Display:

Results

Viewing 1 to 30 of 2249
CURRENT
2016-11-30
Standard
USCAR17-5
1.0 SCOPE 1. This document contains procedures for testing performance of SMB-style electrical terminals, connectors and components for coaxial cable connection systems intended for road vehicle applications. These are often called FAKRA II designs. This specification does not apply to the Non RF portion of a Hybrid RF connection system. 2. The intent of this specification is to qualify sealed and unsealed RF connectors that operate at frequencies from DC to 6 GHz. The characteristic impedance of the SMB/FAKRA connection system is 50 ohms however this specification does not exclude the use of these RF connectors on non-50 ohm cables or systems. 3. This specification does not apply to single conductor wire or twisted pair connection systems. 4. This specification (along with SAE/USCAR 18) is designed to provide the mechanical and electrical data required to insure that assemblies from various manufacturers will perform reliably in actual conditions.
2016-11-28
WIP Standard
J1939DA
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
CURRENT
2016-11-15
Standard
J1294_201611
This SAE Recommended Practice covers distributors used on marine engines.
CURRENT
2016-11-03
Standard
J1939DA_201611
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
CURRENT
2016-10-30
Standard
AS6171/11
This method outlines the requirements, capabilities, and limitations associated with the application of Design Recovery for the detection of counterfeit electronic parts including: Operator training; Sample preparation; Imaging techniques; Data interpretation; Design/functional matching; Equipment maintenance and; Reporting of data. The method is primarily aimed at analyses performed by circuit delayering and imaging with a scanning electron microscope or optical microscope; however, many of the concepts are applicable to other microscope and probing techniques to recover design data. The method is not intended for the purpose of manufacturing copies of a device, but rather to compare images or recover the design for determination of authenticity. If AS6171/11 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2016-10-30
Standard
AS6171/8
To define capabilities and limitations of Raman spectroscopy as it pertains to counterfeit detection of EEE parts and suggest possible applications to these ends. Additionally, this document outlines requirements associated with the application of Raman spectroscopy including: Operator training; Sample preparation; Data interpretation; Computerized spectral matching including pass/fail criteria; Equipment maintenance and; Reporting of data. If AS6171/8 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2016-10-30
Standard
AS6171/7
The scope of this document is to: 1. Specify techniques to detect SC parts using electrical testing. 2. Provide various levels of electrical testing that can be used by the User to define test plans for detecting SC parts. 3. Provide minimum requirements for testing laboratories so that User/Requester can determine which test houses have the necessary capabilities. (For example: technical knowledge, equipment, procedures and protocols for performing electrical testing for verification analysis.) Note: User/Requester is defined in AS6171 General Requirements 4. Specify Burn-In and environmental tests. The environmental tests include Temperature Cycling for Active Devices and Thermal Shock for Passive Devices. Seal Tests are described and recommended for hermetic devices.
CURRENT
2016-10-30
Standard
AS6171/9
This document defines capabilities and limitations of FTIR spectroscopy as it pertains to counterfeit electronic component detection and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of FTIR spectroscopy including: operator training, sample preparation, various sampling techniques, data interpretation, computerized spectral matching including pass/fail criteria, equipment maintenance, and reporting of data. The discussion is primarily aimed at analyses performed in the mid-infrared (IR) from 400 to 4000 wavenumbers; however, many of the concepts are applicable to the near and far IR. If AS6171/9 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2016-10-30
Standard
AS6171/10
This test method provides the capabilities, limitations, and suggested possible applications of TGA as it pertains to the detection of counterfeit electronic components. Additionally, this document outlines requirements associated with the application of TGA including: equipment requirements, test sample requirements, methodology, control and calibration, data analysis, reporting, and qualification and certification. If AS6171/10 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2016-10-30
Standard
AS6171/4
This method standardizes inspection, test procedures and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) components or parts utilizing Delid/Decapsulation Physical Analysis. The methods described in this document are employed to either delid or remove the cover from a hermetically sealed package or to remove the encapsulation or coating of an EEE part, in order to examine the internal structure and to determine if the part is suspect counterfeit. Information obtained from this inspection and analysis may be used to: a. prevent inclusion of counterfeit parts in the assembly b. identify defective parts c. aid in disposition of parts that exhibit anomalies This test method should not be confused with Destructive Physical Analysis as defined in MIL-STD-1580. MIL-STD-1580 describes destructive physical analysis procedures for inspection and interpretation of quality issues.
CURRENT
2016-10-30
Standard
AS6171/3
XRF technique for counterfeit detection is applicable to electrical, electronic and electromechanical (EEE) parts as listed in AS6171 General Requirements. In general, the detection technique is meant for use on piece parts prior to assembly on a circuit board or on the parts that are removed from a circuit board. The applicability spans a large swath of active, passive and electromechanical parts. If AS6171/3 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
CURRENT
2016-10-30
Standard
AS6171/2
This document describes the requirements of the following test methods for counterfeit detection of electronic components: a. Method A: General External Visual Inspection (EVI), Sample Selection, and Handling b. Method B: Detailed EVI c. Method C: Testing for Remarking and Resurfacing d. Method D: Surface Texture Analysis by SEM NOTE: The scope of this document was focused on leaded electronic components, microcircuits, multi-chip modules (MCMs), and hybrids. Other electronic components may require evaluations not specified in this procedure. Where applicable this document can be used as a guide but additional inspections or criteria would need to be developed and documented to thoroughly evaluate these additional part types.
CURRENT
2016-10-30
Standard
AS6171
This SAE Aerospace Standard (AS) standardizes inspection and test procedures, workmanship criteria, and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) parts. The requirements of this document apply once a decision is made to use parts with unknown chain of custody that do not have pedigree back to the original component manufacturer, or have been acquired from a broker or independent distributor, or when there are other known risk elements that result in the User/Requester to have concerns about potential SC EEE parts. The tests specified by this standard may also detect occurrences of malicious tampering, although the current version of this standard is not designed specifically for this purpose. This standard ensures consistency across the supply chain for test techniques and requirements based on assessed risk associated with the application, component, supplier, and other relevant risk factors.
2016-10-17
Technical Paper
2016-01-2317
Moritsugu Kasai, Nao Yoshimura, Keiichi Watanabe
Abstract At present, the lifetime of engine oil is judged by chemically measuring the changes in its properties while running of an actual vehicle or by setting the standards for its replacement cycle in terms of travel distance and time. The advantage of the former is that the lifetime can be judged with a high degree of reliability, but its disadvantage is that information on the lifetime is difficult for users to obtain. The problem with the latter is that the standards are unreliable. Therefore, users need a simple and reliable method to evaluate the degradation of engine oil so they can determine the appropriate time to change it. We examined the possibility of evaluating the lifetime of engine oil by measuring its capacitance using a comb-shaped electrode. As a result, we found that the capacitance of four types of engine oil collected at markets tended to decrease during the initial stage of degradation and then increased in the later stage.
CURRENT
2016-09-29
Standard
J1171_201609
This SAE Recommended Practice covers all electrical devices suitable for use in marine engine compartments and fuel tank spaces.
2016-09-29
WIP Standard
ARP6328A

This document contains guidance for implementing a counterfeit mitigation program in accordance with AS5553.

The information contained in this document is intended to supplement the requirements of a higher level quality standard (e.g., AS9100) and other quality management system documents. This is not intended to stand alone, supersede, or cancel requirements found in other quality management system documents, requirements imposed by contracting authorities, or applicable laws and regulations unless an authorized exemption/variance has been obtained.

2016-09-27
Technical Paper
2016-01-8124
Xinyu Ge, Hua Gu, Ying Wang
China has become the world’s largest vehicle market in terms of sales volume. Automobiles sales keep growing in recent years despite the declining economic growth rate. Due to the increasing attention given to the environmental impact, more stringent emission regulations are being drafted to control traditional internal combustion engine emissions. In order to reduce vehicle emissions, environmentally-friendly new-energy vehicles, such as electric vehicles and plug-in hybrid vehicles, are being promoted by government policies. The Chinese government plans to boost sales of new-energy cars to account for about five percent of China’s total vehicle sales. It is well known that more electric and electronic components will be integrated into a vehicle platform during vehicle electrification.
2016-09-20
Journal Article
2016-01-1990
Nisha Kondrath, Nathaniel Smith
Abstract In aerospace applications, it is important to have efficient, small, affordable, and reliable power conversion units with high power density to supply a wide range of loads. Use of wide-band gap devices, such as Silicon Carbide (SiC) and Gallium Nitride (GaN) devices, in power electronic converters is expected to reduce the device losses and need for extensive thermal management systems in power converters, as well as facilitate high-frequency operation, thereby reducing the passive component sizes and increasing the power density. A performance comparison of state-of-the art power devices in a 10 kW full-bridge dc-dc buck converter operating in continuous conduction mode (CCM) and at switching frequencies above 100 kHz will be presented in this manuscript. Power devices under consideration are silicon (Si) IGBT with Si antiparallel diodes, Si IGBT with SiC antiparallel diodes, Si MOSFETs, SiC MOSFETs, and enhancement-mode GaN transistors.
2016-09-20
Journal Article
2016-01-2051
Andreas Himmler, Lars Stockmann, Dominik Holler
Abstract The application of a communication infrastructure for hybrid test systems is currently a topic in the aerospace industry, as also in other industries. One main reason is flexibility. Future laboratory tests means (LTMs) need to be easier to exchange and reuse than they are today. They may originate from different suppliers and parts of them may need to fulfill special requirements and thus be based on dedicated technologies. The desired exchangeability needs to be achieved although suppliers employ different technologies with regard to specific needs. To achieve interoperability, a standardized transport mechanism between test systems is required. Designing such a mechanism poses a challenge as there are several different types of data that have to be exchanged. Simulation data is a prominent example. It has to be handled differently than control data, for example. No one technique or technology fits perfectly for all types of data.
2016-09-14
Technical Paper
2016-01-1895
Xin Bi, Zheng Ma, Wei Wang, Jinsong Du
Abstract A 24GHz multi-function assist system has been developed for advanced automotive radar, which includes different applications in Blind Spot Detection (BSD), Lane Change Assist (LCA), Doors Open Warning (DOW) and Rear Cross Traffic Alert (RCTA). The multi-function radar is based on the micro-strip antenna, which has a reasonable design on main-lobe and side-lobes. According the antenna, the radar can operate in mid-range mode with a high gain and a narrow beam width, whilst performing well in short-range and wide-angle mode.
2016-09-14
Journal Article
2016-01-1892
Jiao Guo, Weiwen Deng, Sumin Zhang, Shiqian Qi, Xin Li, Chenghao Wang, Jun Wang
Abstract The conventional radar modeling methods for automotive applications were either function-based or physics-based. The former approach was mainly abstracted as a solution of the intersection between geometric representations of radar beam and targets, while the latter one took radar detection mechanism into consideration by means of “ray tracing”. Although they each has its unique advantages, they were often unrealistic or time-consuming to meet actual simulation requirements. This paper presents a combined geometric and physical modeling method on millimeter-wave radar systems for Frequency Modulated Continuous Wave (FMCW) modulation format under a 3D simulation environment. With the geometric approach, a link between the virtual radar and 3D environment is established. With the physical approach, on the other hand, the ideal target detection and measurement are contaminated with noise and clutters aimed to produce the signals as close to the real ones as possible.
2016-09-14
Technical Paper
2016-01-1879
Libo Huang, Liang Chang, Jie Bai, Huanlei Chen
Abstract Millimeter-wave automotive radars can prevent traffic accidents and save human lives as they can detect vehicles and pedestrians even in night and in bad weather. Various types of automotive radars operating at 24 and 77 GHz bands are developed for various applications, like adaptive cruise control, blind-spot detection and lane change assistance. In each year, millions of millimeter-wave radar are sold worldwide. Millimeter-wave radar is composed of radar hardware and radar signal processing software, which detects the targets among noise, measures the distance, longitudinal speed and the azimuth angle of the targets, tracks the targets continuously, and controls the ego vehicle to brake or accelerate. Performance of the radar signal processing software is closely related with the radar hardware properties and radar measurement conditions.
CURRENT
2016-09-13
Standard
J1708_201609
This SAE Recommended Practice defines a recommended practice for implementing a bidirectional, serial communication link among modules containing microcomputers. This document defines those parameters of the serial link that relate primarily to hardware and basic software compatibility such as interface requirements, system protocol, and message format. The actual data to be transmitted by particular modules, which is an important aspect of communications compatibility, is not specified in this document. These and other details of communication link implementation and use should be specified in the separate application documents referenced in Section 2.
CURRENT
2016-09-12
Standard
ARP6328
This document contains guidance for implementing a counterfeit mitigation program in accordance with AS5553. The information contained in this document is intended to supplement the requirements of a higher level quality standard (e.g., AS9100) and other quality management system documents. This is not intended to stand alone, supersede, or cancel requirements found in other quality management system documents, requirements imposed by contracting authorities, or applicable laws and regulations unless an authorized exemption/variance has been obtained.
CURRENT
2016-08-01
Standard
AIR6236A
This AIR provides guidance to the EMI test facility on how to check performance of the following types of EMI test equipment: - Current probe - Line Impedance Stabilization Network (LISN) - Directional coupler - Attenuator - Cable loss - Low noise preamplifier - Rod antenna base - Passive antennas All performance checks can be performed without software. A computer may be required to generate an electronic or hard copy of data. This is not to say that custom software might not be helpful; just that the procedures documented herein specifically eschew the necessity of automated operation.
2016-08-01
Magazine
Seeing the Light Achieving Full-Color, Day or Night Readability for Flat-Panel Displays Multiple Node Networking Using PCIe Interconnects PCI Express (PCIe) interconnects, and how they can be used to support multiple node low latency data transfers over copper or optical cables, is gaining momentum in embedded computing solutions. Zero-Emissions Electric Aircraft Theory vs Reality Analyzing Radar Signals With Demodulation Combining Software and Hardware for Highly Specialized Multichannel Spectrum Monitoring Advanced Thermal Management Solutions Thermoelectric Cooling Thermal Ground Planes Thermal Management of Laser Diodes The Effect of Substrate Emissivity on the Spectral Emission of a Hot-Gas Overlayer Process Approach to Determining Quality Inspection Deployment Experimental Setup to Assess Blast and Penetration-Induced Secondary Debris in a Military Operations in Urban Terrain (MOUT) Environment Non-Contact Circuit for Real-Time Electric and Magnetic Field Measurements
2016-07-27
WIP Standard
J1455
The scope of this recommended practice encompasses the range of environments which influence the performance and reliability of the electronic equipment designed for heavy duty on and off road vehicles, as well as any appropriate stationary applications which also use these vehicle derived components. A few examples of such vehicles are on and off highway trucks, trailers, buses, construction equipment and agricultural equipment including implements.
CURRENT
2016-06-17
Standard
EIA599A
This Standard is applicable to suppliers of electronic components, assemblies, equipment and related materials. This standard establishes the general requirements to achieve a certified process. The use of this standard is intended for any manufacturing or service company whose goal is to achieve customer satisfaction through continuous improvement.
CURRENT
2016-06-17
Standard
RB9
This Reliability Bulletin is provided as a guide for engineering and managment personnel concerned with Failure Mode and Effect Analyses (FMEA). In Addition, it provides information concerning technical and functional relationship of Failure Mode and Effect Analyses to associated disciplines, as for example, Maintainability, Safety, and System Effectiveness Analyses. This Bulletin covers requirements, concepts, interface, procedures and reports of FMEA. This Bulletin should contribute to greater utilization of FMEA results and to the understanding and appreciation of the purpose of FMEA on the part of engineering and management personnel.
CURRENT
2016-06-17
Standard
RB4A
A guide for the use by companies contracting for design of electronic products with the Department of Defense (DOD) and other government agencies. This Bulletin present concepts and techniques for quantifying electronic equipment reliability. The techniques are responsive to the requirements of various branches of the Department of Defense and are also useful with regard to other Government agencies (e.g., NASA).
Viewing 1 to 30 of 2249

Filter