
2016-01-1843
Jan Krueger, Viktor Koch, Ralf Hoelsch
Abstract Over the past few years, the measurement procedure for the pass-by noise emission of vehicles was changed and new limit values have been set by the European Parliament which will come into force within the next few years. Moreover, also the limits for chemical emissions such as NOx, particulates and CO2 have been lowered dramatically and will continue to be lowered according to a roadmap decided not only in Europe but also in other markets throughout the world. This will have an enormous impact on the design of future passenger cars and in particular on their powertrains. Downsizing, downspeeding, forced induction, and hybridization are among the most common general technology trends to keep up with these challenges. However, most of these fuel saving and cleaner technologies also have negative acoustic side effects.
2016-05-18
Journal Article
2016-01-9109
Roxanna Moores, Nicholas Cernansky, Gregory Birky, Timothy Suder
Abstract In this study a 1-dimensional computational model of a Fe-Zeolite catalyst, implementing conservation of mass, species and energy for both gas and catalyst surface phases has been developed to simulate emissions conversion performance. It is applied to both a fresh catalyst and one that has been aged through exposure to the exhaust system of a Heavy Duty Diesel engine performing in the field for 376K miles. Details of the chemical kinetics associated with the various NOx reduction reactions in the two Fe-Zeolite configurations have been examined and correlated with data from a synthetic gas rig test bench. It was found that the Standard reaction, (4NH3 + 4NO + O2 → 2N2 + 6H2O), which is one of the main reactions for NOx reduction, degraded significantly at the lower temperatures for the aged system.
2016-04-05
Technical Paper
2016-01-0890
Richard Butcher
Abstract Measuring lubricant related fuel economy of internal combustion [IC] engines presents technical challenges, due to the relatively small differences attributable to lubricants. As engine technology progresses, large benefits become harder to find; so the importance of precise measurement increases. Responding to the challenge of meeting CO2 targets, many successful IC engine technologies have been deployed; these include downsizing/rightsizing[1], mechanical efficiency improvements, advanced charging and combustion systems, thermal management, sophisticated electronic control and calibration. These technologies have been deployed against a back-drop of increasingly stringent emission requirements. Increasing attention is focused on technologies which offer smaller but important contributions. The search for smaller improvements combined with growing engine and vehicle technology complexity increases the challenge of producing high quality data.
2016-04-05
Technical Paper
2016-01-0906
Robert J. Middleton, Omnaath Guptha Harihara Gupta, Han-Yuan Chang, George Lavoie, Jason Martz
Abstract This study evaluates powertrain technologies capable of reducing light duty vehicle fuel consumption for compliance with 2025 CAFE standards. A fully integrated GT-Power engine model with physics based sub-models was developed to capture any positive or negative synergies between the technologies. The two zone multi-cylinder engine model included typical thermodynamic subroutines, with predictive combustion, flame quench and knock models, along with map-based turbocharger models to capture key combustion and efficiency behaviors. The engine model was calibrated to data from a boosted GDI engine and exercised through one series of current and production viable technology configurations for 2025 regulations.
2016-04-05
Technical Paper
2016-01-0904
Michael Martin, Arno Eichberger, Eranda Dragoti-Cela
Abstract A worldwide decrease of legal limits for CO2 emissions and fuel economy led to stronger efforts for achieving the required reductions. The task is to evaluate technologies for CO2 reduction and to define a combination of such measures to ensure the targets. The challenge therefor is to find the optimal combination with respect to minimal costs. Individual vehicles as well as the whole fleet have to be considered in the cost analysis - which raises the complexity. Hereby, the focus of this work is the consideration and improvement of a new model series against the background of a fleet and the selection of measures. The ratio between the costs and the effect of the measures can be different for the each vehicle configuration. Also, the determination of targets depends whether a fleet or an individual vehicle is selected and has impact on the selection and optimization process of those measures.
2016-04-05
Technical Paper
2016-01-0875
Ludvig Adlercreutz, Andreas Cronhjort, Johannes Andersen, Roy Ogink
Abstract With alternative fuels having moved more into market in light of their reduction of emissions of CO2 and other air pollutants, the spark ignited internal combustion engine design has only been affected to small extent. The development of combustion engines running on natural gas or Biogas have been focused to maintain driveability on gasoline, creating a multi fuel platform which does not fully utilise the alternative fuels’ potential. However, optimising these concepts on a fundamental level for gas operation shows a great potential to increase the level of utilisation and effectiveness of the engine and thereby meeting the emissions legislation. The project described in this paper has focused on optimising a combustion concept for CNG combustion on a single cylinder research engine. The ICE’s efficiency at full load and the fuels characteristics, including its knock resistance, is of primary interest - together with part load performance and overall fuel consumption.
2016-04-05
Technical Paper
2016-01-0877
Preetham Churkunti, Jonathan M. S. Mattson, Christopher Depcik
Abstract Biodiesel is a potential alternative to Ultra Low Sulfur Diesel (ULSD); however, it often suffers from increased fuel consumption in comparison to ULSD when injection timings and/or pressures are similar. To decrease fuel consumption, increasing biodiesel injection pressure has been found to mitigate the issues associated with its relatively high viscosity and lower energy content. When doing so, the literature indicates decreased emissions, albeit with potentially greater nitrogen oxide (NOx) emissions in contrast to ULSD. In order to better understand the trade-off between fuel consumption and NOx emissions, this study explores the influence of fuel injection pressure on ULSD, Waste Cooking Oil (WCO) biodiesel, and their blends in a single-cylinder compression ignition (CI) engine. In particular, fuel injection pressures and timings for WCO biodiesel and blended fuels are adjusted to attempt to mimic the in-cylinder pressure profile of operation using ULSD.
2016-04-05
Technical Paper
2016-01-0888
Kenji Matsumoto, Tatsuya Tokunaga, Masahiko Kawabata
Abstract Several attempts have been reported in the past decade or so which measured the sizes of particles in lubricant oil in order to monitor sliding conditions (1). Laser light extinction is typically used for the measurement. It would be an ideal if only wear debris particles in lubricant oil could be measured. However, in addition to wear debris, particles such as air bubbles, sludge and foreign contaminants in lubricant oil are also measured. The wear debris particles couldn't have been separated from other particles, and therefore this method couldn't have been applied to measurement devices for detection when maintenance service is required and how the wear state goes on. It is not possible to grasp the abnormal wear in real time by the conventional techniques such as intermittent Ferro graphic analysis. In addition, it is no way to detect which particle size to be measured by the particle counter alone.
2016-04-05
Technical Paper
2016-01-0887
Erik Svensson, Changle Li, Sam Shamun, Bengt Johansson, Martin Tuner, Cathleen Perlman, Harry Lehtiniemi, Fabian Mauss
Abstract Methanol is today considered a viable green fuel for combustion engines because of its low soot emissions and the possibility of it being produced in a CO2-neutral manner. Methanol as a fuel for combustion engines have attracted interest throughout history and much research was conducted during the oil crisis in the seventies. In the beginning of the eighties the oil prices began to decrease and interest in methanol declined. This paper presents the emission potential of methanol. T-Φ maps were constructed using a 0-D reactor with constant pressure, temperature and equivalence ratio to show the emission characteristics of methanol. These maps were compared with equivalent maps for diesel fuel. The maps were then complemented with engine simulations using a stochastic reactor model (SRM), which predicts end-gas emissions. The SRM was validated using experimental results from a truck engine running in Partially Premixed Combustion (PPC) mode at medium loads.
2016-04-05
Technical Paper
2016-01-1010
Roberto Aliandro Varella, Gonçalo Gonçalves, Gonçalo Duarte, Tiago Farias
Abstract Internal combustion engine (ICE) cold-start is an issue that occurs either in conventional and hybrid powertrains before the ICE reaches its normal operation temperature, affecting both fuel consumption due to higher heat losses, and pollutant emissions due to low catalytic converter temperatures. The study of cold start emissions on conventional powertrains has been extensively addressed, although typically under laboratorial conditions, however studies addressing the impact of this phenomenon on hybrid powertrains is still reduced. Hybrid electric (HEV) and plug-in hybrid electric (PHEV) vehicles usually incorporate technologies to manage the battery and ICE power supply leading to ICE on/off operation under regular driving, which can result in a decrease on catalytic converter efficiency (due to cooling).
2016-04-05
Technical Paper
2016-01-1006
Cary Henry, Svitlana Kroll, Vinay Premnath, Ian Smith, Peter Morgan, Imad Khalek
Abstract In this study, the criteria pollutant emissions from a light duty vehicle equipped with Dedicated EGR® technology were compared with emissions from an identical production GDI vehicle without externally cooled EGR. In addition to the comparison of criteria pollutant mass emissions, an analysis of the gaseous and particulate chemistry was conducted to understand how the change in combustion system affects the optimal aftertreatment control system. Hydrocarbon emissions from the vehicle were analyzed usin g a variety of methods to quantify over 200 compounds ranging in HC chain length from C1 to C12. The particulate emissions were also characterized to quantify particulate mass and number. Gaseous and particulate emissions were sampled and analyzed from both vehicles operating on the FTP-75, HWFET, US06, and WLTP drive cycles at the engine outlet location.
2016-04-05
Technical Paper
2016-01-1007
Benjamin Ellies, Charles Schenk, Paul Dekraker
Abstract As part of its technology assessment for the upcoming midterm evaluation (MTE) of the 2022-2025 Light-Duty Vehicle Greenhouse Gas (LD GHG) emissions standards, EPA has been benchmarking engines and transmissions to generate inputs for use in its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) model, a physics-based, forward-looking, full vehicle computer simulation tool. One of the most efficient engines today, a 2.0L Mazda SkyActiv engine, is of particular interest due to its high geometric compression ratio and use of an Atkinson cycle. EPA benchmarked the 2.0L SkyActiv at its National Vehicle and Fuel Emissions laboratory. EPA then incorporated ALPHA into an engine dynamometer control system so that vehicle chassis testing could be simulated with a hardware-in-the-loop (HIL) approach.
2016-04-05
Technical Paper
2016-01-1008
Piotr Bielaczyc, Joseph Woodburn, Andrzej Szczotka
Abstract Concern over greenhouse gas (GHG) emissions and air quality has made exhaust emissions from passenger cars a topic interest at an international level. This situation has led to the re-evaluation of testing procedures in order to produce more “representative” results. Laboratory procedures for testing exhaust emissions are built around a driving cycle. Cycles may be developed in one context but later used in another: for example, the New European Driving Cycle (NEDC) was not developed to measure fuel consumption, but has ended up being used to that end. The new Worldwide harmonized Light vehicles Test cycle (the WLTC) will sooner or later be used for measuring regulated exhaust emissions. Legal limits for emissions of regulated pollutants are inherently linked to the test conditions (and therefore to the driving cycle); inter-cycle correlations for regulated pollutants are an important research direction.
2016-04-05
Technical Paper
2016-01-1009
Xin Wang, Yunshan Ge, Chuanzhen Zhang, Jia Liu, Zihang Peng, Huiming Gong
Abstract Along with the booming expansion of private car preservation, many Chinese cities are now struggling with hazy weather and ground-level ozone contamination. Although central government has stepped up efforts to purify skies above China, counter-strategies to curb ground-level ozone is comparatively weak. By using maximum incremental reactivity (MIR) method, this paper estimated the ozone forming potential for twenty-five Euro-3 to Euro-5 passenger cars burning conventional gasoline, methanol-gasoline, ethanol-gasoline, neat methanol and compressed natural gas (CNG). The results showed that, for all the fuel tested, VOC/NOx ratios and SR values decreased with the upgrading of emission standard. Except for Euro-3 M100 and Euro-4 M85, SR values for alternative fuel were to different degrees smaller than those for gasoline. When the emission standard was shifted from Euro-4 to Euro-5, OFP values estimated for gasoline vehicle decreased.
2016-04-05
Technical Paper
2016-01-1002
Benjamin Kaal, Michael Grill, Michael Bargende
Abstract This paper presents a quasi-dimensional emission model for calculating the transient nitric oxide emissions of a diesel engine. Using conventional and high-speed measurement technology, steady-state and transient emissions of a V6 diesel engine were examined. Based on measured load steps and steady-state measurements a direct influence of the combustion chamber wall temperature on the nitric oxide emissions was found. Load steps to and from, as well as steady-state measurements down to almost stoichiometric global combustion air ratios were used to examine the behavior of nitric oxide formation under these operating conditions. An existing emission model was expanded in order to represent the direct influence of the combustion chamber wall temperature on the nitric oxide emissions as well as enabling the forecasting of nitric oxide emissions at low global combustion air ratios: Both particularly important aspects for the simulation of transient emissions.
2016-04-05
Technical Paper
2016-01-1003
Fabian Fricke, Om Parkash Bhardwaj, Bastian Holderbaum, Terrence Scofield, Elmar Grußmann, Marco Kollmeier
Abstract Improvements in the efficiency of internal combustion engines has led to a reduction in exhaust gas temperatures. The simultaneous tightening of exhaust emission limits requires ever more complex emission control methods, including aftertreatment whose efficiency is crucially dependent upon the exhaust gas temperature. Double-walled (also called air-gap) exhaust manifold and turbine housing modules made from sheet metal have been used in gasoline engines since 2009. They offer the potential in modern Diesel engines to reduce both the emissions of pollutants and fuel consumption. They also offer advantages in terms of component weight and surface temperatures in comparison to cast iron components. A detailed analysis was conducted to investigate the potential advantages of insulated exhaust systems for modern diesel engines equipped with DOC and SCR coated DPF (SDPF).
2016-04-05
Technical Paper
2016-01-1004
Somendra Pratap Singh, Shikhar Asthana, Shubham Singhal, Naveen Kumar
Abstract The energy crisis coupled with depleting fuel reserves and rising emission levels has encouraged research in the fields of performance enhancement, emission reduction technologies and engineering designs. The present paper aims primarily to offset the problem of high emissions and low efficiencies in low cost CI engines used as temporary power solutions on a large scale. The investigation relates to the low cost optimization of an intake runner having the ability to vary the swirl ratio within the runner. Test runs reveal that NOx and CO2 follow a relatively smaller gradient of rise and fall in their values depending on the configuration; whereas UHC and CO have a rapid changes in values with larger gradients. However, in a relative analysis, no configuration was able to simultaneously reduce all emission parameters and thus, there exists a necessity to find an optimized configuration as a negotiation between the improved and deteriorated parameters.
2016-04-05
Technical Paper
2016-01-0996
Thomas L. Darlington, Dennis Kahlbaum, Shon Van Hulzen, Robert L. Furey
Abstract In 2008-2009, EPA and DOE tested fifteen 2008 model year Tier 2 vehicles on 27 fuels. The fuels were match-blended to specific fuel parameter targets. The fuel parameter targets were pre-selected to represent the range of fuel properties from fuel survey data from the Alliance of Automobile Manufacturers for 2006. EPA's analysis of the EPAct data showed that higher aromatics, ethanol, and T90 increase particulate matter (PM) emissions. EPA focused their analysis only on the targeted fuel properties and their impacts on emissions, namely RVP, T50, T90, aromatics, and ethanol. However, in the process of fuel blending, at least one non-targeted fuel property, the T70 distillation parameter, significantly exceeded 2006 Alliance survey parameters for two of the E10 test fuels. These two test fuels had very high PM emissions. In this study, we examine the impacts of adding T70 as an explanatory variable to the analysis of fuel effects on PM.
2016-04-05
Technical Paper
2016-01-0998
Shuli Wang, Xinda Zhu, L.M.T. Somers, L.P.H. de Goey
In this work, the influences of aromatics on combustion and emission characteristics from a heavy-duty diesel engine under various loads and exhaust gas recirculation (EGR) conditions are investigated. Tests were performed on a modified single-cylinder, constant-speed and direct-injection diesel engine. An engine exhaust particle sizer (EEPS) was used in the experiments to measure the size distribution of engine-exhaust particle emissions in the range from 5.6 to 560 nm. Two ternary blends of n-heptane, iso-octane with either toluene or benzaldehyde denoted as TRF and CRF, were tested, diesel was also tested as a reference. Test results showed that TRF has the longest ignition delay, thus providing the largest premixed fraction which is beneficial to reduce soot. However, as the load increases, higher incylinder pressure and temperature make all test fuels burn easily, leading to shorter ignition delays and more diffusion combustion.
2016-04-05
Technical Paper
2016-01-0999
Yuesen Wang, Xingyu Liang, Ge-Qun Shu, lihui Dong, Hanzhengnan Yu, Yajun Wang, Zhijun Li
Abstract In this paper, the influence of sulfur and ash fraction of lubricating oil on particle emissions was investigated via experimental works. Especially, we focus on the characterizations like size distribution, morphology and element composition in diesel particles. All of the research was done on a two-cylinder diesel engine under different load conditions. Five kinds of lubricating oils with different levels of sulfur and ash fraction were used in this study, among which a kind of 5W-30 (ACEA, C1) oil was used as baseline oil. Diesel primary particles were collected by thermophoretic system, and analyzed by transmission electron microscopy and energy dispersive X-ray spectrum technique, respectively. Conclusions drawn from the experiments indicate that the sulfur and ash change the primary particle emissions directly.
Viewing 1 to 30 of 20844