Display:

Results

Viewing 1 to 30 of 15878
2017-10-08
Technical Paper
2017-01-2325
Midhat Talibi, Paul Hellier, Nicos Ladommatos
The conversion of lignocellulosic biomass to liquid fuels presents an alternative to the current production of renewable fuels for IC engines from food crops. However, realising the potential for reductions in net CO2 emissions through the utilisation of, for example, waste biomass for sustainable fuel production requires that energy and resource inputs into such processes be minimised. This work therefore investigates the combustion and emission characteristics of five intermediate platform molecules potentially derived from lignocellulosic biomass: gamma-valerolactone (GVL), methyl valerate, furfuryl alcohol, furfural and 2-methyltetrahydrofuran (MTHF). The study was conducted on a naturally aspirated, water cooled, single cylinder spark-ignition engine. Each of the platform molecules were blended with reference fossil gasoline at 20 % wt/wt.
2017-10-08
Technical Paper
2017-01-2328
Yuanxu Li, Karthik Nithyanandan, Han Wu, Chia-Fon Lee, Zhi Ning
Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
2017-10-08
Technical Paper
2017-01-2291
Sandro Gail, Takashi Nomura, Hitoshi Hayashi, Yuichiro Miura, Katsumi Yoshida, Vinod Natarajan
In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
2017-09-23
Technical Paper
2017-01-1988
XueFei Deng, Lu Che, Lei Zhang, Rong Sun
With the rapid economic development, path problem of refined oil distribution vehicle has been paid more and more attention. Which multi- compartment vehicle has obvious advantages because it can deliver many kinds of oil at the same time. This paper takes into account the conditions such as time window, multi-distribution center and simultaneous distribution of various oil products. How to optimize the transportation route, reduce the cost of distribution process and reduce the distribution cost and carbon emission in the background of low-carbon logistics, , To improve business income, to solve the oil companies in the distribution process is very concerned about the issue. In this paper, the routing optimization problem of multi- compartment vehicle is considered, which is based on the multiple distribution center with the time window, to reduce the carbon emissions, which mainly refers to greenhouse gases, such as carbon dioxide emissions.
2017-09-19
Technical Paper
2017-01-2136
Almuddin Rustum Sayyad, Pratik Salunke, Sangram Jadhav
The objective of this work is to optimize the operating parameters of the Direct Injection single cylinder (5.2 kw) CI engine with respect to Brake Thermal Efficiency (BTHE), Hydro carbons (HC) and Carbon dioxide (CO2). For this investigation, we used Simarouba Biodiesel as an alternate fuel for diesel fuel which possesses low cetane number which is not sufficient to operate existing diesel engine. However, this could be combined with the diesel fuel in the form of blends. For this investigation four levels and four parameters were selected viz. Injection Pressure (IP), Fuel Fraction (FF), Compression Ratio (CR) and Injection Timing (Before TDC). Taguchi Method is used for minimizing the number of experiments and Multiple Regression Analysis is used to find the optimum condition. Three outputs variables such as; Brake Thermal Efficiency (BTHE), content of HC particles and CO2 in the emission are measured and considered its influence on CI Engine performance.
2017-09-19
Technical Paper
2017-01-2137
Dnyaneshwar V. Kadam, Sangram D. Jadhav
Vibration is the most considerable factor in dynamics of machinery. Vibration causes unfavorable effects on engine components and may reduce the life of engine. The conventional fossil fuel sources are limited in the world. The dependency on diesel should be reduced by using biodiesel as an alternative fuel in next few years. The input parameters are affected on engine performance and emission. The present study mainly focuses on an optimization of vibrations, performance and emission using Taguchi and multiple regression analysis for biodiesel as a fuel. The test was performed on single cylinder, four-stroke, diesel engine with VCR. Taguchi method is used to prepare the design of experiment of L16 array for minimizing number of experiments and multiple regression analysis for finding the best relationship between the input and output parameters. The selected input parameters are: fuel fraction, compression ratio, injection pressure and injection timing.
2017-09-04
Technical Paper
2017-24-0081
Luigi De Simio, Michele Gambino, Sabato Iannaccone
In recent years the use of alternative fuels for internal combustion engines has had a strong push coming from both technical and economic-environmental aspects. Among these, gaseous fuels such as liquefied petroleum gas and natural gas have occupied a segment no longer negligible in the automotive industry, thanks to their adaptability, anti-knock capacity, lower toxicity of pollutants, reduced CO2 emissions and cost effectiveness. On the other hand, diesel engines still represent the reference category among the internal combustion engines in terms of consumptions. The possibility offered by the dual fuel (DF) systems, to combine the efficiency and performance of a diesel engine with the advantages offered by the gaseous fuels, has been long investigated. However the simple replacement of diesel fuel with natural gas does not allow to optimize the performance of the engine due to the high THC emissions particularly at lower loads.
2017-09-04
Technical Paper
2017-24-0083
Hassan Khatamnejad, Shahram Khalilarya, Samad Jafarmadar, Mostafa Mirsalim, Mufaddel Dahodwala
Abstract RCCI strategy gained popularity in automotive applications due to lower fuel consumption, less emissions formation and higher engine performance in compared with other diesel combustion strategies. This study presents results of an experimental and numerical investigation on RCCI combustion using natural gas as a low reactivity premixed fuel with advanced injection of diesel fuel as a high reactivity fuel in a CI engine. An advanced three dimensional CFD simulation coupled with chemical kinetic developed to examine the effects of diesel injection timing, diesel/natural gas ratio and diesel fuel included spray angle on combustion and emissions formation in various engine loads and speeds, in a heavy duty diesel engine.
2017-09-04
Technical Paper
2017-24-0084
Giacomo Belgiorno, Nikolaos Dimitrakopoulos, Gabriele Di Blasio, Carlo Beatrice, Martin Tuner, Per Tunestal
Abstract In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
2017-09-04
Journal Article
2017-24-0085
Jesus Benajes, Antonio Garcia, Javier Monsalve-Serrano, Vicente Boronat
Abstract This work investigates the particulates size distribution of reactivity controlled compression ignition combustion, a dual-fuel concept which combines the port fuel injection of low-reactive/gasoline-like fuels with direct injection of highly reactive/diesel-like fuels. The particulates size distributions from 5-250 nm were measured using a scanning mobility particle sizer at six engine speeds, from 950 to 2200 rpm, and 25% engine load. The same procedure was followed for conventional diesel combustion. The study was performed in a single-cylinder engine derived from a stock medium-duty multi-cylinder diesel engine of 15.3:1 compression ratio. The combustion strategy proposed during the tests campaign was limited to accomplish both mechanical and emissions constraints. The results confirms that reactivity controlled compression ignition promotes ultra-low levels of nitrogen oxides and smoke emissions in the points tested.
2017-09-04
Technical Paper
2017-24-0086
Yanzhao An, S. Vedharaj, R. Vallinayagam, Alaaeldin Dawood, Jean-Baptiste MASURIER, Mohammad Izadi Najafabadi, Bart Somers, Junseok Chang, Bengt Johansson
Abstract The objective of this study was to investigate the effect of aromatic on combustion stratification and particulate emissions for PRF60. Experiments were performed in an optical CI engine at a speed of 1200 rpm for TPRF0 (100% v/v PRF60), TPRF20 (20% v/v toluene + 80% PRF60) and TPRF40 (40% v/v toluene + 60% PRF60). TPRF mixtures were prepared in such a way that the RON of all test blends was same (RON = 60). Single injection strategy with a fuel injection pressure of 800 bar was adopted for all test fuels. Start of injection (SOI) was changed from early to late fuel injection timings, representing various modes of combustion viz HCCI, PPC and CDC. High-speed video of the in-cylinder combustion process was captured and one-dimensional stratification analysis was performed from the intensity of images. Particle size, distribution and concentration were measured and linked with the in-cylinder combustion images.
2017-09-04
Technical Paper
2017-24-0092
Francesco Catapano, Silvana Di Iorio, Paolo Sementa, Bianca Maria Vaglieco
Abstract Fuel depletion as well as the growing concerns on environmental issues prompt to the use of more eco-friendly fuels. The compressed natural gas (CNG) is considered one of the most promising alternative fuel for engine applications because of the lower emissions. Nevertheless, recent studies highlighted the presence of ultrafine particle emissions at the exhaust of CNG engines. The present study aims to investigate the effect of CNG on particle formation and emissions when it was direct injected and when it was dual fueled with gasoline. In this latter case, the CNG was direct injected and the gasoline port fuel injected. The study was carried out on a transparent single cylinder SI engine in order to investigate the in-cylinder process by real time non-intrusive diagnostics. In-cylinder 2D chemiluminescence measurements from UV to visible were carried out.
2017-09-04
Technical Paper
2017-24-0096
Laura Sophie Baumgartner, Stephan Karmann, Fabian Backes, Andreas Stadler, Georg Wachtmeister
Abstract Due to its molecular structure, methane provides several advantages as fuel for internal combustion engines. To cope with nitrogen oxide emissions high levels of excess air are beneficial, which on the other hand deteriorates the flammability and combustion duration of the mixture. One approach to meet these challenges and ensure a stable combustion process are fuelled prechambers. The flow and combustion processes within these prechambers are highly influenced by the position, orientation, number and overall cross-sectional area of the orifices connecting the prechamber and the main combustion chamber. In the present study, a water-cooled single cylinder test engine with a displacement volume of 0.5 l is equipped with a methane-fuelled prechamber. To evaluate influences of the aforementioned orifices several prechambers with variations of the orientation and number of nozzles are used under different operating conditions of engine speed and load.
2017-09-04
Technical Paper
2017-24-0046
Richard Stone, Ben Williams, Paul Ewart
The increased efficiency and specific output with Gasoline Direct Injection (GDI) engines are well known, but so too are the higher levels of Particulate Matter emissions compared with Port Fuel Injection (PFI) engines. To minimise Particulate Matter emissions, then it is necessary to understand and control the mixture preparation process, and important insights into GDI engine combustion can be obtained from optical access engines. Such data is crucial for validating models that predict flows, sprays and air fuel ratio distributions. Mie scattering can be used for semi-quantitative measurements of the fuel spray and this can be followed with Planar Laser Induced Fluorescence (PLIF) for determining the air fuel ratio and temperature distributions. With PLIF, very careful in-situ calibration is needed, and for temperature this can be provided by Laser Induced Thermal Grating Spectroscopy (LITGS).
2017-09-04
Technical Paper
2017-24-0133
Jelica Pavlovic, Alessandro Tansini, Georgios Fontaras, Biagio Ciuffo, Marcos Garcia Otura, Germana Trentadue, Ricardo Suarez Bertoa, Federico Millo
Plug-in Hybrid Electric Vehicles (PHEVs) are one of the main options for reducing vehicle CO2 emissions and helping vehicle manufacturers (OEMs) to meet the CO2 targets imposed by different Governments from all around the world. In Europe OEMs have introduced a significant number of PHEV models to meet their CO2 target of 95 g/km for passenger cars set for 2021. Fuel consumption and CO2 emissions from PHEVs, however, strongly depend on the way they are used and on the frequency with which their battery is charged by the user. Studies have indeed revealed that in real life, with poor charging behavior from users, PHEV fuel consumption is equivalent to that of conventional vehicles, and in some cases higher, due to the increased mass and the need to keep the battery at a certain charging level.
2017-09-04
Technical Paper
2017-24-0132
Martin Großbichler, Zhen Zhang, Philipp Polterauer, Harald Waschl
To meet current legislation limits, modern diesel engines already achieve very low raw emission levels and utilize additional components for aftertreatment. However, during fast transients still undesired emission peaks can occur for both soot and NOx. These are caused by differences in the in-cylinder conditions between the quasi steady state engine calibration and the transient engine operation, e.g. during tip-ins. These effects become more and more important in view of future RDE emission test cycles. In this work a case study is performed to analyze the potential reduction of transient soot emissions during a specified engine maneuver. An additional target is to investigate potential benefits of a novel in-situ soot sensor based on the Laser Induced Incandescence (LII) principle which offers a high temporal resolution.
2017-09-04
Technical Paper
2017-24-0130
Antonio Paolo Carlucci, Marco Benegiamo, Sergio Camporeale, Daniela Ingrosso
Nowadays, In-Cylinder Pressure Sensors (ICPS) have become a mainstream technology that promises to change the way the engine control is performed. Among all the possible applications, the prediction of raw (engine-out) NOx emissions would allow to eliminate the NOx sensor currently used to manage the after-treatment systems. In the current study, a semi-physical model already existing in literature for the prediction of engine-out nitric ox-ide emissions based on in-cylinder pressure measurement has been improved; in particular, the main focus has been to improve nitric oxide prediction accuracy when injection timing is varied. The main modification introduced in the model lies in taking into account the turbu-lence induced by fuel spray and enhanced by in-cylinder bulk motion.
2017-09-04
Technical Paper
2017-24-0131
Sergio Mario Camporeale, Patrizia D. Ciliberti, Antonio Carlucci, Daniela Ingrosso
The incoming PostEuro6 regulation and the on-board diagnostics -OBD- pushes the research activity towards the set-up of even more efficient after treatment systems. Nowadays, the most common after treatment system for NOx reduction is the selective catalytic reactor –SCR- . This system requires as an input the value of engine out NOx emission –raw- in order to control the Urea dosing strategy. In this work, a grey box NOx raw emission model based on in-cylinder pressure signal (ICPS) is validated on two standard cycles: MNEDC and WLTC using an EU6 engine at the test bench. The overall results show a maximum relative error of the integrated cumulate value integral of 12.8% and 17.4% for MNEDC and WLTC respectively. In particular, the instantaneous value of relative error is included in the range of ± 10% in the steady state conditions while during transient conditions is less than 20% mainly.
2017-09-04
Technical Paper
2017-24-0033
Priyanka Dnyaneshwar Jadhav, J M Mallikarjuna
Future stringent emission norms are impelling researchers to look for new emission control techniques. Today, gasoline direct injection (GDI) engines are becoming more popular because of high potential to reduce emissions over a wide operating load range, unlike conventional port fuel injection (PFI) spark ignition (SI) engines. Also, turbocharged GDI engines allow engine downsizing with certain restriction on compression ratio due to knocking tendency, thereby limiting the fuel economy. However, use of exhaust gas recirculation (EGR) delays combustion and lowers the knocking tendency which will aid in improving the fuel economy. The present computational fluid dynamic (CFD) investigation is aimed to evaluate the effect of EGR rate on the performance and emission characteristics of a two-liter turbocharged four stroke GDI engine. The compression ratio of 9.3 and the engine speed of 1000 rev/min., are selected for the analysis.
2017-09-04
Technical Paper
2017-24-0036
S Krishna Addepalli, Om Prakash Saw, J M Mallikarjuna
Mixture distribution in the combustion chamber of gasoline direct injection (GDI) engines significantly affects the combustion, performance and emission characteristics. The mixture distribution in the engine cylinder in turn depends on many parameters viz., fuel injector hole diameter and orientation, fuel injection pressure, start of fuel injection, in-cylinder fluid dynamics etc. In these engines, the mixture distribution is broadly classified as homogeneous and stratified. However, with the currently available engine parameters it is difficult to objectively classify the type of mixture distribution. In this study, an attempt is made to objectively classify the mixture distribution in GDI engines using a parameter called the “stratification index”. The analysis is carried out on a four-stroke wall-guided GDI engine using computational fluid dynamics (CFD).
2017-09-04
Journal Article
2017-24-0051
Ferdinando Taglialatela, Mario Lavorgna, Silvana Di Iorio, Ezio Mancaruso, Bianca Maria Vaglieco
Real time estimation of particle size distribution has a great importance for advanced control strategies that can allow diesel engines to comply with future emission standards. Moreover, knowledge of real time particulate size distribution allows the optimization of the functioning of after-treatment systems. The aim of this paper is to present a Neural Network model able to provide real time information about the characteristics of particulate emissions from a Diesel engine. The model has as inputs some engine parameters such as engine speed, engine load, EGR ratio, etc., and, as output, the particle size distribution. Preliminary results indicated that the model shows, for every engine operating condition, a satisfactory capability of estimating the concentrations of particulate particles with prefixed diameters.
2017-09-04
Technical Paper
2017-24-0048
Jose V. Pastor, Jose M. Garcia-Oliver, Antonio Garcia, Mattia Pinotti
In the past few years various studies have shown how the application of a highly premixed dual fuel combustion for CI engines leads a strong reduction for both pollutant emissions and fuel consumption. In particular a drastic soot and NOx reduction were achieved. In spite of the most common strategy for dual fueling has been represented by using two different injection systems, various authors are considering the advantages of using a single injection system to directly inject blends in the chamber. In this scenario, a characterization of the behavior of such dual-fuel blend spray became necessary, both in terms of inert and reactive ambient conditions. In this work, a light extinction imaging (LEI) has been performed in order to obtain two-dimensional soot distribution information within a spray flame of different diesel/gasoline commercial fuel blends. All the measurements were conducted in an optically accessible two-stroke engine equipped with a single-hole injector.
2017-09-04
Journal Article
2017-24-0057
Roberto Finesso, Omar Marello, Ezio Spessa, Yixin Yang, Gilles Hardy
A model-based control of BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed for a Euro VI 3.0L diesel engine for heavy-duty applications. The control is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, brake torque, exhaust gas temperatures, NOx and soot engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. The chemical energy release has been simulated using the accumulated fuel mass approach. The in-cylinder pressure was estimated on the basis of a single-zone heat release model, using the net energy release as input. The latter quantity was obtained starting from the simulated chemical energy release, and evaluating the heat transfer of the charge with the walls.
2017-09-04
Journal Article
2017-24-0067
Yoshiaki Toyama, Nozomi Takahata, Katsufumi Kondo, Tetsuya Aizawa
In order to better understand in-flame diesel soot oxidation processes, soot particles at the oxidation-dominant periphery of diesel spray flame were sampled by a newly developed “suck” type soot sampler employing a high-speed solenoid valve and their morphology and nanostructure were observed via High-Resolution Transmission Electron Microscopy (HR-TEM). A single-shot diesel spray flame for the soot sampling experiment was achieved in a constant-volume vessel under a diesel-like condition. The sampler quickly sucks out a small portion of soot laden gases from the flame. A TEM grid hold inside the flow passage close to its entrance is immediately exposed to the gas flow induced by the suction at the upstream of the solenoid valve, so that the quick thermophoretic soot deposition onto the grid surface can effectively freeze morphology variation of soot particles during the sampling processes.
2017-09-04
Technical Paper
2017-24-0066
Maria Cristina Cameretti, Roberta De Robbio, Raffaele Tuccillo
The present study deals with the simulation of a Diesel engine fuelled by natural gas/diesel in dual fuel mode to optimize the engine behaviour in terms of performance and emissions. In dual fuel mode, the natural gas is introduced into the engine’s intake system. Near the end of the compression stroke, diesel fuel is injected and ignites, causing the natural gas to burn. The engine itself is virtually unaltered, but for the addition of a gas injection system. The CO2 emissions are considerably reduced because of the lower carbon content of the fuel. Furthermore, potential advantages of dual-fuel engines include diesel-like efficiency and brake mean effective pressure with much lower emissions of oxides of nitrogen and particulate matter. In previous papers [1, 2, 3], the authors have presented some CFD results obtained by the KIVA 3V and Fluent codes by varying the diesel/NG ratio and the diesel pilot injection timing at different loads.
2017-09-04
Technical Paper
2017-24-0070
Stefano D'Ambrosio, Daniele Iemmolo, Alessandro Mancarella, Nicolò Salamone, Roberto Vitolo, Gilles Hardy
A precise estimation of the recirculated exhaust gas rate and oxygen concentration as well as a predictive evaluation of the possible EGR unbalance among cylinders are of paramount importance, especially if non-conventional combustion modes, which require high EGR flowrates, are implemented. In the present paper, starting from the equation related to convergent nozzles, the EGR mass flow-rate is modeled considering the pressure and the temperature upstream of the EGR control valve, as well as the pressure downstream of it. The restricted flow-area at the valve-seat passage and the discharge coefficient are carefully assessed as functions of the valve lift. Other models were fitted using parameters describing the engine working conditions as inputs, following a semi-physical and a purely statistical approach. The resulting models are then applied to estimate EGR rates to both conventional and non-conventional combustion conditions.
2017-09-04
Technical Paper
2017-24-0075
Felix Leach, Riyaz Ismail, Martin Davy, Adam Weall, Brian Cooper
Modern Diesel cars, fitted with state-of- the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant complexity, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder—both during the injection and combustion events—and also to the induced air motion in and around the bowl prior to injection. In this paper the effects of two different piston bowl shapes are investigated – one with a stepped bowl lip, and the other without.
2017-09-04
Technical Paper
2017-24-0076
Mark A. Hoffman, Ryan O'Donnell, Zoran Filipi
The proven impact of combustion chamber deposits on advanced compression ignition combustion strategies has steered recent works toward the development of thermal barrier coatings, which can mimic their benefits on combustion efficiency and operational range expansion. However, recent work based on statistical thermodynamics has indicated that inter-molecular radiation during the combustion event may subject the combustion chamber walls to non-negligible radiation heat transfer, regardless of the relatively low soot formation within the well-mixed and lean charge. In the present paper, the impact of radiation heat transfer on combustion chamber deposits and thermal barrier coatings is studied. The morphological construction of the combustion chamber deposit layer is shown to be partially transparent to radiation heat transfer, drawing corollaries with ceramic based thermal barrier coatings.
2017-09-04
Journal Article
2017-24-0077
Matteo Pelucchi, Mattia Bissoli, Cristina Rizzo, Yingjia Zhang, Kieran Somers, Alessio Frassoldati, Henry Curran, Tiziano Faravelli
Pursuing a sustainable energy scenario for transportation requires the blending of renewable oxygenated fuels such as alcohols into commercial hydrocarbon fuels. From a chemical kinetic perspective, this requires the accurate description of both hydrocarbon reference fuels (n-heptane, iso-octane, toluene, etc.) and oxygenated fuels chemistry. A recent systematic investigation of linear C2–C5 alcohols ignition in a rapid compression machine at p = 10–30 bar and T = 650–900 K has extended the scarcity of fundamental data at such conditions allowing for a revision low temperature chemistry for alcohol fuels in the POLIMI mechanism. Heavier alcohols such as n-butanol and n-pentanol present ignition characteristic of interest for application in HCCI engines, due to the presence of the hydroxyl moiety reducing their low temperature reactivity compared to the parent linear alkanes (i.e. higher octane number).
2017-09-04
Technical Paper
2017-24-0123
Christopher Eck, Futoshi Nakano
Small commercial vehicles (SCV) with Diesel engines require efficient exhaust aftertreatment systems to reduce the emissions while keeping the fuel consumption and total operating cost as low as possible. To meet current emission legislations in all cases, a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) and some NOx treatment device (e.g. a lean NOx trap or selective catalytic reduction, SCR) are required. Creating a cost-effective SCV also requires to keep the cost for the aftertreatment system as low as possible because the contribution to total vehicle cost is high. By using more sophisticated and more robust operating strategies and control algorithms, the hardware cost can be reduced. To keep the calibration effort at a low level, it is necessary to apply only algorithms which have a time-efficient calibration procedure. This paper will focus on the active regeneration of the DPF.
Viewing 1 to 30 of 15878

Filter