Criteria

Text:
Topic:
Content:
Display:

Results

Viewing 1 to 30 of 5766
CURRENT
2017-07-19
Standard
AIR4174A
The purpose of this SAE Aerospace Information Report (AIR) is to provide management, designers, and operators with information to assist them to decide what type of power train monitoring they desire. This document is to provide assistance in optimizing system complexity, performance and cost effectiveness. This document covers all power train elements from the point at which the gas generator energy is transferred to mechanical energy for propulsion purposes. The document covers engine power train components, their interfaces, transmissions, gearboxes, hanger bearings, shafting and associated rotating accessories, propellers and rotor systems as shown in Figure 1. This document addresses application for rotorcraft, turboprop, and propfan drive trains for both commercial and military aircraft. Information is provided to assist in; a. Defining technology maturity and application risk b. Cost benefit analysis (Value analysis) c. Selection of system components d.
2017-07-17
WIP Standard
AS7473C
This procurement specification covers bolts and screws made from carbon steels, high expansion steels, or corrosion and heat resistant steels of the type identified under the Unified Numbering System as follows: a. UNS K00802 - carbon steel (AMS 5061) b. UNS K91505 - high expansion steel (AMS 5624) c. UNS K91456 - high expansion steel (AMS 5625) d. UNS S32100 - corrosion and heat resistant steel (AMS 5645) e. UNS S34700 - corrosion and heat resistant steel (AMS 5646)
2017-07-17
WIP Standard
AS7474D
This specification covers bolts and screws made from a corrosion and heat resistant, martensitic iron base alloy of the type identified under the Unified Numbering System as UNS S17400. The following specification designations and their properties are covered: AS7474 140 ksi minimum ultimate tensile strength at room temperature 100 ksi stress corrosion test 72 ksi to 7.2 ksi tension-tension fatigue; AS7474-1 140 ksi minimum ultimate tensile strength at room temperature 100 ksi stress corrosion test 88 ksi minimum ultimate shear strength at room temperature.

Primarily for aerospace propulsion system applications where corrosion resistance and high strength in tension is required in temperatures not to exceed 600 °F.

CURRENT
2017-07-14
Standard
J1754/1_201707
This SAE Standard covers steel wire reinforced rubber hose assemblies using connectors specified in SAE J516 for use in hydraulic systems using petroleum based hydraulic fluids with maximum working pressures of 1.7 to 42 MPa. See Part 2, Table 7 for hose operating temperature ranges and identification codes. NOTE: Working pressure is defined as maximum system pressure.
2017-07-14
WIP Standard
J814

This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants see ASTM D 3306 and ASTM D 4985.

The values presented describe desirable basic properties. The results from laboratory tests are not conclusive, and it should be recognized that the final selection of satisfactory coolants can be proven only after a series of performance tests in vehicles.

The document describes in general the necessary maintenance procedures for all engine coolants to insure proper performance as well as special requirements for coolants for heavy-duty engines.

This document does not cover maintenance of engine cooling system component parts.

CURRENT
2017-07-12
Standard
J1634_201707
This SAE Recommended Practice establishes uniform procedures for testing Battery Electric Vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the Federal Emission Test Procedure (FTP) using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Realistic alternatives should be allowed for new technology. Evaluations are based on the total vehicle system's performance and not on subsystems apart from the vehicle.
CURRENT
2017-07-10
Standard
J3109_201707
The intention of this standard is to establish a framework to measure the efficiency of PWM HVAC Blower Controllers and Brushless DC Motor Controllers and define a usage based overall efficiency. This result can then be used by vehicle OEMs to demonstrate compliance towards requirements or benchmarks established by regulatory agencies.
CURRENT
2017-07-06
Standard
AIR6297
This document describes a method to calculate noise level adjustments at locations behind an airplane (described by an angular offset or directivity) at the start of takeoff roll (SOTR). This method is derived from empirical data from jet aircraft (circa 2004), most of which are configured with wing-mounted engines with high by-pass ratios (Lau, et al., 2012). Methods are also described which apply to modern turboprop aricraft.
2017-07-06
WIP Standard
AMS7464D
This specification covers premium quality bolts and screws made from a low-alloy, heat-resistant steel and having threads of UNJ (MIL-S-8879) form.
2017-06-28
WIP Standard
J2907
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
2017-06-27
WIP Standard
J139
To provide standard terminology and definitions with regard to ignition systems for spark-ignited internal combustion engines.
CURRENT
2017-06-26
Standard
J1342_201706
The techniques outlined in this SAE Recommended Practice were developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for engine cooling systems using fixed ratio, viscous or speed modulating, and mechanical on/off fan drives including electronically activated fan drives.
2017-06-26
WIP Standard
ARP6481
This SAE Aerospace Recommended Practice (ARP) describes a method for assessing size dependent particle losses in a sampling and measurement system of specified geometry utilizing on the non-volatile PM (nvPM) mass and number concentrations measured at the end of the sampling system. The penetration functions of the sampling and measurement system may be determined either by measurement or by analytic computational methods. Loss mechanisms including thermophoretic (which has a very weak size dependence) and size dependent losses are considered in this method along with the uncertainties due to both measurement error and the assumptions of the method. The results of this system loss assessment allow development of estimated correction factors for nvPM mass and number concentrations to account for the system losses facilitating estimation of the nvPM mass and number at the engine exhaust nozzle exit plane.
2017-06-21
WIP Standard
AIR1419C
This document addresses many of the significant issues associated with effects of inlet total-pressure distortion on turbine-engine performance and stability. It provides a review of the development of techniques used to assess engine stability margins in the presence of inlet total-pressure distortion. Specific performance and stability issues that are covered by this document include total-pressure recovery and turbulence effects and steady and dynamic inlet total-pressure distortion.
2017-06-21
WIP Standard
AS5188C
SCOPE IS UNAVAILABLE.
CURRENT
2017-06-19
Standard
AS7112/4A
This document has been declared "CANCELLED" as of June 2017 and has been superseded by PRI AC7112/4. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index noting that it is superseded by PRI AC7112/4. Cancelled specifications are available from SAE.
2017-06-19
WIP Standard
J2836/6
This SAE Information Report SAE J2836/6™ establishes use cases for communication between plug-in electric vehicles and the EVSE, for wireless energy transfer as specified in SAE J2954. It addresses the requirements for communications between the on-board charging system and the Wireless EV Supply Equipment (WEVSE) in support of detection of the WEVSE, the charging process, and monitoring of the charging process. Since the communication to the charging infrastructure and the power grid for smart charging will also be communicated by the WEVSE to the EV over the wireless interface, these requirements are also covered. However, the processes and procedures are expected to be identical to those specified for V2G communications specified in SAE J2836/1. Where relevant, the specification notes interactions that may be required between the vehicle and vehicle operator, but does not formally specify them.
2017-06-19
WIP Standard
J2847/6
This SAE Recommended Practice SAE J2847-6 establishes requirements and specifications for communications messages between wirelessly charged electric vehicles and the wireless charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This is the 1st version of this document and captures the initial objectives of the SAE task force. The intent of step 1 is to record as much information on “what we think works” and publish. The effort continues however, to step 2 that allows public review for additional comments and viewpoints, while the task force also continues additional testing and early implementation. Results of step 2 effort will then be incorporated into updates of this document and lead to a republished version. The next revision will address the harmonization between SAE J2847-6 and ISO/IEC 15118-7 to ensure interoperability.
CURRENT
2017-06-16
Standard
CPYM2_17MX800V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2017-06-16
Standard
CPYM2_17MX825V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2017-06-16
Standard
CPYM1_17MX825V
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2017-06-16
Standard
CPYM1_17MX800V
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2017-06-08
Standard
AS7112/1A
This document has been declared "CANCELLED" as of June 2017 and has been superseded by PRI AC7112/1. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index noting that it is superseded by PRI AC7112/1. Cancelled specifications are available from SAE.
CURRENT
2017-06-08
Standard
AS7112A
This document has been declared "CANCELLED" as of June 2017 and has been superseded by PRI AC7112. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index noting that it is superseded by PRI AC7112. Cancelled specifications are available from SAE.
CURRENT
2017-06-05
Standard
AS14227D
SCOPE IS UNAVAILABLE.
CURRENT
2017-06-05
Standard
J1536_201706
This SAE Recommended Practice is intended for use by engine manufacturers in determining the Fluidity/Miscibility Grades to be recommended for use in their engines, and by oil marketers in formulating and labeling their products.
2017-06-01
WIP Standard
AIR4250C
This report lists documents that aid and govern the design, development, and utilization of aerospace electronic engine control systems. The report lists the military and industry specifications and standards that are commonly used in electronic engine control system design. However, this list is not necessarily complete. The specifications and standards section has been divided into two parts; a master list arranged numerically and a categorized list that provides a functional breakdown and cross reference of these documents. For specifications and standards, the issue available during the latest revision to this document is listed. Details of current revisions for many documents are available in the Department of Defense Index of Specifications and Standards (DODISS).
Viewing 1 to 30 of 5766