Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 34217
2017-12-06
Technical Paper
2017-01-5100
Thorsten Langhorst, Olaf Toedter, Thomas Koch, Patrick Gonner, Matthew Borst, Richard Morton
Abstract Particulates and nitrogen oxides comprise the main emission components of the Diesel combustion and therefore are subject to exhaust emission legislation in respective applications. Yet, with ever more stringent emission standards and test-procedures, such as in passenger vehicle applications, resulting exhaust gas after-treatment systems are quite complex and costly. Hence, new technologies for emission control have to be explored. The application of non-thermal plasma (NTP) as a means to perform exhaust gas after-treatment is one such promising technology. In several publications dealing with NTP exhaust gas after-treatment the plasma state was generated via dielectric barrier discharges. Another way to generate a NTP is by a corona high-frequency discharge. Hence, in contrast to earlier publications, the experiments in this publication were conducted on an operated series-production Diesel engine with an industrial pilottype corona ignition system.
2017-11-15
Journal Article
2017-32-0119
Akira Iijima, Takuya Izako, Takahiro Ishikawa, Takahiro Yamashita, Shuhei Takahata, Hiroki Kudo, Kento Shimizu, Mitsuaki Tanabe, Hideo Shoji
Engine knock is the one of the main issues to be addressed in developing high-efficiency spark-ignition (SI) engines. In order to improve the thermal efficiency of SI engines, it is necessary to develop effective means of suppressing knock. For that purpose, it is necessary to clarify the mechanism generating pressure waves in the end-gas region. This study examined the mechanism producing pressure waves in the end-gas autoignition process during SI engine knock by using an optically accessible engine. Occurrence of local autoignition and its development process to the generation of pressures waves were analyzed under several levels of knock intensity. The results made the following points clear. It was observed that end-gas autoignition seemingly progressed in a manner resembling propagation due to the temperature distribution that naturally formed in the combustion chamber. Stronger knock tended to occur as the apparent propagation speed of autoignition increased.
2017-11-15
Journal Article
2017-32-0120
Go Asai, Yusuke Watanabe, Shuntaro Ishiguro, Gen Shibata, Hideyuki Ogawa, Yoshimitsu Kobashi
To extend the operational range of premixed diesel combustion, fuel reformation by piston induced compression of rich homogeneous air-fuel mixtures was conducted in this study. Reformed gas compositions and chemical processes were first simulated with the chemistry dynamics simulation, CHEMKIN Pro, by changing the intake oxygen content, intake air temperature, and compression ratio. A single cylinder diesel engine was utilized to verify the simulation results. With the simulation and experiments, the characteristics of the reformed gas with respect to the reformer cylinder operating condition were obtained. Further, the thermal decomposition and partial oxidation reaction mechanisms of the fuel in extremely low oxygen concentrations were obtained with the characteristics of the gas production at the various reaction temperatures.
2017-11-13
Tech Insights
TI-0002
While all-electric aircraft remain at the bleeding edge of the aviation industry, incorporating technologies like proton exchange membrane fuel cells into existing aircraft can result in considerable auxiliary capability with low environmental impact. However, proper consideration must be given to supporting systems to achieve a reliable balance of plant-especially when those systems interface with existing aircraft architectures. The scope of the BoP is to manage and condition the reactant flows to and from the fuel-cell module and to provide power to system components.
2017-11-05
Technical Paper
2017-32-0011
Alberto Grimaldi, Lorenzo Mucciarella, Francesco Virgilii
Concerning internal combustion engines (ICEs), the analysis and evaluation of combustion quality and pollutant agents has drawn the attention of public opinion and worldwide authorities. Moreover, combustion quality in ICEs affects the drivability of motorbikes/cars, a most important quality for the customers’ point of view. The possibility to monitor engine behavior is a target that every car/motorcycle OEM is seeking, so as to comply with legislated pollutant limits. As the EURO V OBD Stage II regulations state, starting from the year 2020 all the emission related components will need to be monitored. In particular, the legislator requests to monitor the frequency of misfires, due to possible damage to the catalytic converter; in fact, the malfunction of this component can dramatically affect exhaust gas pollutant emissions.
2017-11-05
Technical Paper
2017-32-0027
Chien-Hsiung Tsai, Hui-Hui Huang, Wei-Chun Chang
In this paper, the temperature of coupling system including cylinder, head, inlet/exhaust valve, and the cooling jacket of a 400cc engine is investigated by computational fluid dynamic (CFD) method. Firstly, the total pressure loss of water jacket, radiator, and thermostat is calculated first, and then the mass flow rate inside the cooling system can be determined by fitting the water pump’s performance curve (P-Q curve). The thermal boundary conditions for analysis of conjugate heat transfer of cooling system, such as combusting gas temperature and heat transfer coefficient are utilizing the results of 1-D engine simulation software (Ricardo WAVE). The current approach is that the heat transfer coefficients of valve while opening are calculated by considering the intake and exhaust stroke using FLUENT to overcome the difficulty of these values that are not modeled in such 1-D software. Finally, the finite element method (FEM) is used for the valve stress calculation.
2017-11-05
Technical Paper
2017-32-0034
Shunsuke Ishimitsu, Takuma Sagawa, Tomoaki Ito, Naoaki Shibatani, Toshihisa Takagi, Kazuki Yoshida, Kenta Suzuki, Takanori Chino
Recent years, ANC (Active Noise Control) technology has been paying attention. However, rather than the noise measures, the noise gives us the impression even running sound for motorcycles. That is, the control method of the engine sound is shifted from the noise reduction to sound design in each manufactures. Therefore, we proposed a method to design the engine sound using Active Sound Quality Control (ASQC) based on the ANC. Specifically, we proposed the algorithm amplifying and reducing the engine specific order components. From the simulation results, the engine specific order components can be amplified and reduced like an equalizer with the proposed algorithm. And, auditory impressions of engine sound controlled by ASQC were investigated using psychoacoustic measurements. 13 stimuli were obtained by applying ASQC for several order components to amplify or reduce their levels.
2017-11-05
Technical Paper
2017-32-0035
Takuya Mino, Hiroshi Enomoto, Noboru Hieda, Yoshikazu Teraoka
Liquid fossil fuels such as gasoline, diesel oil, and kerosene are widely used as a fuel of various transportation apparatus and generating electricity apparatuses including the automobiles. The spray combustion has been widely used for internal combustion engine to use the fuel efficiently. But some parts of the phenomenon are not elucidated because this combustion method is complicated phenomenon. To elucidate this phenomenon, there are many ways of analyzing droplet. For example, observing a single droplet which suspended by a catenary or under the microgravity. However, those methods are not enough simulation of a real droplet in the internal combustion engine. In this study, we developed an apparatus which could inject a freedom droplet of diameter about 30µm. It is considered that the droplet is in a real internal combustion engine. And the apparatus was installed in a container which could realize elevated temperature and pressure.
2017-11-05
Technical Paper
2017-32-0037
Stephan Schneider, Horst Friedrich, Marco Chiodi, Michael Bargende
The German Aerospace Center (DLR) is developing a free-piston engine as an innovative internal combustion engine for the generation of electrical power. The arrangement of the Free Piston Linear Generator (FPLG) in opposed-piston design consists of two piston units oscillating freely, thereby alternately compressing the common combustion chamber in the center of the unit and gas springs on either side. Linear alternators convert the kinetic energy of the moving pistons into electric energy. Since the pistons are not mechanically coupled to a crank train, the bottom and top dead centers of the piston movement can be varied during operation e.g. to adjust the compression ratio. Utilizing these degrees of freedom, the present paper deals with the analysis of different combustion processes in a port scavenged opposed-piston combustion chamber prototype.
2017-11-05
Technical Paper
2017-32-0030
Yoshihide Ota, Hiroshi Enomoto, Jun Higashihara, Masahiro Sasao, Noboru Hieda, Yoshikazu Teraoka
In internal combustion engine, it is necessary to grasp droplet evaporation for using liquid fuel efficiency and improving exhaust gas composition. However, it has not known completely yet. In this study, fuel droplet of approximately 20μm diameter that is assumed to be in combustion chamber is injected by experimental apparatus. After that, droplet goes to butane flame. We observed by high-speed camera, and experimentally considered the effects of heat flux on the fuel droplet evaporation and breakup phenomenon. For the sample fuel, we use kerosene and diesel oil. It is important for understanding evaporation condition to know temperature around droplet in butane flame. Thus, flame temperature is measured by sheathed thermocouple. Heat flux is changed by initial velocity. From experiment, we found some result. Time that from injector tube to location of breakup of the droplet is short by increasing heat flux.
2017-11-05
Technical Paper
2017-32-0032
Rizal Mahmud, Seong Bum Kim, Toru Kurisu, Keiya Nishida, Yoichi Ogata, Jun Kanzaki, Tadashi Tadokoro
Heat loss is more critical for the thermal efficiency improvement in small size diesel engines than large-size diesel engines. More than half of total heat energy in the internal-combustion engine is lost by cooling through the cylinder walls to the atmosphere and the exhaust gas. Therefore, the new combustion concept is needed to reduce losses in the cylinder wall. In a Direct Injection (DI) diesel engine, the spray behavior, including spray-wall impingement has an important role in the combustion development to reduce heat loss. The aim of this study is to understand the mechanism of the heat transfer from the spray and flame to the impinging wall. Experiments were performed in a constant volume vessel (CVV) at high pressures and high temperatures. Fuel was injected using a single-hole injector with a 0.133 mm diameter nozzle. Under these conditions, spray evaporates, then burns near the wall. Spray/flame behavior was investigated with a high-speed video camera.
2017-11-05
Technical Paper
2017-32-0046
Tomoyuki Mukayama, Ryota Nishigami, Annisa Bhikuning, Go Asai, Masaki Kuribayashi, Eriko Matsumura, Jiro Senda
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
2017-11-05
Technical Paper
2017-32-0048
Tomoaki Yatsufusa, Kentaro Takatani, Keigo Kii, Shinsuke Miyata
Multiple ion-probes method provides fine measurement on propagating flame by using multiple ion-probes installed tow-dimensionally on the wall surface of confined chamber. Each ion-probe detects the arrival of propagating flame and the detecting time is recorded. The data set of flame detecting times is able to re-generate the temporary and spatially detailed behavior of flame propagation. Because ion-probe itself generally has physical and thermal strength, multiple ion-probe method is suitable method for detailed measurement of the combustion resulting pulsatile high pressure such as in reciprocating piston engines. In the present study, flame measurement technic by multiple ion-probes has been experimentally introduced for measuring the combustion in 2-stroke gasoline engine. The present paper reports the detailed results of measurement on propagating flame in the engine. In addition, newly clarified technical issues of this technic is also mentioned.
2017-11-05
Technical Paper
2017-32-0047
Tomoaki Yatsufusa, Keigo Kii, Kentaro Takatani, Shinsuke Miyata
Multiple ion-probes method has an advantage for detailed measurement on high-intensity combustion including engine combustion, oscillation combustion in gas turbine or burner. Multiple ion-probes are installed individually on the surface of the confinement wall in combustion chamber. Detailed behavior of the flame propagation along the chamber wall can be reproduced by the datasets of the flame arrival time detected by individual ion-probes. Main target of this study is to clarify the measurement performance of this multiple ion-probes method for various type of propagating flames generated in confined combustion tube. The characteristics of the flame is largely varied by changing the ratio of dilution with nitrogen on methane-oxygen stoichiometric mixture. No dilution, which means methane-oxygen stoichiometric mixture only, results fastest speed and relatively stable propagation.
2017-11-05
Technical Paper
2017-32-0055
Yota Sakurai, Yoshinori Nakao, Astushi Hisano, Masahito Saitou, Kunihiro Tanaka
In this study on the motorcycle engine, we investigated the geometry of the newly developed intake port with an objective of improving the fuel consumption and the torque in practical range. Herein we present the results obtained. We believe that an effective measure for achieving the stated objective is to improve the combustion speed and combustion stability. To realize that, it is necessary to increase the turbulence during combustion and improve the homogeneity of air-fuel mixture. To investigate the feasible shape of the port, the CFD simulation (including fuel spray analysis) was performed and a geometry that improved the turbulent kinetic energy and mixture homogeneity at the time of ignition was selected. For confirming the combustion improvement effect achieved by tumble strengthening, an engine test was conducted with the same amount of intake air as that used in.
2017-11-05
Technical Paper
2017-32-0060
Hiroto Takahashi, Toshiki Shinohara
Many general purpose engines, such as the ones used in construction machines, operate in environments with excessive amounts of airborne dust, and are thereby equipped with a cyclone air cleaner so that they can remove as much dust from contaminated air streams in the engine. However, the compact general purpose engine is mainly a single-cylinder type, and the intake flow pulsates. Since the centrifugal action of the cyclone air cleaner under the intake pulsation changes according to the pulsation, it is difficult to enhance the dust separation performance. In this study, we aimed to determine a cyclone air cleaner factor with high purification performance even under the intake pulsation conditions of a general purpose engine. We have designed an ideal geometry for the cyclone air cleaner, which centrifugally separates dust during inhaling and discharges the centrifuged dust using positive pressure due to pulsation.
2017-11-05
Technical Paper
2017-32-0061
Shogo Watanabe, Tatsuya Kuboyama, Yasuo Moriyoshi, Kei Yoshimura
It has been widely known that thermal and fuel stratifications of in-cylinder mixture are effective to reduce in-cylinder pressure rise rate during high load HCCI operations. In order to optimize a combustion chamber design and combustion control strategy for HCCI engines with wide operational range, it is important to know quantitatively the influence of the temperature and fuel concentration distributions on ignition and heat release characteristics. At the same time, it is important to know the influence of in-cylinder flow and turbulence on the temperature and fuel concentration distributions. In this study, a numerical simulation of HCCI combustion were conducted to investigate the effects of the in-cylinder flow and turbulence, and the distributions of temperature on ignition and combustion characteristics in HCCI combustion.
2017-11-05
Technical Paper
2017-32-0066
Jüri Lavrentjev, Hans Rämmal
To control noise emission from internal combustion inlet, designers often choose small chamber type silencers at the inlet. In order to improve the inlet acoustic efficiency, inlet ducts with improved acoustic attenuation can be used. One potentially applicable material is acoustic metamaterial rapidly gaining popularity in different fields of engineering application. Small engine inlet duct, designed by using acoustic metamaterial structure comprising an array of resonators inside the wall of a rigid duct is investigated in this study. Experimental investigation of different designs is performed to characterize the acoustic behavior in terms of transmission loss (TL). By connecting multiple resonators of different size and location it is shown that a broadband TL can be achieved. The resulted attenuation band can be tuned by varying the resonator physical characteristics, showing promising potentials such of the material in the described application.
2017-11-05
Technical Paper
2017-32-0077
Herman Saputro, Laila fitriana, Masato Mikami
Experiments of flame-spread of fuel droplets have been performed in microgravity actively. However, the experiment has limitation in the number of droplets due to relatively short microgravity durations in the ground based facilities. It is difficult to conduct flame spread experiments of large scale droplet clouds in microgravity. This study conducted simulation of flame-spread behavior in randomly distributed large-scale droplet clouds by using a percolation approach, in order to make a theoretical link the gap between droplet combustion experiments and spray combustion phenomenon with considering two-droplet interaction. Droplets are arranged at lattice points in 2D lattice. The occurrence probability of group combustion (OPGC) is calculated as a function of the mean droplet spacing (S/d0)m.
2017-11-05
Technical Paper
2017-32-0073
Jörn Judith, Denis Neher, Maurice Kettner, Markus Klaissle, Darko Kozarac
Homogeneous charge compression ignition (HCCI) in natural gas fueled engines is thought to achieve high efficiency and low NOx emissions. While automotive applications require various load and speed regions, the operation range of stationary cogeneration engines is narrower. Hence, HCCI operation is easier to reach and more applicable to comply with future emission standards. This study presents computationally investigations of the auto-ignition ranges of a stationary natural gas HCCI engine. Starting from a detailed 1D engine cycle simulation model, a reduced engine model was developed and coupled to chemical kinetics using AVL Boost. Compression ratio, air-fuel ratio, internal EGR rate (iEGR) and intake temperature were varied for three different speeds, namely 1200, 1700 and 2200 rpm. Each examination includes a full factorial design study of 375 configurations. In the first step, the combustion was calculated using the GRI-mechanism 3.0 and a single zone combustion model.
2017-11-05
Technical Paper
2017-32-0079
Tsukasa Shimizu, Jin Itou, Hideki Shirazawa, Yasuyuki Muramatsu
It is important to make small and light weight motor for small EV. It is necessary to select appropriate cooling system (liquid cool or air cool) according to motor output. We thought that there is a threshold output that makes the volume smaller and the weight lighter including the liquid cooling system. As a result of the rough calculation, it was found that the weight can be reduced by adopting the liquid cooling for at about 10kW or more. In this study we focused on motor and cooling system volume and weight and tried to clarify appropriate cooling system according to motor output.
2017-11-05
Technical Paper
2017-32-0087
Sangriyadi Setio, Wiranto Arismunandar, Rudy Ong, Adefrid Dwithama, Stefanus Adrian, Angela Claudia, Nu’man Amri Maliky, Jery Octavianus, Muhammad Alif Mabbrur, Michell Tjhoi
Developing and designing fuel efficient vehicle for a one gallon of fuel marathon is a challenging task. Engines have to be optimized to achieve maximum fuel efficiency. In this study, we evaluate the optimal compression ratio (CR) and ignition timing that produce the best torque in a custom gasoline-based-motorcycle-engine that use ethanol E100 fuel. In the first experiment, CR was adjusted between 9 and 12 to evaluate its effect on the engine mileage’s record. The experiment was conducted on the test track. In the second experiment, Ignition timing was adjusted by a custom-made engine control unit (ECU) between 15° and 45° before top dead center (BTDC). The engine performance was investigated in terms of best torque and brake specific fuel consumption (BSFC), with variation of engine speed between 1500 and 8000. The test was conducted on dynamometer. The test was also performed in constant compression ratio and stoichiometric air-fuel ratio, 9.
2017-11-05
Technical Paper
2017-32-0084
Hyota Hoshino, Tatsuya Sato, Shuntaro Takano, Yuya Motoki, Hiroto Tanaka, Yuya Higuchi, Akira Iijima, Tomohiko Asai, Mitsuaki Tanabe, Yoshito Ashizawa, Junichi Sekiguchi, Hideo Shoji
This study focused on a non-equilibrium plasma discharge as a means of assisting HCCI combustion.Experiments were conducted with a four-stroke single-cylinder engine fitted with a spark electrode in the top of the combustion chamber for continuously generating non-equilibrium plasma from the intake stroke to the exhaust stroke. The results showed that applying non-equilibrium plasma to the HCCI test engine advanced the main combustion period that otherwise tended to be delayed as the engine speed was increased. In addition, it was found that the combined use of exhaust gas recirculation and non-equilibrium plasma prevented a transition to partial combustion while suppressing cylinder pressure oscillations at high loads.
2017-11-05
Technical Paper
2017-32-0085
Masaaki Togawa, Takeshi Nishiyama, Keito Agui, Yuki Takamura, Akira Iijima, Hideo SHOJI
This study investigated the effects of recirculated exhaust gas (EGR) and its principal components of N2, CO2 and H2O on moderating Homogeneous Charge Compression Ignition (HCCI) combustion. Experiments were conducted using two types of gaseous fuel blends of DME/propane and DME/methane as the test fuels. The addition rates of EGR, N2, CO2 and H2O were varied and the effects of each condition on HCCI combustion of propane and methane were investigated. The results revealed that the addition of CO2 and H2O had the effect of substantially delaying and moderating rapid combustion. The addition of N2 showed only a slight delaying and moderating effect. The addition of EGR had the effect of optimally delaying the combustion timing, while either maintaining or increasing the indicated mean effective pressure and indicated thermal efficiency ηi.
2017-11-05
Technical Paper
2017-32-0091
Koji Yoshida
The purpose of this study is to operate the spark ignition engine by the dual combustion cycle. The dual combustion cycle has two combustion processes, these are the constant volume combustion and the constant pressure combustion. The lean combustion and the direct fuel injection were applied to realize the dual combustion cycle for spark ignition engines. The combustion of lean mixture was corresponding to the constant volume combustion. The fuel was directly injected to combustion chamber and was burned with the remained oxygen after the lean combustion, so that this was corresponding to the constant pressure diffusion combustion. The combustion experiments were conducted by using the constant volume vessel. The lean propane-air mixture of which equivalence ratios were 0.6, 0.7, 0.8 and 0.9 were used and liquid n-heptane was injected by using the high-voltage electrical discharge.
2017-11-05
Technical Paper
2017-32-0090
Hiroto Tanaka, Tatsuya Sato, Shuntaro Takano, Yuya Motoki, Hyota Hoshino, Yuya Higuchi, Akira Iijima, Hideo Shoji
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. However, because HCCI engines lack a physical means of initiating ignition, it is difficult to control the ignition timing. Another issue of HCCI engines is that the combustion process causes the cylinder pressure to rise rapidly. The time scale is also important in HCCI combustion because ignition depends on the chemical reactions of the mixture. Therefore, we investigated the influence of the engine speed on autoignition and combustion characteristics in an HCCI engine. A four-stroke single-cylinder engine equipped with a mechanically driven supercharger was used in this study to examine HCCI combustion characteristics under different engine speeds and boost pressures.
2017-11-05
Technical Paper
2017-32-0089
Hiroki Oso, Akira Tanaka, Kentaro Nagai, Takahiro Yamazaki, Hideyuki Goto
The EURO4 standard has been enforced since the year 2017 for European quadricycle. The vehicles are regulated upper limit of unladen weight and engine displacement, in addition to the exhaust emissions and the net power. In order to meet those regulations, the engine for European quadricycle is demanded low exhaust emissions and light weight. Further, it is required to be achieved good drivability, low fuel consumption, low noise and more compact. We introduce technologies to meet demand for European quadricycle in compliance with EURO4. The limit values of exhaust emissions have been strengthened in EURO4 standard compared to the previous one. As devices to improve the exhaust emissions, the exhaust-after-treatment devices and the common rail injection system are well known, whereas those devices make engine systems heavier. In addition, to satisfy high torque at low speed for better drivability, larger displacement is effective.
2017-11-05
Technical Paper
2017-32-0088
Hikaru Yamada, Koji Yoshida
The purpose of this study is to explore an effect of the coconut oil methyl ester (CME) and vegetable oil methyl ester (VME) on a low compression ratio diesel engine performance. CME and VME were produced from coconut oil and vegetable oil with methanol, respectively. Vegetable oil was assumed to contain 60 wt.% of soybean oil and 40 wt.% rapeseed oil. The engine performance was measured in the steady operating condition at 3600 rpm of engine speed. The ignition timings of CME and VME were advanced and the maximum cylinder pressures of CME and VME were higher as compared with the diesel fuel at low compression ratio, because CME and VME consisted of medium chain fatty acid methyl esters. The ignitability of CME was superior to VME, because CME consisted of saturated fatty acid. The brake thermal efficiency of diesel fuel was slightly higher than CME and VME at any compression ratios.
2017-11-05
Technical Paper
2017-32-0115
Tatsuya Kuboyama, Yasuo Moriyoshi, Hidenori Kosaka
To investigate the heat transfer phenomena inside the combustion chamber of a diesel engine, a correlation for the heat transfer coefficient in a combustion chamber of a diesel engine was investigated based on heat flux measured by the authors in the previous study(8) using the rapid compression and expansion machine. In the correlation defined in the present study, thermodynamically estimated two-zone temperatures in the burned zone and the unburned zone are applied. The characteristic velocity given in the correlation is related to the speed of spray flame impinging on the wall during the fuel injection period. After the fuel injection period, the velocity term of the Woschni’s equation is applied. It was shown that the proposed correlation well expresses heat transfer phenomena in diesel engines.
2017-11-05
Technical Paper
2017-32-0113
Daijiro Ishii, Hiromi Saito, Yuji Mihara, Yasuo Takagi
In order to establish standard method to evaluate cooling loss in combustion chamber of internal combustion engines based on measurement of instantaneous heat flux / wall temperature with higher response and accuracy than previously reported coaxial type thin-film temperature sensor by applying thin film fabrication technology based on PVD method (Physical Vapor Deposition method) which improved to realize higher responsiveness than the conventional sensor was developed by the authors, and it was confirmed that the sensor has sufficient durability in conditions in which the hydrogen jet and flame directly contacts surface of the sensor by thin-film material change. The influence of the improvement on the measurement accuracy was verified by numerical analysis including thermoproperty evaluation. In this report, the configuration of measurement system that can measure minute voltage from the sensor with low noise and high response is reported.
Viewing 1 to 30 of 34217