Criteria

Text:
Display:

Results

Viewing 1 to 30 of 445
2017-11-05
Technical Paper
2017-32-0121
P. Nuccio, D. De Donno, A. Magno
An original 2-stroke prototype engine, equipped with an electronically controlled gasoline direct-injection apparatus, has been tested over the last few years, and the performances of these tests have been compared with those obtained using a commercial crankcase-scavenged 2-stroke engine. Very satisfactory results have been obtained, as far as fuel consumption and unburned hydrocarbons in the exhaust gas are concerned. Large reductions in fuel consumption and in unburned hydrocarbons have been made possible, because the injection timing causes all the injected gasoline to remain in the combustion chamber, and thus to take part in the combustion process. Moreover, a force-feed lubrication system, like those usually exploited in mass-produced 4-stroke engines, has been employed, because of the presence of an external pump. In fact, it is no longer necessary to add oil to the gasoline in the engine, as the gasoline does not pass through the crankcase volume.
2017-10-13
Technical Paper
2017-01-7005
Lijuan Wang, Jeffrey Gonder, Eric Wood, Adam Ragatz
Abstract Fuel consumption (FC) has always been an important factor in vehicle cost. With the advent of electronically controlled engines, the controller area network (CAN) broadcasts information about engine and vehicle performance, including fuel use. However, the accuracy of the FC estimates is uncertain. In this study, the researchers first compared CAN-broadcasted FC against physically measured fuel use for three different types of trucks, which revealed the inaccuracies of CAN-broadcast fueling estimates. To match precise gravimetric fuel-scale measurements, polynomial models were developed to correct the CAN-broadcasted FC. Lastly, the robustness testing of the correction models was performed. The training cycles in this section included a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. The mean relative differences were reduced noticeably.
2017-10-08
Technical Paper
2017-01-2464
Xinyou Lin, Chaoyu Wu, Qingxiang Zheng, Liping Mo, Hailin Li
Abstract The range-extended electric vehicle (REEV) is a complex nonlinear system powered by internal combustion engine and electricity stored in battery. This research proposed a Multiple Operation Points (MOP) control strategy of REVV based on operation features of REEV and the universal characteristic curve of the engine. The switching logic rules of MOP strategy are designed for the desired transition of the operation mode, which makes the engine running at high efficiency region. A Genetic algorithm (GA) is adapted to search the optimal solution. The fuel consumption is defined as the target cost function. The demand power of engine is defined as optimal variable. The state of charge (SOC) and vehicle speed are selected as the state variables. The dynamic performance of vehicle and cycling life of battery is set as the constraints. The optimal switching parameters are obtained based on this control strategy.
2017-10-08
Technical Paper
2017-01-2310
Xiaoyan Jia, Baigang Sun, Dongwei Wu, Dan Xu, Wei Zang, Wei Shang, Jie Wang
Abstract The control valve is the most important implementation part of a high pressure common rail system, and its flow characteristics have a great influence on the performance of an injector. In this paper, based on the structure and the working principle of an electromagnetic injector in a high pressure common rail system, a simulation model of the injector is established by AMESim software. Some key parameters of the control valve, including the volume of the control chamber, the diameter of the orifice Z (feeding orifice), the diameter of the orifice A (discharge orifice) and the hole diameter of the fuel diffusion hole are studied by using this model. The results show that these key structural parameters of the control valve have a great influence on the establishment of the control chamber pressure and the action of the needle valve.
2017-10-08
Technical Paper
2017-01-2457
Rickard Arvidsson, Tomas McKelvey
Abstract A two-state forward dynamic programming algorithm is evaluated in a series hybrid drive-train application with the objective to minimize fuel consumption when look-ahead information is available. The states in the new method are battery state-of-charge and engine speed. The new method is compared to one-state dynamic programming optimization methods where the requested generator power is found such that the fuel consumption is minimized and engine speed is given by the optimum power-speed efficiency line. The other method compared is to run the engine at a given operating point where the system efficiency is highest, finding the combination of engine run requests over the drive-cycle that minimizes the fuel consumption. The work has included the engine torque and generator power as control signals and is evaluated in a full vehicle-simulation model based on the Volvo Car Corporation VSIM tool.
2017-09-04
Technical Paper
2017-24-0158
Teresa Castiglione, Giuseppe Franzè, Angelo Algieri, Pietropaolo Morrone, Sergio Bova
Abstract In this paper, we propose a novel control architecture for dealing with the requirements arising in a cooling system of an ICE. The idea is to take advantage of the joint action of an electric pump and of an ad-hoc regulation module, which is used to determine adequate flow rates despite engine speeds. Specifically, a robust Model Predictive Control approach is exploited to take care formally of input/output constraints and disturbance effects of the resulting lumped parameter model of the engine cooling system, which incorporates the nucleate boiling heat transfer regime. Numerical simulations and test rig experimental data are presented. The results achieved show that the proposed control scheme is capable of providing effective and safe cooling while mitigating disturbance effects and minimizing coolant flow rates when compared with the action pertaining to standard crankshaft driven pumps.
2017-09-04
Technical Paper
2017-24-0130
Antonio Paolo Carlucci, Marco Benegiamo, Sergio Camporeale, Daniela Ingrosso
Abstract 1 Nowadays, In-Cylinder Pressure Sensors (ICPS) have become a mainstream technology that promises to change the way the engine control is performed. Among all the possible applications, the prediction of raw (engine-out) NOX emissions would allow to eliminate the NOX sensor currently used to manage the after-treatment systems. In the current study, a semi-physical model already existing in literature for the prediction of engine-out nitric oxide emissions based on in-cylinder pressure measurement has been improved; in particular, the main focus has been to improve nitric oxide prediction accuracy when injection timing is varied. The main modification introduced in the model lies in taking into account the turbulence induced by fuel spray and enhanced by in-cylinder bulk motion.
2017-09-04
Technical Paper
2017-24-0054
Francesco de Nola, Giovanni Giardiello, Alfredo Gimelli, Andrea Molteni, Massimiliano Muccillo, Roberto Picariello
Abstract In the last few years, the automotive industry had to face three main challenges: compliance with more severe pollutant emission limits, better engine performance in terms of torque and drivability and simultaneous demand for a significant reduction in fuel consumption. These conflicting goals have driven the evolution of automotive engines. In particular, the achievement of these mandatory aims, together with the increasingly stringent requirements for carbon dioxide reduction, led to the development of highly complex engine architectures needed to perform advanced operating strategies. Therefore, Variable Valve Actuation (VVA), Exhaust Gas Recirculation (EGR), Gasoline Direct Injection (GDI), turbocharging, powertrain hybridization and other solutions have gradually and widely been introduced into modern internal combustion engines, enhancing the possibilities of achieving the required goals.
2017-09-04
Technical Paper
2017-24-0068
Roberto Finesso, Ezio Spessa, Yixin Yang, Giuseppe Conte, Gennaro Merlino
Abstract A real-time approach has been developed and assessed to control BMEP (brake mean effective pressure) and MFB50 (crank angle at which 50% of fuel mass has burnt) in a Euro 6 1.6L GM diesel engine. The approach is based on the use of feed-forward ANNs (artificial neural networks), which have been trained using virtual tests simulated by a previously developed low-throughput physical engine model. The latter is capable of predicting the heat release and the in-cylinder pressure, as well as the related metrics (MFB50, IMEP - indicated mean effective pressure) on the basis of an improved version of the accumulated fuel mass approach. BMEP is obtained from IMEP taking into account friction losses. The low-throughput physical model does not require high calibration effort and is also suitable for control-oriented applications.
2017-09-04
Technical Paper
2017-24-0049
Matteo De Cesare, Federico Covassin, Enrico Brugnoni, Luigi Paiano
Abstract The new driving cycles require a greater focus on a wider engine operative area and especially in transient conditions where a proper air path control is a challenging task for emission and drivability. In order to achieve this goal, turbocharger speed measurement can give several benefits during boost pressure transient and for over-speed prevention, allowing the adoption of a smaller turbocharger, that can further reduce turbo-lag, also enabling engine down-speeding. So far, the use of turbocharger speed sensor was considered expensive and rarely affordable in passenger car applications, while it is used on high performance engines with the aim of maximizing engine power and torque, mainly in steady state, eroding the safe-margin for turbocharger reliability. Thanks to the availability of a new cost effective turbocharger speed technology, based on acoustic sensing, turbocharger speed measurement has become affordably also for passengers car application.
2017-09-04
Journal Article
2017-24-0079
Vittorio Ravaglioli, Fabrizio Ponti, Matteo De Cesare, Federico Stola, Filippo Carra, Enrico Corti
Abstract The continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at combustion control improvement. Nowadays, performing an efficient combustion control is crucial for drivability improvement, efficiency increase and pollutant emissions reduction. These aspects are even more crucial when innovative combustions (such as LTC or RCCI) are performed, due to the high instability and the high sensitivity with respect to the injection parameters that are associated to this kind of combustion. Aging of all the components involved in the mixture preparation and combustion processes is another aspect particularly challenging, since not all the calibrations developed in the setup phase of a combustion control system may still be valid during engine life.
2017-09-04
Technical Paper
2017-24-0011
Giulio Boccardo, Federico Millo, Andrea Piano, Luigi Arnone, Stefano Manelli, Cristian Capiluppi
Abstract Nowadays stringent emission regulations are pushing towards new air management strategies like LP-EGR and HP/LP mix both for passenger car and heavy duty applications, increasing the engine control complexity. Within a project in collaboration between Kohler Engines EMEA, Politecnico di Torino, Ricardo and Denso to exploit the potential of EGR-Only technologies, a 3.4 liters KDI 3404 was equipped with a two stage turbocharging system, an extremely high pressure FIS and a low pressure EGR system. The LP-EGR system works in a closed loop control with an intake oxygen sensor actuating two valves: an EGR valve placed downstream of the EGR cooler that regulates the flow area of the bypass between the exhaust line and the intake line, and an exhaust flap to generate enough backpressure to recirculate the needed EGR rate to cut the NOx emission without a specific aftertreatment device.
2017-08-25
Technical Paper
2017-01-1945
Dr. Raimund Varnhagen
Abstract During recent years, all major North American and European commercial vehicle OEMs have introduced predictive functionalities based on an electronic horizon for their on-highway fleets. This is a system concept that lets vehicles know what is happening on the road ahead and allows them to react to that information without driver involvement. When an electronic horizon is used in heavy-duty trucks, a significant reduction in fuel consumption is possible as a key application. This is achieved by optimizing the algorithms in the engine control unit, the transmission control device or other control units in the vehicle. There is a clear business case for the vehicle owners. In this paper we review the long development from early navigation technologies to an in-vehicle sensor, called an electronic horizon. We present an overview of different architectures from several perspectives as well as multiple use cases for commercial vehicles.
2017-06-28
Journal Article
2017-01-9181
Zhongming Xu, Nengfa Tao, Minglei Du, Tao Liang, Xiaojun Xia
Abstract A coupled magnetic-thermal model is established to study the reason for the damage of the starter motor, which belongs to the idling start-stop system of a city bus. A finite element model of the real starter motor is built, and the internal magnetic flux density nephogram and magnetic line distribution chart of the motor are attained by simulation. Then a model in module Transient Thermal of ANSYS is established to calculate the stator and rotor loss, the winding loss and the mechanical loss. Three kinds of losses are coupled to the thermal field as heat sources in two different conditions. The thermal field and the components’ temperature distribution in the starting process are obtained, which are finally compared with the already-burned motor of the city bus in reality to predict the damage. The analysis method proposed is verified to be accurate and reliable through comparing the actual structure with the simulation results.
2017-06-05
Technical Paper
2017-01-1778
Enrico Galvagno, Antonio Tota, Mauro Velardocchia, Alessandro Vigliani
Abstract This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking. Due to external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, the torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), may lead to NVH issues known as clonk. This study initially focuses on the positive effect on transmission NVH performance of a concurrent application of a braking torque at the driving wheels and of an engine torque increase during these maneuvers; then a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize losses.
2017-03-28
Journal Article
2017-01-0583
Farraen Mohd Azmin, Phil Mortimer, Justin Seabrook
Abstract With the introduction in Europe of drive cycles such as RDE and WLTC, transient emissions prediction is more challenging than before for passenger car applications. Transient predictions are used in the calibration optimization process to determine the cumulative cycle emissions for the purpose of meeting objectives and constraints. Predicting emissions such as soot accurately is the most difficult area, because soot emissions rise very steeply during certain transients. The method described in this paper is an evolution of prediction using a steady state global model. A dynamic model can provide the instantaneous prediction of boost and EGR that a static model cannot. Meanwhile, a static model is more accurate for steady state engine emissions. Combining these two model types allows more accurate prediction of emissions against time. A global dynamic model combines a dynamic model of the engine air path with a static DoE (Design of Experiment) emission model.
2017-03-28
Journal Article
2017-01-0586
Hayato Shirai, Hayato Nakada, Akio Matsunaga, Hiroyuki Tominaga
Abstract In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits.
2017-03-28
Journal Article
2017-01-0584
Haksu Kim, Jaewook Shin, Myoungho Sunwoo
Abstract With fuel efficiency becoming an increasingly critical aspect of internal combustion engine (ICE) vehicles, the necessity for research on efficient generation of electric energy has been growing. An energy management (EM) system controls the generation of electric energy using an alternator. This paper presents a strategy for the EM using a control mode switch (CMS) of the alternator for the (ICE) vehicles. This EM recovers the vehicle’s residual kinetic energy to improve the fuel efficiency. The residual kinetic energy occurs when a driver manipulates a vehicle to decelerate. The residual energy is commonly wasted as heat energy of the brake. In such circumstances, the wasted energy can be converted to electric energy by operating an alternator. This conversion can reduce additional fuel consumption. For extended application of the energy conversion, the future duration time of the residual power is exploited.
2017-03-28
Journal Article
2017-01-0587
Cetin Gurel, Elif Ozmen, Metin Yilmaz, Didem Aydin, Kerem Koprubasi
Abstract Emissions and fuel economy optimization of internal combustion engines is becoming more challenging as the stringency of worldwide emission regulations are constantly increasing. Aggressive transient characteristics of new emission test cycles result in transient operation where the majority of soot is produced for turbocharged diesel engines. Therefore soot optimization has become a central component of the engine calibration development process. Steady state approach for air-fuel ratio limitation calibration development is insufficient to capture the dynamic behavior of soot formation and torque build-up during transient engine operation. This paper presents a novel methodology which uses transient maneuvers to optimize the air-fuel ratio limitation calibration, focusing on the trade-off between vehicle performance and engine-out soot emissions. The proposed methodology features a procedure for determining candidate limitation curves with smoothness criteria considerations.
2017-03-28
Technical Paper
2017-01-0588
Adithya P Reddy Ranga, Gopichandra Surnilla, Joseph Thomas, Ethan Sanborn, Mark Linenberg
Abstract Dual fuel injection systems, like PFI+DI (port fuel injection + direct injection system) are being increasingly used in gasoline engine applications to increase the engine performance, fuel efficiency and reduce emissions. At a given engine operating condition, the air/fuel error is a function of the fraction of fuel injected by each of the fuel systems. If the fraction of fuel from each of the fuel system is changed at a given operating condition, the fuel system error will change as well making it challenging to learn the fuel system errors. This paper aims at describing the adaptive fueling control algorithm to estimate the fuel error contribution from each individual fuel system. Considering the fuel injection system slope errors to be the significant cause for air-fuel errors, a model structure was developed to calculate the fuel system adaptive correction factor as a function of changing fraction of fueling between the fuel systems.
2017-03-28
Journal Article
2017-01-1170
Tong Zhang, Chen Wang, Wentai Zhou, Huijun Cheng, Haisheng Yu
Abstract Because a compound power-split transmission is directly connected to the engine, dramatic fluctuations in engine output torque result in strong jerks and torque losses when the hybrid vehicle is in mode transition from electric drive mode to hybrid drive mode. In order to enhance ride comfort and reduce the output torque gap during mode transition process, a brake clutch assisted coordinated control strategy was developed. Firstly, the dynamic plant model of the power-split vehicle including driveline model, engine ripple torque and brake clutch torque was deduced. Secondly, the brake clutch assisted mode transition process was analyzed, and the output torque capability was compared between cases of both brake clutch assisted and unassisted mode transition process. Thirdly, a coordinated control strategy was designed to determine the desired motor torque, brake clutch torque, engine torque, and the moment of fuel injection.
2017-03-28
Journal Article
2017-01-0695
Ezio Spessa, Stefano D'Ambrosio, Daniele Iemmolo, Alessandro Mancarella, Roberto Vitolo, Gilles Hardy
Abstract In the present work, different combustion control strategies have been experimentally tested in a heavy-duty 3.0 L Euro VI diesel engine. In particular, closed-loop pressure-based and open-loop model-based techniques, able to perform a real-time control of the center of combustion (MFB50), have been compared with the standard map-based engine calibration in order to highlight their potentialities. In the pressure-based technique, the instantaneous measurement of in-cylinder pressure signal is performed by a pressure transducer, from which the MFB50 can be directly calculated and the start of the injection of the main pulse (SOImain) is set in a closed-loop control to reach the MFB50 target, while the model-based approach exploits a heat release rate predictive model to estimate the MFB50 value and sets the corresponding SOImain in an open-loop control. The experimental campaign involved both steady-state and transient tests.
2017-03-28
Journal Article
2017-01-1620
Waseem Sadeh, Osamah Rawashdeh, Dona Burkard, Kelvin Dobbins, Tony Lockwood, Atilla Bulmus
Abstract Multicore microcontrollers are rapidly making their way into the automotive industry. We have adopted the Cilk approach (MIT 1994) to develop a pure ANSI C Fork-Join dynamic scheduling runtime middle-layer with a work-stealing scheduler targeted for automotive multicore embedded systems. This middle-layer could be running on top of any AUTOSAR compliant multicore RTOS. We recently have successfully integrated our runtime layer into parts of legacy Ford powertrain software at Ford Motor Company. We have used the 3-core AURIX multicore chip from Infineon and the multicore RTA-OS. For testing purposes, we have forked some parallelizable functions inside two periodic tasks in Ford legacy powertrain software to be dynamically scheduled and executed on the available cores. Our preliminary evaluation showed 1.3–1.4x speedups for these two forked tasks.
2017-03-28
Technical Paper
2017-01-1211
SoDuk Lee, Jeff Cherry, Michael Safoutin, Joseph McDonald
Abstract As part of the Midterm Evaluation of the 2017-2025 Light-duty Vehicle Greenhouse Gas Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of stop-start technology for reducing CO2 emissions from light-duty vehicles. Stop-start technology is widespread in Europe due to high fuel prices and due to stringent EU CO2 emissions standards beginning in 2012. Stop-start has recently appeared as a standard equipment option on high-volume vehicles like the Chevrolet Malibu, Ford Fusion, Chrysler 200, Jeep Cherokee, and Ram 1500 truck. EPA has included stop-start technology in its assessment of CO2-reducing technologies available for compliance with the standards. Simulation and modeling of this technology requires a suitable model of the battery. The introduction of stop-start has stimulated development of 12-volt battery systems capable of providing the enhanced performance and cycle life durability that it requires.
2017-03-28
Technical Paper
2017-01-1253
Somnath Sengupta, Chethan Gururaja, Sushant Hingane, Prajwal A K, Malay Maniar, Ondřej Mikuláš, Jaroslav Pekar
Abstract Increasingly strict CO2 and emissions norms are pushing the automotive industry towards increasing adoption of Hybrid Electric Vehicle (HEV) technology. HEVs are complex hardware systems which are often controlled by software that is complex to maintain, time-consuming to calibrate, and not always guaranteed to deliver optimal fuel economy. Hence, coordinated, systematic control of different subsystems of HEV is an attractive proposition. In this paper, Model Predictive Control (MPC) and Equivalent Consumption Minimization Strategy (ECMS) based supervisory controllers have been developed to coordinate the power split between the two prime movers of an HEV – internal combustion engine and electric motor. A dynamical physics based HEV model has been developed for simulation of the system behavior. A cost function has been formulated to improve fuel economy and battery life.
2017-03-28
Technical Paper
2017-01-1254
Raja Sangili Vadamalu, Christian Beidl
Powertrain systems exploiting information from vehicle connectivity have widened the system boundary resulting in additional degrees-of-freedom for predictive trajectory planning. Heuristic methods based on component characteristics are currently widely used for Energy Management (EM) functionality of hybridized powertrains. Despite their better usability, increased calibration effort and sensitivity to synthetic calibration scenarios are drawbacks of such control methods. Availability of predictive data, better computing power and challenges posed by various scenarios in real driving, have led to interest in online-optimizing EM functionality. Equivalent Consumption Minimization Strategy (ECMS) approaches based on Indirect optimal control /Pontryagin Minimum principle have difficulty in handling inequality state constraints. Extensions of ECMS make use of modifications to the equivalence factor/co-state, based on prediction of driving conditions.
2017-03-28
Technical Paper
2017-01-1255
Zhihong Wu, Ke lu, Yuan Zhu, Xiaojun Lei, Liqing Duan, Jian_ning Zhao
Abstract Permanent magnet synchronous motors (PMSM) are widely used in the electric vehicles for their high power density and high energy efficiency. And the motor control system for electric vehicles is one of the most critical safety related systems in electric vehicles, because potential failures of this system can lead to serious harm to humans’ body, so normally a high automotive safety integrity level (ASIL) will be assigned to this system. In this paper, an ASIL-C motor control system based on a multicore microcontroller is presented. At the same time, due to the increasing number of connectivity on the vehicle, secure onboard communication conformed to the AUTOSAR standard is also implemented in the system to prevent external attacks.
2017-03-28
Technical Paper
2017-01-1251
Bin Zhou, Jeffrey Burl, Amir Rezaei
Abstract This paper presents results on how the Equivalent Consumption Minimization Strategy (ECMS) penalty factor effects Lithium ion battery aging. The vehicle studied is the Honda Civic Hybrid. The battery used is A123 Systems’. Vehicle simulation using multiple combinations of highway and city drive cycles. For each combination of drive cycles, six ECMS penalty factor values are used. Battery aging is evaluated using a semi-empirical model combined with accumulated Ah-throughput method which uses, as an input, the battery state of charge trajectory from the vehicle simulations. The tradeoff between fuel cost and battery aging cost is explicitly displayed. In addition, the results provide insight into how driving behavior affects battery aging. The paper concludes with a discussion of the optimal balance between fuel cost and battery aging.
2017-03-28
Technical Paper
2017-01-1252
Ming Cheng, Lei Feng, Bo Chen
Abstract This paper studies the nonlinear model predictive control for a power-split Hybrid Electric Vehicle (HEV) power management system to improve the fuel economy. In this paper, a physics-based battery model is built and integrated with a base HEV model from Autonomie®, a powertrain and vehicle model architecture and development software from Argonne National Laboratory. The original equivalent circuit battery model from the software has been replaced by a single particle electrochemical lithium ion battery model. A predictive model that predicts the driver’s power request, the battery state of charge (SOC) and the engine fuel consumption is studied and used for the nonlinear model predictive controller (NMPC). A dedicated NMPC algorithm and its solver are developed and validated with the integrated HEV model. The performance of the NMPC algorithm is compared with that of a rule-based controller.
2017-03-28
Technical Paper
2017-01-1257
Haotian Wu
Abstract Previous studies have investigated various hybrid and electric powertrain architectures to balance concerns about the energy consumption and drivability. However, present architectures have some intrinsic drawbacks on the powertrain torque winding up, weight, packaging and energy harvest. This study proposed an electric powertrain that is powered by four independent motor drive. In order to investigate the drivability and regeneration braking performance, physics-based models of vehicle, motor and battery were developed; meanwhile, the dual-loop feedforward motor control and hybrid sliding mode control were presented. The Physics model-based evaluation was conducted by using the co-simulation technology of LMS AMESim and Simulink. The results show that the proposed four-wheel independent electric powertrain can achieve better drivability and regeneration braking performance. The proposed hybrid sliding mode control can converge faster than the bang-bang control.
Viewing 1 to 30 of 445

Filter