Display:

Results

Viewing 1 to 30 of 14873
2015-01-14
Technical Paper
2015-26-0107
Moqtik Ashok Bawase, Amita Baikerikar, M R Saraf
Airborne particulate matter (PM) in an urban atmosphere is a result of contribution from diverse range of source including domestic, industry and vehicles. PM emission is a matter a concern due to its multiple impacts on public health, air quality, and global climate. Ever increasing number of vehicles plying on the road is considered to be one of the major sources of PM. Particles in gasoline and diesel vehicle exhaust carry distinctive combinations of certain chemical compounds. Prominence of their chemical signature in ambient particulate matter can be considered as a direct indication of their relative importance as sources of emissions. In this study, Chemical speciation data of vehicle exhaust PM is analyzed and vehicle category wise distribution of carbon fractions is presented for different engine technologies and fuel types.
2015-01-14
Technical Paper
2015-26-0109
Prashant Kumar Sharma, Suryanarayanan Venkatachalam, Pradeep Paulraj, Vasudeo Ganesh Halbe, Senthur Pandian
As the number of vehicles and environment pollution is increasing day by day, the emission regulation gets more stringent by the emission regulation authorities. Oxides of Nitrogen gases are one of the most harmful emissions from the IC Engines. In EURO 5 regulation NOx emission value is 0.18g/km for passenger cars which is further reduced to 0.08 g/km in EURO 6 regulation for CI engines. In order to achieve these NOx limits SCR (Selective Catalytic Reduction) technology is used for CI engines. In SCR technology the reduction of NOx is done through aqueous urea solution injected in exhaust stream. The composition of aqueous urea solution is 62.5% water and 32.5% is urea. After injection, this aqueous urea solution disintegrated into Ammonia and carbon dioxide by Thermolysis and Hydrolysis.
2015-01-14
Technical Paper
2015-26-0101
Arun Sivasubrahmaniyan, Abhishek Kumar Jaishwal, Girish R Warrier, Sriram Tharaneetharan, Kalyan Hatti
A methodology for design and development of On-Board Diagnostic system II (OBD II) is derived with an objective to improve current reliability process in order to ensure design & quality of the system as per the requirement of commercial vehicle technology. This paper will give an overview of approach to the development of OBD II design concept / strategy as per requirement for variants of vehicles & engines keeping India specific design critique with regulatory requirements, compilation of design & development plan with supplier as a partner using a reliability tool DFMEA, DVVP & On road trials or vehicle level test. Paper will include, format of DFMEA, DVVP and vehicle level test results used during the development of OBD II.
2015-01-14
Technical Paper
2015-26-0055
Chinmaya Mishra, Purna Mishra, Biswa Kar, Nitin Katiyar
Plant origin vegetable oils are long considered as a potential alternative fuel for diesel engine applications. However, higher viscosity and density compounded with poor cold flow properties of these oils lead to serious operational and durability problems in diesel engines like injector chocking, higher deposit formations, poor combustion characteristics etc. In this context, application of additives in neat vegetable oil to enable them for engine application seem to present a promising alternative for rural stationary diesel engines where the complex transesterification process for biodiesel production from vegetable oils is not feasible. In the present study, Calophyllum vegetable oil was blended with 10%, 20% and 30% by volume of Isopropyl alcohol and named as CI10, CI20 and CI30 respectively. Neat diesel was named as D100.
2015-01-14
Technical Paper
2015-26-0096
Partha Mishra, Suresh Iyer, David Klinikowski
This paper investigates experimental uncertainties associated with gaseous and particulate emissions measurements in a partial flow sampling system developed and built at the Larson Transportation Institute of the Pennsylvania State University. A small fraction of the tail pipe exhaust is diluted with dilution air and passed through a cyclone to eliminate particles bigger than 2.5 microns. The diluted exhaust is then passed through a 47 mm Teflon filter for gravimetric measurement of PM. Mass flow controllers are used to control the flow rates of dilution air, diluted exhaust, and proportional flow of diluted exhaust into a Tedlar bag in real time, at 5 Hz. An ultrasonic flow meter is used to measure flow rate of tail pipe exhaust. At the end of a test, the concentration of gaseous emissions in the bag, namely CO2, CO, HC, and NOx are measured using a micro bench bag emissions analyser.
2015-01-14
Technical Paper
2015-26-0103
Anders Widd, Magnus Lewander
The Euro IV legislation for heavy-duty on-road vehicles enforces emissions limits on the tailpipe NOx levels during both transient and modal testing, typically paired with additional limitations on, for example, ammonia emissions. There are several possible strategies for complying with the legislation, including engine management measures as well as after-treatment in the form of catalytic removal of NOx with ammonia as the reducing agent. A range of important aspects are presented and discussed, with both overall system performance and the installation and operational costs in mind. Factors relevant for future legislations, in the form of EU V and beyond, are also discussed. Operating the engine with high levels of EGR is a possible path to EU IV compliance with no or little catalytic NOx reducing after-treatment. Here, it is contrasted against an SCR-only solution based on a non-EGR engine calibration.
2015-01-14
Technical Paper
2015-26-0098
Francois Jayat, Sven Seifert, K.V.R. Babu, Shrivaj Waje
Affordable, efficient and durable catalytic converters for the two and three wheeler industry in developing countries are required to reduce vehicle emissions and to maintain them at a low level; and therefore to participate in a cleaner and healthier environment. The LS-DesignTM metallic substrates with Longitudinal structured foils have been proved to be capable of improving conversion behavior, even with smaller catalyst size. Specially this developed foil structure, which transforms a laminar exhaust gas flow into a turbulent one, significantly improves exhaust gas mixing behavior in the catalyst. In this special period of time where BS4 applications will start appearing in the Indian market, this publication will deal with the experimental results achieved with different metallic substrate foil structures on one leading “state of the art” BS3 four stroke motorcycle technology, developed for the Indian market.
2015-01-14
Technical Paper
2015-26-0142
Muzaffar Ali Quazi, Shakti Kumar Singh, Mangeshkumar Jadhao
Abstract In meeting the stringent emission norms with internal engine measures, the design of the piston bowl and the nozzle configuration perform a defining role. This paper elaborates the experimental work conducted for combustion optimization with combinations of piston bowl, intake port swirl and injector specifications in 3.68 l off road diesel engine. Through simulations the best option had been carried out parametrically, investigate the influence of piston bowl geometry and nozzle characteristics on the performance of the combustion system. Then experimental tests were carried out, the influence of the nozzle cone angle, hydraulic flow rate, number of holes and their combination were determined using systematic parameter variations with selected piston bowl designs. The performance of the various hardware configurations were evaluated based on the exhaust emissions and fuel consumption values.
2015-01-14
Journal Article
2015-26-0104
Santhoji Katare, Carolyn Hubbard, Seha Son
Abstract Aftertreatment system design involves multiple tradeoffs between engine performance, fuel economy, regulatory emission levels, packaging, and cost. Selection of the best design solution (or “architecture”) is often based on an assumption that inherent catalyst activity is unaffected by location within the system. However, this study acknowledges that catalyst activity can be significantly impacted by location in the system as a result of varying thermal exposure, and this in turn can impact the selection of an optimum system architecture. Vehicle experiments with catalysts aged over a range of mild to moderate to severe thermal conditions that accurately reflect select locations on a vehicle were conducted on a chassis dynamometer. The vehicle test data indicated CO and NOx could be minimized with a catalyst placed in an intermediate location.
2015-01-14
Journal Article
2015-26-0108
Vijay Narkhede, Dinesh Kumar, R M Cursetji, Touquire A Sidiquie
Abstract Diesel engines are becoming popular because of more fuel efficient and durability. While the CO and HC impurities are significantly lower than in gasoline engines, the design strategies for reduction of Particulate Matter and Nitrogen Oxides remain a major challenge for environment. The work mainly focused on reduction of NOx from diesel engines using SCR technology under Indian driving conditions and furl availability. With BS III/IV fuel available in the country, the catalyst system of choices the Vanadia Tungsten Titania (VWT) system because of its proven resistance to Sulfur poisoning. However, under urban driving conditions on Indian roads, the major obstacle is the low engine out temperatures which are below the normal operating temperature window (200 to 450 °C) of VWT - SCR.
2015-01-14
Technical Paper
2015-26-0092
Sadanand Bhosale, Rajendiran Suresh, Dipankar Ray
The increasingly stringent emission legislations provide a continuous challenge for the non-road market. With an anticipation of upcoming emission norms are based on US-EPA Tier 4 final, major technology up gradations is expected for farm equipment sold in India. The enormous diversification of engines within the different power classes as well as the operation specific requirements regarding various duty cycles, robustness and durability, requires specific solutions to meet these legal limits. These solutions are varying from advanced in-cylinder combustion strategies to sophisticated exhaust after-treatment technologies. Generally, the proven technology concepts such as Common Rail System (CRS), efficient Turbocharged-Intercooled (TCI), controlled cooled EGR along with DOC-DPF in after treatment are used for emission controls. However, this approach will increase engine cost in addition to the Packaging challenges for the existing vehicle layouts.
2015-01-14
Technical Paper
2015-26-0030
Naresh G. Gandhi, Nitin Gokhale, Yogesh Aghav, M N Kumar
Abstract Indian emission norms for stationary Gensets are upgraded from CPCB I to CPCB II. These new emission norms call for a significant change in emission limits. CPCB II emission norms call for 62% reduction in NOx+HC and 33% reduction in particulates for engines above 75 kW up to 800 kW power range compared to existing CPCB I norms. CPCB II norms are more stringent as compared to European Stage IIIA and CEV BS III. To meet equivalent emission norms in US and Europe most of the engine manufacturers have used Common Rail Direct Injection (CRDI) or electronic unit injection as the fuel injection technology. This paper describes mechanical fuel injection solution for meeting CPCB II emission norms on engines between 93 kW up to 552 kW with acceptable fuel consumption values. The paper presents simulation and experimentation work carried out to achieve the norms for the said power ratings.
2015-01-14
Technical Paper
2015-26-0048
Hans Juergen Manns, Maximilian Brauer, Holger Dyja, Hein Beier, Alexander Lasch
Abstract Future regulations for passenger cars will no longer focus on emission reduction only but also on reducing CO2. The use of Compressed Natural Gas (CNG) in combustion engines is one solution which provides benefits in CO2 and in pollutant emissions at the same time. The conversion of Gasoline engines to CNG operation is well known. In this paper however - the operation of a passenger car diesel engine in Diesel - CNG dual fuel mode is investigated. The paper describes the experimental setup and measurement procedure that was chosen to assess combined Diesel - CNG combustion. Results for emissions, fuel economy (CO2), engine noise and combustion stability will be presented for three different operating points on a research single cylinder engine. Special focus lies on the partially/unburned hydrocarbon (HC) emissions which are typically high when CNG is well premixed and burning in a globally lean combustion environment.
2015-01-14
Technical Paper
2015-26-0057
K. R. Patil, S. S. Thipse, Arundhati Warke
Abstract Diethyl Ether (DEE) is a promising oxygenated renewable bio-base resource fuel used for diesel engines, owing to its high ignition quality. An experimental investigation has been carried out to evaluate the effects of DEE blends with diesel on the combustion, performance and emission characteristics of a direct injection diesel engine. The engine tests are carried out for 10%, 25%, 50%, 75% and 100% of the full load. In this study, 2%, 5%, 8%, 10%, 15%, 20% and 25% of DEE (by volume) are blended with diesel. Beyond 25% DEE blend, the viscosity and density of the blended fuel reduces as compared to the acceptable limits, that can further reduces the lubricity and create potential wear problems in sensitive fuel injection pump and fuel injector design. The laboratory fuel tests showed that DEE can be mixed in any proportion in diesel fuel. The blended fuel retains the desirable physical properties of diesel fuel but includes the cleaner burning capability of DEE.
2015-01-14
Technical Paper
2015-26-0093
S. Jayagopal
The automobile industries have seen a great evolution since 19th century. Reducing the NOx emissions from Diesel engines remains as a challenging issue as the emission standards for Diesel engines & its powered vehicles have become more stringent than ever before. As one has to develop for improved life-style, something has to be sacrificed and one among them is global warming. So, many nations have come up with regulations to control exhaust emissions of the vehicles. In the case of Medium & Heavy Duty Diesel Engines, the emissions to be met on Engine Dynamometer on both ESC & ETC cycles for BS-IV or Euro-IV as on date. In which the optimizing the emission parameters to meet Random NOx requirement is logical technique to use.
2015-01-14
Technical Paper
2015-26-0091
Ramakant Gode, Angshuman Goswami, Jyotirmoy Barman, Hardik Lakhlani
Air motion in a cylinder in a compression ignition engine affects on mixing of air-fuel, quality of combustion and emission produced. With upcoming stringent norms for diesel engines, it is necessary to enhance air-fuel mixing for proper combustion.Swirl, squish and tumble are three forms of air motion. Swirl is a rotational motion of a bulk mass within cylinder. Swirl is generated by shaping and countering intake manifold and valve ports. Swirl enhances air-fuel mixing and helps to spread flame-front during combustion. The objective of this paper is to analyse the impact of different swirl ratios on NOx and soot emission characteristics inside the cylinder of a DI Diesel engine. The effects of different geometrical parameters of helical port were studied and the swirl ratios are optimized by optimizing the geometrical parameter of helical port. This can be done by different manufacturing, polishing and grinding processes.
2015-01-14
Technical Paper
2015-26-0106
Amartya Ghosh, Vasudevan C, Sachin gogia, Senthur Pandian, Ghodke Pundlik Rambhaji
With the implementation of stringent PM emission norms in various countries for diesel vehicles, the legislation demands a PM mass limit as low as 5mg/km in the NEDC cycle starting from Euro5. This makes the usage of Diesel particulate filters (DPF) mandatory. The same is going to be mandated for upcoming BSV emission norms in India. Now, the major challenges for DPF technology adaptation are: 1) Soot mass estimation and loading for the DPF 2) DPF Regeneration - Process involving soot mass burning inside a DPF(temperature based/ under fuel post injection) This paper deals with the most important aspect of the regeneration of DPF – Regeneration Interval and factors affecting the same. Regeneration interval: kilometers of driving a vehicle after which the DPF will reach the maximum limit of soot mass present inside it.
2015-01-14
Journal Article
2015-26-0090
Federico Stola, Matteo De Cesare, Luca Lacchini, Nicolò Cavina, Sandeep Sohal
Abstract The Selective Catalytic Reduction (SCR) system installed on the exhaust line is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for light and medium duty trucks, large passenger cars and off-highway vehicles, to fulfill future emission legislation. Some vehicles of these last categories, equipped with SCR, have been already put on the market, not only in the US, where the emission legislation on Diesel vehicles is more restrictive, but also in Europe, demonstrating to be already compliant with the upcoming Euro 6. Moreover, new and more stringent emission regulations and homologation cycles are being proposed all over the world, with a consequent rapidly increasing interest for this technology. As a matter of fact, a physical model of the Diesel Exhaust Fluid (DEF) supply system is very useful, not only during the product development phase, but also for the implementation of the on-board real-time controller.
2015-01-14
Journal Article
2015-26-0105
Prakash Kamat, Yogesh Aghav, Nitin Gokhale, M N Kumar
Abstract An innovative Diffusive Air Jet (DAJ) Combustion Chamber concept has been introduced in the present work. The DAJ Combustion Chamber design is based on the study of rate of heat release (ROHR) curve and its correlation with emission generation. The objective is to lower the trade-off between NOx and soot without sacrificing fuel economy of Direct Injection (DI) diesel engine. DAJ Combustion Chamber modifies ROHR curve to the desired one so that it lowers engine out emissions. To study its effect, a large bore, six cylinder engine with mechanical fuel injection system has been used. Three dimensional simulation software is used for the model calibration of basic reentrant cavity. Local emissions and ROHR curve have been studied using reentrant cavity shape. It has been modified to DAJ Combustion Chamber using Air Jet Chambers (AJCs). AJCs are positioned in the three dimensional model in such a way that they affect local in-cylinder emissions.
2015-01-14
Technical Paper
2015-26-0018
Anshul Agarwal, Siva Subramanian Ravishankar, R Arvind
Stringent emission norms for better quality of environmental air triggers a challenge for OEMs. This is because selection of appropriate technology to meet stringent emission norms has to be ensured with improve fuel efficiency and control cost. This paper highlights an overview of hardware development and calibration strategies carried out for up gradation of 2.2 L common rail direct injection diesel engine, to meet BS V Emissions norms. Existing BS IV compliance engine is selected as a base engine. Target was to minimize possible engine out emission with reduce dependency on after treatment. Major hardware changes in the baseline engine includes reduction in compression ratio, Injectors, EGR cooler optimization, Turbocharger, Diesel oxidation catalyst.
2015-01-14
Technical Paper
2015-26-0050
Kunal Kumar Rana, Saravanan Natarajan, Srinivas Jilakara
The carbonless structure of Hydrogen is considered as a potential fuel for future automotive propulsion system to reduce reliance on energy imports and elimination of carbon containing emissions. There are a lot of research on fuel cells, which yields very promising results, yet at other side it has several drawbacks such as cost, bulkiness and low efficiency at high loads. Here the hydrogen fuelled internal combustion engine appears on the scene. The working principle of an internal combustion engine fuelled with hydrogen is same as any spark ignition engine. This paper reviews optimistic features and current boundaries that are associated with the use of hydrogen as SI engine fuel, along with the recent advancements in hydrogen (H2) powered engine. An overview of highly favourable engine specific properties of hydrogen with regards to its combustion characteristics and challenges that must be surmounted in order to establish a "Hydrogen Economy" are described.
2015-01-14
Technical Paper
2015-26-0097
Prasanna G Bhat, Sukrut Thipse, Neelkanth V Marathe, Narendra Pawar, Hirak Jyoti Gayen, Dadarao Narwade, Bhaskar Melage, S V A Achari
Abstract Single cylinder and two cylinder diesel engines are widely used as a source of power generation, three wheelers as well as agricultural machines in small house-hold applications in India and other Asian countries. Use of high end technologies makes these engines too expensive. Therefore simple mechanically controlled components are used for these engines which make them simple in operation and maintenance. In order to meet stringent emission norms, there is a need for the development of these engines. The up-gradation of a two cylinder diesel genset engine is achieved with minimum hardware changes in the engine to make it cost effective. The engine is upgraded from Naturally Aspirated to Turbocharged Intercooled configuration with Exhaust Gas Recirculation (EGR). The changes in hardware include selection of suitable turbocharger, intercooler, and EGR flow rate. Presently, there are very few twin cylinder diesel engines with turbocharging for genset application.
2015-01-14
Technical Paper
2015-26-0102
Dhaval Dhruv, Sribathy Thirumavalavan, Manoj Kumar Thangamaniraj, Vinodhkumar Vellaichamy
To meet OBD norms for oxygen sensor component in exhaust path, there are various methods developed to monitor health of the same in engine management system. Here a new diagnosis strategy for oxygen sensor response is proposed, mainly applicable for start-stop vehicles. This diagnosis strategy is executed during the change in engine running state to engine stop state of vehicle due to start-stop feature. In general, before the engine stop is triggered, the lambda in the engine can be rich or lean; then when engine is stopped, fuel injection is cut-off and lambda in the engine becomes “infinitely lean” or only air passes through. Due to inertia of engine rotation after fuel cut-off, this air is still passed across oxygen sensor in exhaust path. So here are two transitions of lambda changes can be realized by oxygen sensor signal during engine running to engine stop, i.e. rich to infinitely lean and lean to infinitely lean.
2015-01-14
Technical Paper
2015-26-0089
Joschka Schaub, Thorsten Schnorbus, Michele Miccio, Thomas Koerfer
The continuously strengthened requirements regarding air quality and pollutant reduction as well as GHG emissions further complicate the compliance with legal standards. Especially in view of cost-sensitive applications this demand strongly collides with the EMS set-up and the sensor requirements with still increasing overall system complexity. The paper in hand delivers a novel air path control approach, developed by FEV, which offers the potential for a flexible use of multiple EGR routes to meet upcoming legislations more robustly, while providing a significant reduction of calibration effort and sensor content at the same time.
2015-01-14
Technical Paper
2015-26-0088
Prashant Daggolu, Anthony Joseph, Dinesh Kumar, R M Cursetji
Abstract Diesel exhaust is typically at lower temperature compared to gasoline exhaust and would need a catalyst that has activity in low temperature range to be effective. Hence considerable research has been directed to improve low temperature activity of catalysts used in diesel application. One of the aspects that has been widely reported in literature is that small Pt clusters have a positive effect on reducing the CO light off temperature (LOT). To examine this phenomenon closely, the present work was taken up to correlate Pt cluster size with performance. Catalysts were prepared on various supports - Alumina, Siliceous clay, ceria-zirconia, etc with different metal loadings and the calcinations conditions were varied both in time and temperature as well as calcinations atmosphere. The cluster sizes were ascertained using Phillips Tecnai 20 Transmission Electron Microscope.
2015-01-14
Technical Paper
2015-26-0087
R Arvind, Siva Subramanian Ravishankar, Senthil Krishnan Mahendar, Anshul Agarwal
Abstract Selection of EGR system is very complex for a particular engine application. The performance of the EGR system depends highly on the Cooler Heat Transfer Efficiency. Cooler effectiveness drops over a period of operation due to soot deposition, HC condensation, and fuel quality. This phenomenon is called as Cooler Fouling. Fouling cannot be avoided completely but the level of performance drop over time has to be studied and minimized. The minimum pressure drop and the highest efficiency in fouled condition is the target for selection of a cooler. In this study, various parameter combinations like tube shape and profile, tube length, number of tubes, tube diameter, and pitch of corrugations, which influence the cooler performance were tested. A better understanding of each of its effect on cooler effectiveness and fouling behavior was obtained. The tube shape was changed from rectangular to circular, also from smooth surface to corrugate.
2015-01-14
Technical Paper
2015-26-0100
Prasanna G Bhat, Neelkanth V Marathe, Bhaskar Melage, Hirak Gayan, Dadarao Narwade, Narendra Pawar, Dharmdev Vyas, Samadhan Awate, Abhishek Meshram, Pramod Ghadage, PJM Khan
Abstract The Objective of the work is to upgrade existing series of multi cylinder DI turbocharged intercooled diesel engines to meet revised stringent Stage-II emission norms for diesel genset application. In this engine tuning activity, focus is given on optimization of engine without any major modification on engine design features. In recent years, the demand use and penetration of diesel operated generating sets for the power generation application has sharply rise in India. These sharp rises in the DG engines have made the high impact on pollutants emitted by these sets. Hence, concerned authorities have first enforced the limits on the pollutants emitted by these sets in the year 2004. Further these emission limits were tightened recently and reduced the emissions from diesel engines. Concerned authorities implemented the revised emission norms with effective from July 2014. The reduction in NOx+HC emission is around 62% for the engines having rated power above 75 kW.
2015-01-14
Technical Paper
2015-26-0094
Matti A Harkonen, Bosco Rajan, Alok Trigunayat, Neelam Jagtap
Abstract BS III norms (BS IV in 13+26 cities) have been implemented in India for a long time. There have been discussions over further country wide implementation of BS IV norms. All the engine categories (on-road & off-road) will be required to comply with stringent norms in future sooner or later. The Original Equipment Manufacturers (OEMs) have been working to comply with the norms. There has been a lot of work in the field of power train, transmission, aerodynamics etc. in order to make application better in all possible ways. However it has been largely focused on engine optimization and vehicle improvisation. The time has come when industry is staring on implementation of stringent emission norms and it will be vital to look at it in a whole perspective. It would not be incorrect to say there have been little work been done specifically on after-treatment systems which has been built for Indian market and driving conditions.
2014-11-30
Magazine
Riding on a high Rudi Schurmans and Ben Patel head up Tenneco's suspension and clean air divisions. Ian Adcock discovers what the automotive future holds for them Driverless revolution has begun! Breakthrough Photonic radar promises greater accuracy at lower cost, Ian Adcock discovers Winds of change are here Simulating aerodynamics will make a step-change in vehicle design, as Stephen Remondi, President and CEO of EXA, explains to Ian Adcock
2014-11-11
Journal Article
2014-32-0003
Gen Shibata, Ryota Kawaguchi, Soumei Yoshida, Hideyuki Ogawa
Abstract The chemical composition of marketed gasoline varies depending on the crude oil, refinery processes of oil refineries, and season. The combustion characteristics of HCCI engines are very sensitive to the fuel composition, and a fuel standard for HCCI is needed for HCCI vehicles to be commercially viable. In this paper, the effects of the structure of the fuel components on auto-ignition characteristics and HCCI engine performance were investigated. The engine employed in the experiments is a research, single cylinder HCCI engine with a compression ratio of 14.7. The intake manifold was equipped with a heater attachment allowing control of the intake air temperature up to 150 °C at 2000 rpm. Thirteen kinds of hydrocarbons, 4 kinds of paraffins, 3kinds of naphthenes, and 6 kinds of aromatics, were chosen for the investigation, and 20vol% of each of the pure hydrocarbons was blended with the 80 vol% of PFR50 fuel.
Viewing 1 to 30 of 14873

Filter