Display:

Results

Viewing 1 to 30 of 4395
2016-11-08
Technical Paper
2016-32-0084
Shinichi Okunishi, Ken Ogawa
Accurate measurement of air volume is one of the large problems in LPL-EGR system. Measurement of air is difficult, because the intake volume of LPL-EGR system from the EGR valve to combustion chamber is much larger than HPL-EGR. Equally, it is difficulties to measure the correct LPL-EGR rate. By a conventional method, the best ignition timing control is difficult. The measurement of the LPL-EGR rate by using intake O2 sensor has been developed. Around 0% of LPL-EGR rate, this technique is poor accuracy.There is not a use except the LPL-EGR rate measurement. We thought that it was preferable for application of the engine control to use a wide sensor. About the ignition timing control, MFB 50% feedback control is to enable optimum ignition timing control by using the cylinder pressure. We thought about engine control by using the cylinder pressure, and we examined the following application.
2016-11-08
Technical Paper
2016-32-0086
Tobias Gutjahr
Data-driven plant models are well established in engine base calibration to cope with the ever increasing complexity of today’s electronic control units (ECUs). The engine, drive train, or entire vehicle is replaced with a behavioral model learned from a provided training data set. The model is used for offline simulations and virtual calibration of ECU control parameters, but its application is often limited beyond these use cases. Depending on the underlying regression algorithm, limiting factors include computationally expensive calculations and a high memory demand. However, development and testing of new control strategies would benefit from the ability to execute such high fidelity plant models directly in real-time environments. For instance, map-based ECU functions could be replaced or enhanced by more accurate behavioral models, with the implementation of virtual sensors or online monitoring functions.
2016-11-08
Technical Paper
2016-32-0083
Michael Zisser, Hans-Juergen Schacht, Reinhard Stelzl, Bernhard Schweighofer, Hannes Wegleiter, Stephan Schmidt, Jakob Trentini, Jan-Philipp Banzhaf, Tim Gegg
In order to fulfill future regulations regarding emissions and CO2 reduction, the small engine market inclines to migrate from carburetor systems to cleaner, more efficient electronic ignition controls and electronic fuel injection systems. When implementing such mechatronic systems in small engine applications, one has to consider specific boundary conditions like the lack of relevant sensors, limited possibilities in terms of space and of course the necessity to keep the costs as low as possible. Especially in the non-road mobile machinery (NRMM) segment, the absence of sensors makes it difficult to apply standard electronic control systems, which are based on engine related input signals provided by sensors. One engine related signal, which even the simplest engine setup provides, is some form of the crankshaft speed since it is essentially for the functionality of the engine.
2016-11-08
Journal Article
2016-32-0052
Michael Schoenherr, Mathieu Grelaud, Ami Hirano
The Side View Assist is the World’s first rider assistance system for two-wheelers. This is a Blind Spot Warning system, which uses four ultrasonic sensors to monitor the surrounding of the rider. Whenever there is a vehicle (i.e. a car, truck, or another motorbike) in the rider’s blind spot, the technology warns the rider with an optical signal close to the mirror. This will allow the rider to avoid a collision when changing lanes. In the current vehicle application, Side View Assist is active at speeds ranging from 25 to 80 kilometers per hour and supports riders whenever the difference in relative speed to other road users is small. The system helps to improve safety especially in cities, where heavy traffic makes it necessary to change lanes more often. Originally such systems have been developed for cars and different system solutions for cars have been in serial production for several years. The challenge was to adapt these systems so they would work for two-wheelers as well.
2016-09-27
Technical Paper
2016-01-8033
Guoying Chen
Abstract According to the vehicle’s driving conditions, electronically controlled air suspension (ECAS) systems can actively adjust the height of vehicle body, so that better ride comfort and handling stability will be achieved, which can’t be realized by traditional passive suspension. This paper presents a design and implementation of ECAS controller for vehicle. The controller is aimed at adjusting the static and dynamic height of the vehicle. To exactly track the height of the vehicle and satisfy the control demand of air suspension, a height sensor decoding circuit based on the inductance sensor is designed. Based on it, a new height control algorithm is adopted to achieve rapid and precise control of vehicle height. To verify the function of the designed controller and the proposed height control algorithm, an air spring loading test bench and an ECU-in-loop simulation test bench are respectively established.
2016-09-27
Technical Paper
2016-01-8080
Yanwu Ge, Ying Huang
Abstract The ever-growing number of interacting electronic vehicle control systems requires new control algorithms to manage the increasing system complexity. As a result, torque-based control architecture has been popular for its easy extension as the torque demand variable is the only interface between the engine control algorithms and other vehicle control systems. Under the torque-based control architecture, the engine and AT coordinated control for upshift process is investigated. Based on the dynamics analysis, quantitative relationship between the turbine torque of HTC and output shaft torque of AT has been obtained. Then the coordinated control strategy has been developed to smooth the torque trajectory of AT output shaft. The designed control strategy is tested on a powertrain simulation model in MATLAB/Simulink and a test bench. Through simulation, the shift time range in which the engine coordinated control strategy is effective is acquired.
2016-09-27
Journal Article
2016-01-8142
Jeremy Daily, Rose Gamble, Stephen Moffitt, Connor Raines, Paul Harris, Jannah Miran, Indrakshi Ray, Subhojeet Mukherjee, Hossein Shirazi, James Johnson
Abstract Cyber assurance of heavy trucks is a major concern with new designs as well as with supporting legacy systems. Many cyber security experts and analysts are used to working with traditional information technology (IT) networks and are familiar with a set of technologies that may not be directly useful in the commercial vehicle sector. To help connect security researchers to heavy trucks, a remotely accessible testbed has been prototyped for experimentation with security methodologies and techniques to evaluate and improve on existing technologies, as well as developing domain-specific technologies. The testbed relies on embedded Linux-based node controllers that can simulate the sensor inputs to various heavy vehicle electronic control units (ECUs). The node controller also monitors and affects the flow of network information between the ECUs and the vehicle communications backbone.
2016-09-20
Technical Paper
2016-01-1986
Qian Li, Balakrishnan Devarajan, Xuning Zhang, Rolando Burgos, Dushan Boroyevich, Pradeep Raj
Abstract The more electric aircraft (MEA) concept has gained popularity in recent years. As the main building blocks of advanced aircraft power systems, multi-converter power electronic systems have advantages in reliability, efficiency and weight reduction. The pulsed power load has been increasingly adopted--especially in military applications--and has demonstrated highly nonlinear characteristics. Consequently, more design effort needs to be placed on power conversion units and energy storage systems dealing with this challenging mission profile: when the load is on, a large amount of power is fed from the power supply system, and this is followed by periods of low power consumption, during which time the energy storage devices get charged.
2016-09-20
Technical Paper
2016-01-1985
Fei Gao, Serhiy Bozhko, Patrick Wheeler
Abstract The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduction of the overall aircraft weight, operation cost and environmental impact. Electrical systems are employed to replace existing hydraulic, pneumatic and mechanical loads. Hence the onboard installed electrical power increases significantly and this results in challenges in the design of electrical power systems (EPS). One of the key paradigms for future MEA EPS architectures assumes high-voltage dc distribution with multiple sources, possibly of different physical nature, feeding the same bus(es). In our study we investigate control approaches to guarantee that the total electric load is shared between the sources in a desirable manner. A novel communication channel based secondary control method is proposed in this paper.
2016-09-20
Technical Paper
2016-01-1991
Syed J. Khalid
Abstract Aircraft subsystems essential for flight safety and airworthiness, including flight controls, environmental control system (ECS), anti-icing, electricity generation, and starting, require engine bleed and power extraction. Predictions of the resulting impacts on maximum altitude net thrust(>8%), range, and fuel burn, and quantification of turbofan performance sensitivities with compressor bleed, and with both high pressure(HP) rotor power extraction and low pressure(LP) rotor power extraction were obtained from simulation. These sensitivities indicated the judicious extraction options which would result in the least impact. The “No Bleed” system in Boeing 787 was a major step forward toward More Electric Aircraft (MEA) and analysis in this paper substantiates the claimed benefits.
2016-09-20
Technical Paper
2016-01-2031
Michal Sztykiel, Steven Fletcher, Patrick Norman, Stuart Galloway, Graeme Burt
Abstract There is a well-recognised need for robust simulation tools to support the design and evaluation of future More-Electric Engine and Aircraft (MEE/MEA) design concepts. Design options for these systems are increasingly complex, and normally include multiple power electronics converter topologies and machine drive units. In order to identify the most promising set of system configurations, a large number of technology variants need to be rapidly evaluated. This paper will describe a method of MEE/MEA system design with the use of a newly developed transient modeling, simulation and testing tool aimed at accelerating the identification process of optimal components, testing novel technologies and finding key solutions at an early development stage. The developed tool is a Matlab/Simulink library consisting of functional sub-system units, which can be rapidly integrated to build complex system architecture models.
2016-09-20
Technical Paper
2016-01-2029
Rolf Loewenherz, Francisco Gonzalez-Espin, Laura Albiol-Tendillo, Virgilio Valdivia-Guerrero, Ray Foley
Abstract This paper will present a multi-domain (electrical and thermal) model of a three phase voltage source converter and its implementation in Modelica language. An averaged model is utilised for the electrical domain, and a power balance method is used for linking the DC and AC sides. The thermal domain focuses in deriving the converter losses by deriving the analytical equations of the space vector modulation to derive a function for the duty cycle of each converter leg. With this, the conduction and switching losses are calculated for the individual switches and diodes, without having to model their actual switching behaviour. The model is very fast to simulate, as no switching events are needed, and allows obtaining the simulation of the electrical and thermal behaviour in the same simulation package..
2016-09-20
Technical Paper
2016-01-2064
Shashank Krishnamurthy, Stephen Savulak, Yang Wang
Abstract The emergence of wide band gap devices has pushed the boundaries of power converter operations and high power density applications. The wide band gap devices in conjunction with silicon on insulator electronic components enable the realization of power converters that can operate at high ambient temperatures that are typically found in aerospace engine environments. This paper describes the design and test of a power electronic inverter that converts a fixed input DC voltage to a variable voltage variable frequency three phase output. The design of the key functional components such as the gate drive, power module, controller and communication will be discussed in this paper. Test results for the inverter at high temperature are also presented.
2016-09-20
Journal Article
2016-01-1982
Michelle Bash, Steven Pekarek, Jon Zumberge
Abstract The cost and complexity of aircraft power systems limit the number of integrated system evaluations that can be performed in hardware. As a result, evaluations are often performed using emulators to mimic components or subsystems. As an example, aircraft generation systems are often tested using an emulator that consists of a bank of resistors that are switched to represent the power draw of one or more actuators. In this research, consideration is given to modern wide bandwidth emulators (WBEs) that use power electronics and digital controls to obtain wide bandwidth control of power, current, or voltage. Specifically, this paper first looks at how well a WBE can emulate the impedance of a load when coupled to a real-time model. Capturing the impedance of loads and sources is important for accurately assessing the small-signal stability of a system.
2016-09-20
Journal Article
2016-01-1987
Mingming Yin, Serhiy Bozhko, Seang Shen Yeoh
Abstract The future aircraft electrical power system is expected to be more efficient, safer, simpler in servicing and easier in maintenance. As a result, many existing hydraulic and pneumatic power driven systems are being replaced by their electrical counterparts. This trend is known as a move towards the More-Electric Aircraft (MEA). As a result, a large number of new electrical loads have been introduced in order to power many primary functions including actuation, de-icing, cabin air-conditioning, and engine start. Therefore electric power generation systems have a key role in supporting this technological trend. Advances in modern power electronics allow the concept of starter/generator (S/G) which enables electrical engine start and power generation using the same electrical machine. This results in substantial improvements in power density and reduced overall weight.
2016-09-20
Journal Article
2016-01-1990
Nisha Kondrath, Nathaniel Smith
Abstract In aerospace applications, it is important to have efficient, small, affordable, and reliable power conversion units with high power density to supply a wide range of loads. Use of wide-band gap devices, such as Silicon Carbide (SiC) and Gallium Nitride (GaN) devices, in power electronic converters is expected to reduce the device losses and need for extensive thermal management systems in power converters, as well as facilitate high-frequency operation, thereby reducing the passive component sizes and increasing the power density. A performance comparison of state-of-the art power devices in a 10 kW full-bridge dc-dc buck converter operating in continuous conduction mode (CCM) and at switching frequencies above 100 kHz will be presented in this manuscript. Power devices under consideration are silicon (Si) IGBT with Si antiparallel diodes, Si IGBT with SiC antiparallel diodes, Si MOSFETs, SiC MOSFETs, and enhancement-mode GaN transistors.
2016-09-20
Journal Article
2016-01-2023
Timothy Deppen, Brian Raczkowski, Marco Amrhein, Jason Wells, Eric Walters, Mark Bodie, Soumya Patnaik
Abstract Future aircraft systems are projected to have order of magnitude greater power and thermal demands, along with tighter constraints on the performance of the power and thermal management subsystems. This trend has led to the need for a fully integrated design process where power and thermal systems, and their interactions, are considered simultaneously. To support this new design paradigm, a general framework for codifying and checking specifications and requirements is presented. This framework is domain independent and can be used to translate requirement language into a structured definition that can be quickly queried and applied to simulation and measurement data. It is constructed by generalizing a previously developed power quality analysis framework. The application of this framework is demonstrated through the translation of thermal specifications for airborne electrical equipment, into the SPecification And Requirement Evaluation (SPARE) Tool.
2016-09-20
Journal Article
2016-01-2030
Jon Zumberge, Michael Boyd, Raul Ordonez
Cost and performance requirements are driving military and commercial systems to become highly integrated, optimized systems which require more sophisticated, highly complex controls. To realize benefits of those complex controls and make confident decisions, the validation of both plant and control models becomes critical. To quickly develop controls for these systems, it is beneficial to develop plant models and determine the uncertainty of those models to predict performance and stability of the control algorithms. A process of model and control algorithm validation for a dc-dc boost converter circuit based on acceptance sampling is presented here. The validation process described in this paper is based on MIL-STD 3022 with emphasis on requirements settings and the testing process. The key contribution of this paper is the process for model and control algorithm validation, specifically a method for decomposing the problem into model and control algorithm validation stages.
2016-09-20
Journal Article
2016-01-2042
Chad N. Miller, Michael Boyd
Abstract This paper introduces a method for conducting experimental hardware-in-the-loop (xHIL), in which behavioral-level models are coupled with an advanced power emulator (APE) to emulate an electrical load on a power generation system. The emulator is commanded by behavioral-level models running on an advanced real-time simulator that has the capability to leverage Central Processing Units (CPUs) and field programmable gate arrays (FPGA) to meet strict real-time execution requirements. The paper will be broken down into four topics: 1) the development of a solution to target behavioral-level models to an advanced, real-time simulation device, 2) the development of a high-bandwidth, high-power emulation capability, 3) the integration of the real-time simulation device and the APE, and 4) the application of the emulation system (simulator and emulator) in an xHIL experiment.
2016-09-20
Journal Article
2016-01-2051
Andreas Himmler, Lars Stockmann, Dominik Holler
Abstract The application of a communication infrastructure for hybrid test systems is currently a topic in the aerospace industry, as also in other industries. One main reason is flexibility. Future laboratory tests means (LTMs) need to be easier to exchange and reuse than they are today. They may originate from different suppliers and parts of them may need to fulfill special requirements and thus be based on dedicated technologies. The desired exchangeability needs to be achieved although suppliers employ different technologies with regard to specific needs. To achieve interoperability, a standardized transport mechanism between test systems is required. Designing such a mechanism poses a challenge as there are several different types of data that have to be exchanged. Simulation data is a prominent example. It has to be handled differently than control data, for example. No one technique or technology fits perfectly for all types of data.
2016-09-14
Technical Paper
2016-01-1878
Yuxiang Feng, Pejman Iravani, Chris Brace
Abstract The major contribution of this paper is the general description of a complete integrating procedure of autonomous vehicle system. Using Robot Operating System (ROS) as the framework, process from senor integration to path planning and path tracking were performed. Based on an off-road All-Terrain Vehicle, an Extended Kalman filter based autonomous control strategy was developed on the ROS. Both the position estimation and autonomous control were performed on the ROS platform. For the position estimation phase, sensory measurements from GPS, IMU and wheel odometry were acquired and processed on ROS. In accordance with the ROS architecture, separate packages were developed for each sensor to gather and publish corresponding measurements. Furthermore, Extended Kalman filtering was performed to fuse all sensory measurements to achieve an optimizing accuracy.
2016-09-02
Journal Article
2016-01-9111
Sebastian Brandes, Klaus-Dieter Hilf, Riccardo Möller, Tobias Melz
Abstract This paper makes a contribution toward a more efficient chassis durability process for the development of passenger cars, in which the simulation of relevant load data is a time-consuming part. This is especially due to the full vehicle model complexity which is usually determined by the demands of rough road simulations. However, for the load calculation on a racetrack, time saving model approaches that are more simplified might be sufficient. Our investigation comprises two levels of vehicle model complexity: one with all chassis parts modeled in a multibody system environment and one characteristic curve based model in an internal simulation environment. Both approaches consider an original chassis control system as a Software-in-the-Loop model. By the evaluation of real-world experiments the main influence factors in terms of durability are demonstrated. With the help of those highly sensitive durability criteria the measurement and simulation results are then compared.
2016-08-09
WIP Standard
J1939/21
The SAE J1939 documents are intended for light, medium, and heavy-duty vehicles used on or off road as well as appropriate stationary applications which use vehicle derived components (e.g., generator sets). Vehicles of interest include, but are not limited to, on- and off-highway trucks and their trailers, construction equipment, and agricultural equipment and implements. The purpose of these documents is to provide an open interconnect system for electronic systems. It is the intention of these documents to allow Electronic Control Units to communicate with each other by providing a standard architecture. This particular document, SAE J1939-21, describes the data link layer using the CAN protocol with 29-bit Identifiers. For SAE J1939 no alternative data link layers are permitted.
2016-08-05
Magazine
Clearing the air Sensors, diagnostics and controls advance to help trap emissions. Bringing the heat on cooling technologies Electronic controls, variable-speed fans cool engines, heat aftertreatment systems. 3D printing machines can't be built fast enough In the additive manufacturing world, the costs of components are dropping, the technology is becoming more reliable and parts are fabricated faster, allowing industries beyond aerospace to adopt additive technologies, says Oak Ridge Lab's Ryan Dehoff.
2016-07-14
Book
Eric Walter, Richard Walter
Modern vehicles have electronic control units (ECUs) to control various subsystems such as the engine, brakes, steering, air conditioning, and infotainment. These ECUs (or simply ‘controllers’) are networked together to share information, and output directly measured and calculated data to each other. This in-vehicle network is a data goldmine for improved maintenance, measuring vehicle performance and its subsystems, fleet management, warranty and legal issues, reliability, durability, and accident reconstruction. The focus of Data Acquisition from HD Vehicles Using J1939 CAN Bus is to guide the reader on how to acquire and correctly interpret data from the in-vehicle network of heavy-duty (HD) vehicles. The reader will learn how to convert messages to scaled engineering parameters, and how to determine the available parameters on HD vehicles, along with their accuracy and update rate. Written by two specialists in this field, Richard (Rick) P. Walter and Eric P.
2016-07-07
Magazine
Technology report Quest for 'new-car smell' dictates interior-materials changes Doing it again-this time with 10 After a successful decade-long collaboration on 6-speed transaxles, Ford and GM partner again on an all-new 10-speed automatic. Here's a look inside the gearbox and the project. Large-scale additive manufacturing for rapid vehicle prototyping A case study from Oak Ridge National Laboratory bridges the 'powertrain-in-the-loop' development process with vehicle systems implementation using big area additive manufacturing (BAAM). Global Vehicles Steel-intensive Mazda CX-9 sheds mass, debuts novel turbo setup
2016-06-17
Journal Article
2016-01-9144
Pengfei Zang, Zhe Wang, Chenle Sun
Abstract The linear internal combustion engine-linear generator integrated system (LICELGIS) is an innovative structure as a range-extender for the hybrid vehicles, which contains two opposed free piston engines and one linear generator between them. The LICELGIS is a promising power package due to its high power density and multi-fuel flexibility. In the combustion process of linear engines, the top dead center (TDC) position is not stable in different cycles, which significantly affects system operations. Otherwise, pistons move away from the TDC with high-speed because of the tremendous explosive force, which incurs the short residence time of pistons around the TDC and rapid decrease of in-cylinder temperature, pressure and the combustion efficiency. In order to address this problem, a scientific simulation model which includes dynamic and thermodynamic models, is established and a combustion optimization control strategy is proposed.
CURRENT
2016-06-16
Standard
EQB3
The Electronic Industries Association (EIA) G-47 Effectiveness QuantificationCommittee has a basic task to quantify system effectiveness. Since the support parameters underly any prime parameter quantification, the topic of support system analysis is a fundamental one to this basic committee task. The charts contained in this bulletin were developed and used for presentations to aircraft support engineering groups, to comunicate the logic and scope of system analysis applied to support system optimization.
CURRENT
2016-06-09
Standard
AS20708/1B
Scope is unavailable.
Viewing 1 to 30 of 4395

Filter