Display:

Results

Viewing 1 to 30 of 2143
2016-06-15
Journal Article
2016-01-1825
Jung-Han Woo, Da-Young Kim, Jeong-Guon Ih
Abstract To hear the powerful and spectrally rich sound in a car is costly, because the usual car audio system adopts small loudspeakers. Also, the available positions of the loudspeakers are limited, that may cause the reactive effect from the backing cavity and the sound distortion. In this work, a part of the roof panel of a passenger car is controlled by array actuators to convert the specified large area to be a woofer. An analogous concept of the acoustic holography is employed to be projected as the basic concept of an inverse rendering for achieving a desired vibration field. The vibration of the radiating zone is controlled to be in a uniform phase, and the other parts outside it are to be made a no-change zone in vibration. The latter becomes a baffle for the woofer, and the backing cavity is virtually infinite if the sound radiation into the passenger cabin is only of concern.
2016-06-15
Technical Paper
2016-01-1781
Matthew Maunder, Phil Grant, Duncan Mawdsley
Abstract Engine sound quality is a key attribute for sporty cars - it powerfully conveys the brand image to the driver/passengers and onlookers, and provides driver involvement by giving instant feedback about how a car is operating. Providing this has become more difficult with tighter pass-by noise regulations and the near-universal adoption of turbocharging. In the last two decades, sporty sound inside the cabin has been regained using intake sound generator systems that transfer sound more directly to the vehicle interior. The high cost of these systems is more recently driving a move towards electronic Active Sound Design with systems delivering synthetic sound through loudspeakers. However, the purist sports car market perceives this approach to be fake or artificial. An alternative approach is provided by a system for Realistic Augmented Sound by Ricardo (RAS-R) that offers a choice of two realistic engine sound sources.
2016-06-15
Technical Paper
2016-01-1783
Oliver Engler
Mercedes-AMG GmbH specializes in unique, high-performance vehicles. The image of AMG as the successful performance brand of Mercedes-Benz is reflected in its impressive successes in the world of motorsport and its unique vehicles. One of these vehicles is the SLS AMG Coupé Electric Drive. After an elaborate series of tests as well as numerous test drives, we have created the SLS eSound which captures the exceptional dynamism of this unique super sports car with electric drive. Starting with a characteristic start-up sound, which rings out on pressing the "Power" button on the AMG DRIVE UNIT, the occupants can experience a tailor-made driving sound for each driving situation: incredibly dynamic when accelerating, subdued when cruising and as equally characteristic during recuperation. The sound is not only dependent on road speed, engine speed and load conditions, but also reflects the driving situation and the vehicle's operating state with a suitable driving noise.
2016-04-19
WIP Standard
J1843
The purpose of this SAE Recommended Practice is to provide a common electrical and mechanical interface specification that can be used to design electronic accelerator pedal position sensors and electronic control systems for use in medium- and heavy-duty vehicle applications.
2016-04-13
Standard
J1292_201604
This document is being revised to remove the references made to Truck, Truck Tractor and Trailer per the agreement between the SAE Truck and Bus Electrical Systems Subcommittee and the SAE Electrical Distribution System Standards Committee. The Truck and Bus committee has replaced the referenced documents with newer SAE documents. The documents that supersede SAE J1292 are SAE 2174 "Heavy Duty Wiring Systems for Trailers more than 2032 MM or More in Width" and SAE J2202 "Heavy Duty Wiring Systems For On Highway Trucks".
2016-04-08
WIP Standard
J1930
This SAE Recommended Practice supersedes SAE J1930 Apr 2002, and is technically equivalent to ISO 15031-2. This document is applicable to all light-duty gasoline and diesel passenger vehicles and trucks, and to heavy-duty gasoline vehicles. Specific applications of this document include diagnostic, service and repair manuals, bulletins and updates, training manuals, repair data bases, underhood emission labels, and emission certification applications. This document should be used in conjunction with SAE J1930-DA Digital Annexes, which contains all of the information previously contained within the SAE J1930 tables. These documents focus on diagnostic terms applicable to electrical/electronic systems, and therefore also contains related mechanical terms, definitions, abbreviations, and acronyms.
2016-04-08
Magazine
Software's role continues to expand Design teams use different technologies to create new software and link systems together. Emissions regulations and engine complexity With the European Commission announcing a Stage V criteria emissions regulation for off-highway, scheduled to phase-in as earlly as 2019, there will be an end to a brief era of harmonized new-vehicle regulations. Will this affect an already complex engine development process? Evaluating thermal design of construction vehicles CFD simulation is used to evaluate two critical areas that address challenging thermal issues: electronic control units and hot air recirculation.
2016-04-05
Journal Article
2016-01-0094
Jaya Gaitonde, R B Lohani
Abstract Photodetectors are important components in automotive industry. Sensitivity, speed, responsivity, quantum efficiency, photocurrent gain and power dissipation are the important characteristics of a photodetector. We report a high performance photodetector based on GaAs Metal- Semiconductor Field Effect Transistor (MESFET), with very high responsivity, excellent quantum efficiency, high sensitivity, moderate speed, tremendous gain and low power dissipation, surpassing their photodiode, phototransistor and other counterparts. A theoretical model of GaAs front illuminated Optical Field Effect transistor is presented. The photovoltaic and photoconductive effects have been taken into account. The gate of the OPFET device has been left open to make a reduction in the number of power supplies. The results are in line with the experiments. The device shows high potential in automotive applications.
2016-04-05
Technical Paper
2016-01-0108
Jihas Khan
Abstract Advanced driver assistance features like Advanced Emergency Brake Assist, Adaptive Cruise Control, Blind Spot Monitoring, Stop and Go, Pedestrian Detection, Obstacle Detection and Collision Detection are becoming mandatory in many countries. This is because of the promising results received in reducing 75% of fatalities related to road accidents. All these features use RADAR in detecting the range, speed and even direction of multiple targets using complex signal processing algorithm. Testing such ECUs is becoming too difficult considering the fact that the RADAR is integrated in the PCB of ECU. Hence the simulation of RADAR sensor for emulation of various real world scenarios is not a preferred solution for OEMs. Furthermore, Tier ones are not interested in a testing solution where the real RADAR sensor is bypassed. This paper discusses such issues which include the validation of the most modern Electronic Scanning RADARs.
2016-04-05
Technical Paper
2016-01-0120
Libo Huang, Huanlei Chen, Zhuoping Yu, Jie Bai
Abstract Automotive radar is the most important component in the autonomous driving system, which detects the obstacles, vehicles and pedestrians around with acceptable cost. The target tracking is one of the key functions in the automotive radar which estimates the position and speed of the targets having regarding to the measurement inaccuracy and interferences. Modern automotive radar requires a multi-target tracking algorithm, as in the radar field of view hundreds of targets can present. In practice, the automotive radar faces very complicated and fast-changing road conditions, for example tunnels and curved roads. The targets’ unpredictable movements and the reflections of the electromagnetic wave from the tunnel walls and the roads will make the multi-target tracking a difficult task. Such situation may last several seconds so that the continuous tracks of the targets cannot be maintained and the tracks are dropped mistakenly.
2016-04-05
Technical Paper
2016-01-1445
Jonathan Dobres, Bryan Reimer, Bruce Mehler, James Foley, Kazutoshi Ebe, Bobbie Seppelt, Linda Angell
Abstract Driving behaviors change over the lifespan, and some of these changes influence how a driver allocates visual attention. The present study examined the allocation of glances during single-task (just driving) and dual-task highway driving (concurrently tuning the radio using either visual-manual or auditory-vocal controls). Results indicate that older drivers maintained significantly longer single glance durations across tasks compared to younger drivers. Compared to just driving, visual-manual radio tuning was associated with longer single glance durations for both age groups. Off-road glances were subcategorized as glances to the instrument cluster and mirrors (“situationally-relevant”), “center stack”, and “other”. During baseline driving, older drivers spent more time glancing to situationally-relevant targets. During both radio tuning task periods, in both age groups, the majority of glances were made to the center stack (the radio display).
2016-04-05
Technical Paper
2016-01-0016
Jörg Schäuffele
Abstract The functions provided by the E/E system of modern vehicles can be assigned to the classical domains of powertrain, chassis, body and multimedia. Upcoming functions are forming new domains for advanced driver assistance and cloud integration. Therefore networking of functions is not limited to the vehicle but includes also the cloud. These trends imply major changes like the introduction of Ethernet as onboard networking technology or increasing safety and security needs. To design the best E/E architecture three groups of optimization targets are most relevant: Global vehicle targets, E/E targets derived from the implemented vehicle functions and product line targets for an E/E architecture. The PREEvision approach for E/E architecture design and optimization is a model based approach - inspired by the relevant and widely accepted automotive standards. Import and export filters allow the easy integration with PREEvision and complementation of existing tool chains.
2016-04-05
Technical Paper
2016-01-0047
Umesh Patel, Sreenivasa Parnasala, Chamaraj Melinmath, KM Khalid, Chandrakantha Ursu
RACam [1] is an Active Safety product designed and manufactured at Delphi and is part of their ADAS portfolio. It combines two sensors - Electronically Scanned RADAR and Camera in a single package. RADAR and Vision fusion data is used to realize safety critical systems such as Adaptive Cruise Control (ACC), Autonomous Emergency Braking (AEB), Lane Departure Warning (LDW), Lane Keep Assist (LKA), Traffic Sign Recognition (TSR) and Automatic Headlight Control (AHL). Figure 1 RACam Front View. With an increase in Active Safety features in the automotive market there is also a corresponding increase in the complexity of the hardware which supports these safety features. Delphi’s hardware design for Active Safety has evolved over the years. In Delphi’s RACam product there are a number of critical components required in order to realize RADAR and Vision in a single package. RACam is also equipped with a fan and heater to improve the operating temperature range.
2016-04-05
Journal Article
2016-01-0079
Tomohisa Harada, Yoshiyuki Hattori, Shinya Ito, Mitoshi Fujimoto, Toshikazu Hori
Abstract Recently, the electromagnetic interference in an AM radio by the noise generated from a power control unit (DC-DC converters, inverters) in a hybrid vehicle (HV) has become a serious problem. To solve the problem, most noise suppression methods, for example, use noise filters for noise sources and shield wiring and ferrite cores for noise propagation paths. In this paper, we propose a noise suppression method using the digital signal processing in an AM radio receiver. In this method, first the receiving AM radio signal containing HV noise is quadrature demodulated. Next, a replica signal of the noise is generated by using the noise signal in the quadrature component. Then, the replica signal is subtracted from the AM radio signal containing the noise of the in-phase component. We construct a prototype of the radio receiver system based on this method and demonstrate that the system can reduce the HV noise superimposed on the AM radio signal by more than 20 dB.
2016-04-05
Journal Article
2016-01-0082
Satoru Komatsu, Yoshio Karasawa, Tatsuya Kashiwa, Kenji Taguchi, Suguru Imai
Abstract The suitability of FM radio receivers for automobiles has conventionally been rated by evaluating reception characteristics for broadcast waves in repeated driving tests in specific test environments. The evaluation of sound quality has relied on the auditory judgment due to difficulties to conduct quantitative evaluations by experiments. Thus the method had issues in terms of the reproducibility and objectivity of the evaluations. To address these issues, a two-stage method generating a virtual radio wave environment on a PC was developed. The research further defined the multipath distortion rate, MDr, as an index for the sound quality evaluation of FM receivers, and the findings concerning the suitability of the evaluation of FM terminals for automobiles were reported at the 2015 SAE World Congress.
2016-04-05
Journal Article
2016-01-0074
Michael Jensen
Abstract Electronics now control or drive a large part of automotive system design and development, from audio system enhancements to improvements in engine and drive-train performance, and innovations in passenger safety. Industry estimates suggest that electronic systems account for more than 30% of the cost of a new automobile and represent approximately 90% of the innovations in automotive design. As electronic content increases, so does the possibility of electronic system failure and the potential for compromised vehicle safety. Even when designed properly, electronics can be the weakest link in automotive system performance due to variations in component reliability and environmental conditions. Engineers need to understand worst-case system performance as early in the design process as possible.
2016-04-05
Journal Article
2016-01-0077
Satoru Komatsu, Suguru Imai, Kenji Taguchi, Tatsuya Kashiwa
Abstract We developed “Two-Stage Method” that makes it possible to evaluate the automotive suitability of FM receivers by generating a virtual radio wave environment on a PC. The major technological challenge for the Two-Stage Method was reproducing an actual radio wave environment on PC. It was necessary to estimate the characteristics of the FM radio wave environment in tests using the Multiple Signal Classification (MUSIC) method. However, when the MUSIC method is applied to FM reception, restrictions in factors including the number of array antenna elements and the occupied bandwidth result in issues of separation performance in relation to multipath waves in urban environments. We therefore developed a MUSIC Method using a virtual array antenna, making it possible to create combinations of numbers of array and sub-array elements as desired, thus boosting multipath wave separation performance. This development was reported at the 2015 SAE World Congress.
2016-04-05
Technical Paper
2016-01-0097
Felix Gow, Lifeng Guan, Jooil Park, Jaekwon Kim
Abstract Tire Pressure Monitoring System (TPMS) has become a popular system due to regulation in many countries. TPMS consists of sensors that measure air pressure and temperature in the tires. Each sensor transmits tire information to TPMS central unit for display purpose via RF. Commercial trailers having bodies longer than 7 m require RF repeaters to increase the data transmission range. Located near to rear wheels, RF repeater receives sensor signal in the rear wheels and transmits the signal to TPMS central unit. In this paper, we discuss RF repeater which transmits at multiple frequencies in order to increase signal reception. On TPMS central unit, RF receiver is able to tune to receive frequencies used in sensors and RF repeater. Other method for improving reception is to transmit same payload multiple times at same frequency as that of sensor. In the paper, other important specifications are discussed as RF repeater design is concerned.
2016-04-05
Journal Article
2016-01-0101
Carl Arft, Yin-Chen Lu, Jehangir Parvereshi
Abstract Oscillators are key components in automotive electronics systems. For example, a typical automotive camera module may have three or more oscillators, providing the clocks for microcontrollers, Ethernet controllers, and video chipsets. These oscillators have historically been built around a quartz crystal resonator connected to an analog sustaining circuit driving the crystal to vibrate at its resonant frequency. However, quartz-based devices suffer from poor performance and reliability in harsh automotive environments. SiTime has developed timing solutions based on silicon micro-electromechanical systems (MEMS) technology that exhibit better electromagnetic noise rejection and better performance under shock and vibration. In this paper, we first discuss the design and manufacturing of the MEMS-based device, with emphasis on the specific design aspects that improve reliability and resilience in harsh automotive environments.
2016-04-05
Technical Paper
2016-01-1230
Takaoki Ogawa, Atsushi Tanida, Toshifumi Yamakawa, Masaki Okamura
Abstract A prototype power control unit (PCU) was manufactured using silicon carbide (SiC) power semiconductors (diodes and transistors), which have low power loss when switching on and off. This PCU was installed in a hybrid vehicle (HV) and driven on a test course and chassis dynamometer. The test results confirmed a fuel efficiency improvement of about 5 percent.
2016-04-05
Technical Paper
2016-01-0165
Padmanaban Dheenadhayalan
Abstract Innovation in the field of intelligent autonomous systems of the automotive sector has been ever increasing. Accurate tracking of vehicles is an important aspect in the design of applications such as smart route planning or collision avoidance systems. In practical applications, tracking of vehicle using radar technology suffers from serious problem due to noisy measurements. It introduces major limit on the accuracy of the tracking system. This paper discusses a case study scenario where the robustness of vehicle tracking can be improved using Extended Kalman Filtering. Noisy radar measurement is simulated through model based design (MBD) using MATLAB. Analysis and design of Extended Kalman Filter to mitigate the noise is discussed. An efficient system architecture to implement the algorithm in autonomous smart vehicle tracking system is also identified.
2016-04-05
Technical Paper
2016-01-0113
William Buller, Rini Sherony, Brian Wilson, Michelle Wienert
Abstract Based on RADAR and LiDAR measurements of deer with RADAR and LiDAR in the Spring and Fall of 2014 [1], we report the best fit statistical models. The statistical models are each based on time-constrained measurement windows, termed test-points. Details of the collection method were presented at the SAE World Congress in 2015. Evaluation of the fitness of various statistical models to the measured data show that the LiDAR intensity of reflections from deer are best estimated by the extreme value distribution, while the RCS is best estimated by the log-normal distribution. The value of the normalized intensity of the LiDAR ranges from 0.3 to 1.0, with an expected value near 0.7. The radar cross-section (RCS) varies from -40 to +10 dBsm, with an expected value near -14 dBsm.
2016-04-05
Technical Paper
2016-01-1465
John Zolock, Carmine Senatore, Ryan Yee, Robert Larson, Brian Curry
Abstract As a result of the development of Event Data Recorders (EDR) and the recent FMVSS regulation 49 CFR 563, today’s automobiles provide a limited subset of electronic data measurements of a vehicle’s state before and during a crash. Prior to this data, the only information available about the vehicle movements before or during a collision had come from physical evidence (e.g. tire marks), witnesses, aftermarket camera systems on vehicles, and ground-based cameras that were monitoring vehicle traffic or used for security surveillance. Today’s vehicles equipped with Advanced Driver Assistance Systems (ADAS) have vehicle-based sensors that measure information about the environment around a vehicle including other vehicles, pedestrians, and fixed wayside objects.
2016-03-09
Standard
ARP1360B
This recommended practice covers a test for detecting residual chlorides and bromides on electronic equipment. The detailed procedures noted herein are based on laboratory and production experience and reflect those design practices and fabrication procedures, such as wave soldering, that require the use of activated flux for solder connections. This procedure has been used as a means of satisfying the intent of MIL-STD-454, Requirement 5, which permits the use of only R or RMA flux.
2016-02-01
Magazine
Clamoring for more entertainment Connected consumers drive demand for bandwidth, though seatback entertainment remains popular. Fighting for life in military markets Airbus Defense & Space is looking to revitalize and ramp up production rates of its military aircraft portfolio.
2015-12-20
Standard
AS85731/1B
SCOPE IS UNAVAILABLE.
2015-12-20
Standard
AS85731B
This specification covers positive locking fasteners intended for use in aircraft to secure electronic line replaceable units (LRUs).
2015-12-20
Standard
AS85731/2A
SCOPE IS UNAVAILABLE.
2015-12-18
WIP Standard
AIR6236A
This AIR provides guidance to the EMI test facility on how to check performance of the following types of EMI test equipment: Current probe Line Impedance Stabilization Network (LISN) Directional coupler Attenuator Cable loss Low noise preamplifier Rod antenna base Passive antennas All performance checks can be performed without software. A computer may be required to generate an electronic or hard copy of data. This is not to say that custom software might not be helpful; just that the procedures documented herein specifically eschew the necessity of automated operation.
2015-12-13
Standard
AIR6236
This AIR provides guidance to the EMI test facility on how to check performance of the following types of EMI test equipment: Current probe Line Impedance Stabilization Network (LISN) Directional coupler Attenuator Cable loss Low noise preamplifier Rod antenna base Passive antennas All performance checks can be performed without software. A computer may be required to generate an electronic or hard copy of data. This is not to say that custom software might not be helpful; just that the procedures documented herein specifically eschew the necessity of automated operation.
Viewing 1 to 30 of 2143

Filter