Criteria

Text:
Display:

Results

Viewing 1 to 30 of 350
2017-09-04
Technical Paper
2017-24-0169
Robert E. Morgan, Neville Jackson, Andrew Atkins, Guangyu dong, Morgan Heikal, Christopher lenartowicz
Electrification of long haul freight applications offers a number of major challenges mainly the cost and weight of on-board energy storage. Efforts to reduce the cost and complexity of electrification will continue, but there will remain a long term need for a clean and efficient chemically fuelled thermal powertrain. Best in class Otto and Diesel cycles engines are now approaching the practical limits of efficiency, requiring new approaches to deliver future improvements. Harnessing waste heat through a bottoming cycle delivers limited benefit due to the narrow temperature range at which heat is recovered and rejected. Integration of heat recovery directly to the main power cycle, via a ‘split engine cycle’ offers a novel approach to achieving significant improvements in efficiency. In the split engine cycle, compression and combustion strokes are performed in separate chambers.
2017-06-27
Journal Article
2017-01-9179
Mike Liebers, Dzmitry Tretsiak, Sebastian Klement, Bernard Bäker, Peter Wiemann
A vital contribution for the development of an environmental friendly society is improved energy efficiency in public transport systems. Increased electrification of these systems is essential to achieve the high objectives stated. Since the operating range of an electrical vehicle is heavily influenced of the available energy, which primarily is used for propulsion and thermal passenger comfort, all heat losses in the vehicle systems must be minimized. Especially for urban buses, the unwanted heat losses through open doors while passengers are boarding, have to be controlled. These energy fluxes are due to the large temperature gradients generated between in- and outdoor conditions and to install air-walls in the door opening areas have turned out to be a promising technical solution. Based on air-wall technologies used for climate control in buildings, this paper presents an experimental investigation on the reduction of heat losses in the door opening of urban buses.
2017-04-11
Journal Article
2017-01-9178
Arash E. Risseh, Hans-Peter Nee, Olof Erlandsson, Klas Brinkfeldt, Arnaud Contet, Fabian Frobenius lng, Gerd Gaiser, Ali Saramat, Thomas Skare, Simon Nee, Jan Dellrud
The European Union’s 2020 target aims to be producing 20 % of its energy from renewable sources by 2020, to achieve a 20 % reduction in greenhouse gas emissions and a 20 % improvement in energy efficiency compared to 1990 levels. To reach these goals, the energy consumption has to decrease which results in reduction of the emissions. The transport sector is the second largest energy consumer in the EU, responsible for 25 % of the emissions of greenhouse gases caused by the low efficiency (<40 %) of combustion engines. Much work has been done to improve that efficiency but there is still a large amount of fuel energy that converts to heat and escapes to the ambient atmosphere through the exhaust system. Taking advantage of thermoelectricity, the heat can be recovered, improving the fuel economy.
2017-03-28
Technical Paper
2017-01-0136
Apostolos Karvountzis-Kontakiotis, Apostolos Pesiridis, Hua Zhao, Fuhaid Alshammari, Benjamin Franchetti, Ioannis Pesmazoglou, Lorenzo Tocci
Abstract Modern heavy duty diesel engines can well extend the goal of 50% brake thermal efficiency by utilizing waste heat recovery (WHR) technologies. The effect of an ORC WHR system on engine brake specific fuel consumption (bsfc) is a compromise between the fuel penalty due to the higher exhaust backpressure and the additional power from the WHR system that is not attributed to fuel consumption. This work focuses on the fuel efficiency benefits of installing an ORC WHR system on a heavy duty diesel engine. A six cylinder, 7.25ℓ heavy duty diesel engine is employed to experimentally explore the effect of backpressure on fuel consumption. A zero-dimensional, detailed physical ORC model is utilized to predict ORC performance under design and off-design conditions.
2017-03-28
Journal Article
2017-01-0153
Dipankar Sahoo, Adam Kotrba, Tom Steiner, Greg Swift
Abstract Nearly a third of the fuel energy is wasted through the exhaust of a vehicle. An efficient waste heat recovery process will undoubtedly lead to improved fuel efficiency and reduced greenhouse gas (GHG) emissions. Currently, there are multiple waste heat recovery technologies that are being investigated in the auto industry. One innovative waste heat recovery approach uses Thermoacoustic Converter (TAC) technology. Thermoacoustics is the field of physics related to the interaction of acoustic waves (sonic power) with heat flows. As in a heat engine, the TAC produces electric power where a temperature differential exists, which can be generated with engine exhaust (hot side) and coolant (cold side). Essentially, the TAC converts exhaust waste heat into electricity in two steps: 1) the exhaust waste heat is converted to acoustic energy (mechanical) and 2) the acoustic energy is converted to electrical energy.
2017-03-28
Technical Paper
2017-01-0158
Masaaki Nakamura, Koichi Machida, Kiyohiro Shimokawa
Abstract A diesel engine is advantageous in its high thermal efficiency, however it still wastes about 50% of total input energy to exhaust and cooling losses. A feasibility study of thermoacoustic refrigerator was carried out as one of the means to recuperate waste heat. The thermoacoustic refrigerator prototyped for this study showed a capability to achieve cooling temperature lower than -20 degree C, which indicated that the system has a potential to be used in refrigerator trucks not only for cargo compartment cooling but also for cabin cooling.
2017-03-28
Technical Paper
2017-01-0159
Peng Liu, Ge-Qun Shu, Hua Tian, Xuan Wang, Dongzhan Jing
Abstract The environmental issues combined with the rising of crude oil price have attracted more interest in waste heat recovery of marine engine. Currently, the thermal efficiency of marine diesels only reaches 48~51%, and the rest energy is rejected to the environment. Meanwhile, energy is required when generating electricity and cooling that are necessary for vessels. Hence, the cogeneration system is treated as the promising technology to conform the strict environment regulation while offering a high energy utilization ratio. In this paper, an electricity and cooling cogeneration system combined of Organic Rankine Cycle (ORC) and Absorption Refrigeration Cycle (ARC) is proposed to recover waste heat from marine engine. ORC is applied to recover exhaust waste heat to provide electricity while ARC is used to utilize condensation heat of ORC to produce additional cooling.
2017-03-28
Technical Paper
2017-01-0160
Longjie Xiao, Tianming He, Gangfeng Tan, Bo Huang, Xianyao Ping
Abstract While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
2017-03-28
Technical Paper
2017-01-0181
Benny Johnson William, Agathaman Selvaraj, Manjeet Singh Rammurthy, Manikandan Rajaraman, V. Srinivasa Chandra
Abstract The modern day automobile customers’ expectations are sky-high. The automotive manufacturers need to provide sophisticated, cost-effective comfort to stay in this competitive world. Air conditioning is one of the major features which provides a better comfort but also adds up to the increase in operating fuel cost of vehicle. According to the sources the efficiency of internal combustion engine is 30% and 70% of energy is wasted to atmosphere. The current Air conditioners in automobiles use Vapour compression system (VCS) which utilizes a portion of shaft power of the engine at its input; this in turn reduces the brake power output and increases the specific fuel consumption (SFC) of the engine. With the current depletion rate of fossil fuels, it is necessary to conserve the available resources and use it effectively which also contributes to maintain a good balance in greenhouse effect thus protecting the environment.
2017-03-28
Technical Paper
2017-01-0123
Saiful Bari
Abstract In general, diesel engines have an efficiency of about 35% and hence, a considerable amount of energy is expelled to the ambient air. In water-cooled engines, about 25%, 33% and 7% of the input energy are wasted in the coolant, exhaust gas, and friction, respectively. The heat from the exhaust gas of diesel engines can be an important heat source to provide additional power and improve overall engine efficiency. Studies related to the application of recoverable heat to produce additional power in medium capacity diesel engines (< 100 kW) using separate Rankine cycle are scarce. To recover heat from the exhaust of the engine, an efficient heat exchanger is necessary. For this type of application, the heat exchangers are needed to be designed in such a way that it can handle the heat load with reasonable size, weight and pressure drop. This paper describes the study of a diesel generator-set attached with an exhaust heat recovery system.
2017-03-28
Technical Paper
2017-01-0121
Zhijia Yang, Jesus PradoGonjal, Matthew Phillips, Song Lan, Anthony Powell, Paz Vaqueiro, Min Gao, Richard Stobart, Rui Chen
Abstract Thermoelectric generator (TEG) has received more and more attention in its application in the harvesting of waste thermal energy in automotive engines. Even though the commercial Bismuth Telluride thermoelectric material only have 5% efficiency and 250°C hot side temperature limit, it is possible to generate peak 1kW electrical energy from a heavy-duty engine. If being equipped with 500W TEG, a passenger car has potential to save more than 2% fuel consumption and hence CO2 emission reduction. TEG has advantages of compact and motionless parts over other thermal harvest technologies such as Organic Rankine Cycle (ORC) and Turbo-Compound (TC). Intense research works are being carried on improving the thermal efficiency of the thermoelectric materials and increasing the hot side temperature limit. Future thermoelectric modules are expected to have 10% to 20% efficiency and over 500°C hot side temperature limit.
2017-03-28
Journal Article
2017-01-0133
Bin Xu, Adamu Yebi, Simona Onori, Zoran Filipi, Xiaobing Liu, John Shutty, Paul Anschel, Mark Hoffman
Abstract This paper presents the transient power optimization of an organic Rankine cycle waste heat recovery (ORC-WHR) system operating on a heavy-duty diesel (HDD). The optimization process is carried on an experimentally validated, physics-based, high fidelity ORC-WHR model, which consists of parallel tail pipe and EGR evaporators, a high pressure working fluid pump, a turbine expander, etc. Three different ORC-WHR mixed vapor temperature (MVT) operational strategies are evaluated to optimize the ORC system net power: (i) constant MVT; (ii) constant superheat temperature; (iii) fuzzy logic superheat temperature based on waste power level. Transient engine conditions are considered in the optimization. Optimization results reveal that adaptation of the vapor temperature setpoint based on evaporation pressure strategy (ii) provides 1.1% mean net power (MNP) improvement relative to a fixed setpoint strategy (i).
2017-01-10
Technical Paper
2017-26-0030
Sudhi Uppuluri, Ajay M Naiknaware, Hemant R Khalane
Abstract With the upcoming regulations for fuel economy and emissions, there is a significant interest among vehicle OEMs and fleet managers in developing computational methodologies to help understand the influence and interactions of various key parameters on Fuel Economy and carbon-di-oxide emissions. The analysis of the vehicle as a complete system enables designers to understand the local and global effects of various technologies that can be employed for fuel economy and emission improvement. In addition, there is a particular interest in not only quantifying the benefit over standard duty-cycles but also for real world driving conditions. Present study investigates impact of exhaust heat recovery system (EHRS) on a typical 1.2L naturally aspirated gasoline engine passenger car representative of the India market.
2017-01-10
Technical Paper
2017-26-0029
Shubham Saxena, Mudassir Ahmed
Abstract Higher fuel economy of the vehicle is a critical concern in automobile industry. Traditional internal combustion (IC) engines waste a large portion of the available fuel energy as heat loss via exhaust gas. This proposal aims at recovering the available exhaust heat of the IC engines using stirling engine (SE) as an add-on device. SE is a type of cyclic heat engine which operates by compression and expansion of the working fluid, at different temperature levels resulting in a conversion of the heat energy into mechanical work. A thermodynamic analysis is performed on the chosen beta SE rhombic drive configuration with different combinations of design parameters like working fluid mass, total dead volume, thermal resistance, and hot side and cold side temperatures. A regenerator temperature model is developed to account for first law consistency in the regenerator section of SE, along with heat transfer in accordance with mass flow within the regenerator.
2016-10-25
Technical Paper
2016-36-0111
Mario Eduardo Santos Martins, Ivanir Fischer, Franciel Gusberti
Abstract Wet ethanol is a low cost renewable fuel which often shows challenging ignition in spark-ignited engines. This can be tackled by using non-flame propagating combustion modes like HCCI. This paper shows experimental results of a diesel fueled generator set which recovers exhaust heat from one of the diesel cylinders to promote HCCI of ethanol on other cylinders. Experimental tests provided results of heat release, energy efficiency and a thorough combustion analysis that demonstrate the possibility of this concept which requires minimal changes on the original engine, making possible to retrofit existing units. A three-cylinder four-stroke engine originally fueled with diesel was used. The diesel injection system in one of the cylinders was replaced by an ethanol electronic fuel injection. Inlet heat for achieving HCCI was provided by complete exhaust recycling from one of the diesel cylinders. Stable HCCI combustion was achieved in the ethanol cylinder.
2016-10-17
Technical Paper
2016-01-2161
Gangfeng Tan, Xuefeng Yang, Li Zhou, Kangping Ji, Mengying Yang
Abstract In this research, the Mg2Si1-xSnx thermoelectric material is used in the exhaust temperature difference power-generating system, and the material's heat transfer characteristic and power-generating characteristic were analyzed. Firstly, steady heat transfer model from vehicle exhaust to cooling water was established. Then the impact of Sn/Si ratio to the thermoelectric characteristic parameter was analyzed. Finally, considering the influence of varying thermal conductivity to the heat transfer process along the material's heat transfer direction, when the cold end temperature of thermoelectric materials was controlled by cooling water respectively boiling at 343K and 373K, the thermoelectric conversion efficiency and power output of Mg2Si1-xSnx thermoelectric materials with different x value were evaluated based on simulation calculation.
2016-09-27
Technical Paper
2016-01-8084
Yousef Jeihouni, Katharina Eichler, Michael Franke
Abstract In order to comply with demanding Greenhous Gas (GHG) standards, future automotive engines employ advanced engine technologies including waste heat recovery (WHR) systems. A waste heat recovery system converts part of engine wasted exergies to useful work which can be fed back to the engine. Utilizing this additional output power leads to lower specific fuel consumption and CO2 emission when the total output power equals the original engine output power. Engine calibration strategies for reductions in specific fuel consumption typically results in a natural increase of NOx emissions. The utilization of waste heat recovery systems provides a pathway which gives both reduction in emissions and reduction in specific fuel consumption. According to DOE (Department of Energy), US heavy-duty truck engines’ technology need to be upgraded towards higher brake thermal efficiencies (BTE). DOE target is BTE>55% for Class-8 heavy-duty vehicles in the United States.
2016-09-27
Technical Paper
2016-01-8079
Zhiwei Zhang, Gangfeng Tan, Mengying Yang, Zhongjie Yang, Mengzuo Han
Abstract The hydraulic retarder is an important auxiliary braking device. With merits such as its high braking torque, smooth braking, low noise, long service life and small size, it is widely used on modern commercial vehicles. Transmission fluid of traditional hydraulic retarder is cooled by engine cooling system, which exhausts the heat directly and need additional energy consumption for the thermal management component. On account of the working characteristics of hydraulic retarder, this study designs a set of waste heat recovery system based on the Organic Rankine Cycle (ORC). Under the premise of ensuring stable performance of hydraulic retarder, waste heat energy in transmission fluid is recycled to supplement energy requirements for cooling system. First of all, a principle model, which is scaled down according to D300 retarder`s thermal power generation ration of 1:100, is established.
2016-09-27
Technical Paper
2016-01-8057
Michael Glensvig, Heimo Schreier, Mauro Tizianel, Helmut Theissl, Peter Krähenbühl, Fabio Cococcetta, Ivan Calaon
Abstract This paper presents the results of a long haul truck Waste Heat Recovery (WHR) system from simulation, test bench and public road testing. The WHR system uses exhaust gas recuperation only and utilizes up to 110kW of exhaust waste heat for the Organic Rankine Cycle (ORC) in a typical European driving cycle. The testing and simulation procedures are explained in detail together with the tested and simulated WHR fuel consumption benefit for different real life cycles in Europe and USA reaching fuel consumption benefits between 2.5% and 3.4%. Additionally a technology road map is shown which discusses the role of WHR in fulfilling the future CARB BSFC target value (minimum in map) of around 172 g/kWh.
2016-04-05
Journal Article
2016-01-0260
Yoshiichi Ozeki, Hideaki Nagano, Itsuhei Kohri
Abstract In order to develop various parts and components of electric vehicles, understanding the effects of their structures and thermal performance on the energy consumption and cruising distance is important. However, such essential and detailed information is generally not always available to suppliers of vehicle parts and components. This paper presents the development of a simple model of the energy consumption by an electric vehicle in order to roughly calculate the cruising performance based only on the published information to give to suppliers, who otherwise cannot obtain the necessary information. The method can calculate the cruising distance within an error of 4% compared to the published information. The effects of the glass and body heat transfer characteristics on the cruising performance in winter were considered as an example application of the proposed model.
2016-04-05
Technical Paper
2016-01-0184
Toshio Murata, Tadashi Nakagawa, Hisashi Nishino, Kazunari Matsuura
In order to speed up engine coolant warm-up, the exhaust heat recirculation system collects and reuses the heat from exhaust gases by utilizing the heat exchanger. The conventional system improves actual fuel economy at the scene of the engine restart in winter season only. The heat recirculation system becomes more effective at the low outside temperature because it takes longer time to warm up engine coolant. However, the heat recirculation system becomes less effective at the high outside temperature because it takes shorter time to warm up engine coolant. Therefore, the new exhaust heat recirculation system is developed, which adopted as follows: 1) a fin-type heat exchanger in order to enhance exhaust recirculation efficiency 2) a thinner heat exchanger component and smaller amount of engine coolant capacity in the heat exchanger in order to reduce the heat mass As a result, the actual fuel economy is more improved in winter season.
2016-04-05
Journal Article
2016-01-0178
Feng Zhou, Ercan Dede, Shailesh Joshi
Abstract Rankine cycle (RC) is a thermodynamic cycle that converts thermal energy into mechanical work, which is commonly found in thermal power generation plants. Recently, there are many studies focusing on applying Rankine cycle to recover low-grade waste heat. On-road vehicles, which convert around one third of the fuel energy into useful mechanical energy for propulsion, are moving energy conversion systems that generate considerable waste heat. It was found from many research studies that Rankine cycle has a great potential to be applied to harvest waste heat from automobiles. However, different from other low-grade waste heat sources, vehicles have limited space for the RC system integration and the waste heat is relatively unstable. In the current paper, the efforts in the past few decades related to applying RC to on-road vehicles, specifically passenger cars, are reviewed.
2016-04-05
Technical Paper
2016-01-0199
Bin Xu, Xiaobing Liu, John Shutty, Paul Anschel, Simona Onori, Zoran Filipi, Mark Hoffman
Abstract This paper presents an Organic Rankine Cycle (ORC) system model for heavy-duty diesel (HDD) applications. The dynamic, physics-based model includes: heat exchangers for parallel exhaust and EGR circuits, compressible vapor working fluid, distribution and flow control valves, a high pressure pump, and a reservoir. A finite volume method is used to model the evaporator, and a pressure drop model is included to improve the accuracy of predictions. Experimental results obtained on a prototype ORC system are used for model calibration and validation. Comparison of predicted and measured values under steady-state conditions is pursued first, followed by the analysis of selected transient events. Validation reveals the model’s ability to track real-world temperature and pressure dynamics of the ORC system.
2016-04-05
Technical Paper
2016-01-0207
Ivan Arsie, Andrea Cricchio, Cesare Pianese, Vincenzo Ricciardi, Matteo De Cesare
Abstract In the last years, the research effort of the automotive industry has been mainly focused on the reduction of CO2 and pollutants emissions. In this scenario, concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, Waste Heat Recovery technologies have been proposed. These latter include Thermo-Electric Generator (TEG), Organic Rankine Cycle (ORC) and Electric Turbo-Compound (ETC) that have been practically implemented on few heavy-duty applications but have not been proved yet as effective and affordable solutions for passenger cars. The paper deals with modeling of ORC power plant for simulation analyses aimed at evaluating the opportunities and challenges of its application for the waste heat recovery in a compact car, powered by a turbocharged SI engine.
2016-04-05
Technical Paper
2016-01-0209
Youcai Liang
Abstract This paper presents performance of a novel ECCS (electricity-cooling cogeneration system) based on cascade utilization of the waste heat of marine engines. The cogeneration system consists of a steam Rankine cycle and an NH3-H2O absorption refrigeration cycle with an expander. The steam Rankine cycle recycles the energy of both jacket coolant and exhaust gas of engine, while the absorption refrigeration cycle is employed to recover energy of the expanded steam at the turbine outlet in Rankine cycle. The performance of the waste heat recovery system is evaluated in terms of electricity, cooling capacity, equivalent electricity and exergy efficiency. The simulation results show that the novel ECCS exhibited a maximum net electricity output of 4561 kW, a maximum cooling capacity of 3197 kW, and a maximum equivalent electricity of 5233 kW.
2016-04-05
Technical Paper
2016-01-0205
Mattia De Rosa, Roy Douglas, Stephen Glover
Abstract The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications.
2016-04-05
Journal Article
2016-01-1273
Lakshmikanth Meda, Martin Romzek, Yanliang Zhang, Martin Cleary
Abstract Although the technology of combustion engines is reasonably well developed, the degree of efficiency is considerably low. Considerable amount of the energy of around 35 % is lost as exhaust waste heat, and up to 30 % is dissipated in the cooling circuits. Due to this, thermal recuperation has a great potential for raising the efficiency of combustion engines. In order to meet the ever-increasing consumer demand for higher fuel economy, and to conform to more stringent governmental regulations, auto manufacturers have increasingly looked at thermoelectric materials as a potential method to recover some of that waste heat and improve the overall efficiency of their vehicle fleets. Seeking new possibilities to make vehicles greener and more efficient, the industry wants to use the waste heat which passes through the exhaust system almost completely unused in the past.
2016-04-05
Technical Paper
2016-01-0237
Ge-Qun Shu, Xuan Wang, Hua Tian
Abstract Because of the great resources potential and the feature of low pollution of gaseous fuel, gaseous fuel internal combustion engines (gas engines) have been paid more and more attention. However, their average thermal efficiency is just about 30-40% wasting a huge amount of energy by exhaust, cooling water and so on, so waste heat recovery is very meaningful. Both the RC (steam Rankine Cycle) and the ORC (Organic Rankine Cycle) are regarded as the suitable way of WHR (waste heat recovery) for internal combustion engines. Therein, RC is usually used in large engines. The WHR system is always designed at rated work condition, while the gas engine may often work at different conditions. This makes the property of the waste heat source change, which affects the performance of WHR system, so it is very important to research its performance at variable working conditions.
2016-04-05
Technical Paper
2016-01-0240
Ruobing Zhan, Gangfeng Tan, Bo Yang, Zhiwei Zhang, Tie Wang, Cenyi Liu, Xintong Wu, Yanjun Ren, Haobo Xu
Abstract The Organic Rankine Cycle System (ORC) is an effective means to use the solar energy. The system adopts the solar energy on the car roof as the heat source to make the ORC work and drive the thermoelectric air-conditioner. It can improve the entering comfort on the parking condition and the vehicle energy utilization efficiency. In this research, the system comprehensively applied the principle of sunshine concentration, heat collection and photo electricity. Then considering the working condition and performance features of ORC system, the car roof was designed to have a compact structure, through which the efficiency of the solar vehicle system could be improved. Firstly, the research analyzed the heat source temperature and the heat flux impact on the output power of the ORC system. After that, the performance of heat collection was identified according to the given thermoelectric air-condition’s power requirements.
2016-04-05
Technical Paper
2016-01-0228
Mengzuo Han, Gangfeng Tan, Xuexun Guo, Ruobing Zhan, Xuyang An, Weiye Xue, HongBo Kang
Abstract Vehicle exhaust waste-heat recovery with thermoelectric power generators can improve energy efficiency, as well as vehicle fuel economy. In the conventional structure, the hot-end of thermoelectric module is directly connected with the outer wall of the exhaust pipe, while the cold-end is connected with the water pipe’s outer wall of the vehicle engine cooling cycle. However, the variety of vehicle engine operating conditions leads to the instability of the hot-end temperature, which will reduce the generating efficiency of the thermoelectric modules and also shorten its service life. This research is on the basis of constructing a heat transfer oil circulation, and to study the action principles and implementation methods of it.
Viewing 1 to 30 of 350

Filter