Display:

Results

Viewing 1 to 30 of 4277
2015-09-15
Technical Paper
2015-01-2521
Manimaran Govindarasu, Aditya Ashok
Many critical infrastructures, such as energy and transportation systems, are cyber-enabled physical systems that increasingly rely on smart sensors, communication networks, and control algorithms for their efficient, reliable, and economic operations. Risk modeling is a key component of any comprehensive security solution to protect these infrastructures against cyber attacks. In this paper, we present a quantitative methodology for risk assessment and mitigation for cyber-physical systems and contrast its strengths and weaknesses with respect to qualitative risk assessment methodology that is widely used in industry.
2015-09-15
Technical Paper
2015-01-2520
Thabet Kacem, Jeronymo Carvalho, Duminda Wijesekera, Paulo Costa, Márcio Monteiro, Alexandre Barreto
Since its emergence, Automatic Dependent Surveillance Broadcast (ADS-B) has been considered as a major contribution to air traffic control (ATC) surveillance. However, despite the several benefits that this promising technology has to offer, it suffers from a major security flaw since ADS-B packets are sent in clear text without enforcing any kind of security property. In this paper, we enhance a security framework, which we describe in a previous paper, aiming at detecting and mitigating attacks targeting ADS-B protocol, with a cognitive engine. First, this would facilitate the physical risk assessment of the ADS-B attacks based on the collected data describing the aircraft and its surrounding. Second, it would be beneficial to the ATC controllers who would have a better idea about the best ways to optimize the aircraft taking off and touching down without any disruptions from possible attacks targeting this technology.
2015-09-15
Technical Paper
2015-01-2519
Rosa Maria Rodriguez, Javier Garcia, Pedro Taboso
Boeing Research & Technology Europe (BR&T-Europe), a subsidiary of The Boeing Company, is developing an innovative approach to Communication, Navigation and Surveillance (CNS) in order to enhance both security and efficiency. Our approach will use the broadband internet connection onboard to securely interchange CNS data between aircraft and ground. On board broadband will allow new technological solutions and applications, not possible with current approaches, in a more secure and cost effective way. It also supports permanent surveillance and virtual event data recorder (black box). This concept is based on the dramatic improvement of broadband services on board. With some internet service providers promising up to 50Mbps per aircraft and global coverage, traditional data links (ACARS and ATN) are becoming obsolete. The solution supports the concept of aircraft always connected to ground servers to delocalize and automatize some CNS features.
2015-06-19
Standard
J1611_201506
This SAE Standard applies to horizontal earthboring machines of the following types: a. Auger Machines b. Pipe Pushers c. Rotary Rod Machines d. Impact Machines e. Horizontal Directional Drilling Machines Additional information on machines of this type may be found in SAE J2022 and SAE J2305. This document does not apply to specialized mining machinery such as conveyors, tunnel-boring machines, pipe-jacking systems, and microtunnelers.
2015-05-20
Book
This is the electronic format of the Journal.
2015-04-30
Standard
J1939/21_201504
The SAE J1939 documents are intended for light, medium, and heavy-duty vehicles used on or off road as well as appropriate stationary applications which use vehicle derived components (e.g., generator sets). Vehicles of interest include, but are not limited to, on- and off-highway trucks and their trailers, construction equipment, and agricultural equipment and implements. The purpose of these documents is to provide an open interconnect system for electronic systems. It is the intention of these documents to allow Electronic Control Units to communicate with each other by providing a standard architecture. This particular document, SAE J1939-21, describes the data link layer using the CAN protocol with 29-bit Identifiers. For SAE J1939 no alternative data link layers are permitted.
2015-04-19
WIP Standard
J2740
This Technical Information Report defines the General Motors UART Serial Data Communications Bus, commonly referred to as GM UART. This document should be used in conjunction with SAE J2534-2 in order to fully implement GM UART in an SAE J2534 interface. SAE J2534-1 includes requirements for an interface that can be used to program certain emission-related Electronic Control Units (ECU) as required by U.S. regulations, and SAE J2534-2 defines enhanced functionality required to program additional ECUs not mandated by current U.S. regulations. The purpose of this document is to specify the requirements necessary to implement GM UART in an aftermarket SAE J2534 interface intended for use by independent automotive service facilities to program GM UART ECUs in General Motors vehicles.
2015-04-17
WIP Standard
AS24509B
An Amendment corresponding to this standard is available at AS24509_A2
2015-04-14
Collection
Model-Based Design has become a well-accepted development style for embedded control and software. This technical paper collection is designed to cover new processes, methods, and applications of new processes / methods to reduce development time and improve software quality. A particular emphasis will be placed on methods such as executable specification, design through simulation, early verification, automatic code generation, and model-in-the-loop testing.
2015-04-14
Collection
This technical paper collection covers the control, calibration, and diagnostics of the engine, powertrain, and supporting electromechanical subsystems related to energy management in conventional and hybrid operation, considering the simultaneous optimization of hardware design parameters and control software calibration parameters.
2015-04-14
Collection
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
2015-04-14
Technical Paper
2015-01-0229
Zhongwen Zhu, Xu Wang, Wei Huang, Jinfeng Gong
Abstract Pure electric vehicles are recognized as one of the most important new energy vehicle types to meet the increasingly stringent standards in energy saving and environment protection. To meet the control demands, China Automotive Technology & Research Center(CATARC) plan to develop an advanced Vehicle Control Platform(VCP) for pure electric vehicles. The developed VCP is well structured on both hardware and software and can be adapted to different pure electric vehicles easily. This paper describes the design of the hardware, the software architecture, the base software and the control strategy applied in the VCP in detail. A matching method is proposed to configure the VCP to a real VCU for the specific application by modifying the hardware channel definition and the control parameters. The paper shows successful application of the VCP on several types of pure electric vehicles.
2015-04-14
Technical Paper
2015-01-0257
Jianbo Lu, Dimitar Filev, Sanghyun Hong
Abstract This paper proposes an approach to determine driver's driving behavior, style or habit during vehicle handling maneuvers and heavy traction and braking events in real-time. It utilizes intelligence inferred from driver's control inputs, vehicle dynamics states, measured signals, and variables processed inside existing control modules such as those of anti-lock braking, traction control, and electronic stability control systems. The algorithm developed for the proposed approach has been experimentally validated and shows the effectiveness in characterizing driver's handling behavior. Such driver behavior can be used for personalizing vehicle electronic controls, driver assistant and active safety systems, and the other vehicle control features.
2015-04-14
Technical Paper
2015-01-0279
Fumio Narisawa, Masahiro Matsubara, Masataka Nishi, Tomohito Ebina
Abstract Functions and sizes of electronic control and software systems in automotives are being increased to achieve better controllability and reduce fuel consumption. A higher safety level is also demanded, so functional-safety standards are increasingly being introduced to in-vehicle systems. In safety critical systems, failure must be diagnosed and a system transited to a safe state when hardware failure occurs. Therefore, the failure diagnosis part of the basic software that takes charge of signal inputs and outputs processing must be verified for high accountability and explanations to a third party. To diagnose failure, the hardware and software that originally operate independently need to cooperate in principle. Hardware and software cooperating systems are not straight-forward to verify, because the combinations of conditions are too numerous for testing.
2015-04-14
Technical Paper
2015-01-0267
Ryoichi Inada, Teppei Hirotsu, Yasushi Morita, Takahiro Hata
Abstract The ISO 26262 is a functional safety standard for road vehicles. The standard requires manufacturers to conduct quantitative assessment of the diagnostic coverage (DC) of products. The DC is defined as the percentage of failure probability covered by safety mechanisms. However, DC evaluation methods for drift faults, in which the change in element values is not constant, have not been discussed. In this paper, we propose a DC evaluation method for analog circuits with drift faults. With this method, we first parameterize the effect of drift faults onto a bounded region then split the region into safe fault, hazardous detectable fault, and hazardous undetectable fault regions. We evaluate the classification rate distribution by the area ratios of these regions.
2015-04-14
Journal Article
2015-01-0621
Mina M.S. Kaldas, Kemal Çalışkan, Roman Henze, Ferit Küçükay
Abstract There is an increasing customer demand for adjustable chassis control features which enable adaption of the vehicle comfort and driving characteristics to the customer requirements. One of the most promising vehicle control systems which can be used to change the vehicle characteristics during the drive is the semi-active suspension system. This paper presents a Rule-Optimized Fuzzy Logic controller for semi-active suspension systems which can continuously adjust itself not only according to the road conditions but also to the driver requirements. The proposed controller offers three different control modes (Comfort, Normal and Sport) which can be switched by the driver during driving. The Comfort Mode minimizes the accelerations imposed on the driver and passengers by using a softer damping. On the other hand, the increased damping in Sport Mode provides better road holding capability, which is critical for sporty handling.
2015-04-14
Technical Paper
2015-01-1642
Shrey Aggarwal, Rama Subbu, Sanjay Gilotra
Abstract Testing, validation & evaluation are vital factors in terms of defining vehicle reliability and durability. Setting the correct ignition timing is crucial in the performance of the engine. It affects many variables including engine longevity, fuel economy, and engine power. It needs to be measured & controlled such that vehicle performance can be improved. Sparks occurring too soon or late in the engine cycle are often responsible for excessive vibrations and even engine damage. Today's spark-advance controllers are open-loop systems that measure parameters that affect the spark-advance setting and compensate for their effects. A closed-loop scheme instead measures the result of the actual spark advance and maintains an optimal spark-advance setting in the presence of disturbances. Attempt has been made in our endeavor to develop an embedded system device which can be used hands-on to measure the ignition timing with respect to T.D.C.
2015-04-14
Journal Article
2015-01-1597
Kazuto Yokoyama, Masahiro Iezawa, Hideyuki Tanaka, Keiichi Enoki
Abstract Mitsubishi Electric has developed a concept car “EMIRAI 2 xEV” that features an electric vehicle (EV) powertrain for safe, comfortable, eco-friendly driving experiences in the future. The vehicle was exhibited during the 2013 Tokyo Motor Show and the 2014 Automotive Engineering Exposition. The xEV is a four-wheel-drive EV with three motors: a water-cooled front motor and two air-cooled rear motors with integrated inverters. The rear wheels can be driven independently. The degrees of freedom of the actuation can realize improved maneuverability and safety. The vehicle is also equipped with an onboard charger with a built-in step down DC/DC converter, an EV control unit, a battery management unit, and electric power steering. All of the instruments are developed by Mitsubishi Electric. Motion control systems for the xEV have been developed based on our proprietary motor control technology.
2015-04-14
Technical Paper
2015-01-0180
Karsten Schmidt, Denny Marx, Kai Richter, Konrad Reif, Andreas Schulze, Torsten Flämig
Abstract With the increasing complexity of electronic vehicle systems, one particular “gap” between function development and ECU integration becomes more and more apparent, and critical; albeit not new. The core of the problem is: as more functions are integrated and share the same E/E resources, they increasingly mutually influence and disturb each other in terms of memory, peripherals, and also timing and performance. This has two consequences: The amount of timing-related errors increases (because of the disturbance) and it becomes more difficult to find root causes of timing errors (because of the mutual influences). This calls for more systematic methods to deal with timing requirements in general and their transformation from function timing requirements to software architecture timing requirements in particular.
2015-04-14
Technical Paper
2015-01-0176
Karsten Schmidt, Denny Marx, Jens Harnisch, Albrecht Mayer, Udo Dannebaum, Herbert Christlbauer
Abstract In recent years, we see more and more ECUs integrating a huge number of application software components. This process mostly results from the increasing amount of so called in-house software in various fields like electric-drive, chassis and driver assistance systems. The software development for these systems is partially moved from the supplier to the car manufacturers. Another important trend is the introduction of new network architectures intending to meet the growing communication requirements. For such ECUs the software integration scenarios become more complicated, as more quality of service requirements with regards to timing, safety and security need to be considered [2]. Multi-core microcontrollers offer even more potential variants for integration scenarios. Understanding the interaction between the different software components, not only from a functional, but also from a timing view, is a key success factor for modern electronic systems [6,7,8,9].
2015-04-14
Technical Paper
2015-01-0173
Stephen Barrett, Maximilien Bouchez
Abstract Engine ECU testing requires sophisticated sensor simulation and event capture equipment. FPGAs are the ideal devices to address these requirements. Their high performance and high flexibility are perfectly suited to the rapidly changing test needs of today's advanced ECUs. FPGAs offer significant advantages such as parallel processing, design scalability, ultra-fast pin-to-pin response time, design portability, and lifetime upgradability. All of these benefits are highly valuable when validating constantly bigger embedded software in shorter duration. This paper discusses the collaboration between Valeo and NI to define, implement, and deploy a graphical, open-source, FPGA-based engine simulation library for ECU verification.
2015-04-14
Technical Paper
2015-01-0189
Rolf Schneider, Dominik Juergens, Andre Kohn
Abstract In the context of the ARAMiS project, AUDI AG contributed the development of a multi-core demonstrator based on car functions already in production. For this demonstrator, these legacy car functions were ported from single-core platforms to a multi-core platform to gain real world close-to-production experience while utilizing the new technology. For complex functions with high demands for computational resources, it may be necessary to distribute computation over several cores. In this context, we investigated the parallelization of a legacy sequential AUTOSAR function. A main contribution of this work is an analysis of mechanisms provided by AUTOSAR, their limitations and, possible remedy. This paper will point out observations and experiences during the development of this demonstrator and show practical solutions for parallelization in an AUTOSAR environment.
2015-04-14
Technical Paper
2015-01-0186
Syed Arshad Kazmi, Jin Seo Park, Jens Harnisch
Abstract End of Line tests are brief set of tests intended to evaluate ECU's in order to ensure correct functioning of its intended functionality. As these tests are executed on the production line, available time to perform these tests is limited. On one hand, faster production demands require these tests and its framework to be designed in a time optimized manner. On the other hand, increase in ECU functionality translates to an increase in test's functional coverage, requiring more time. Therefore the time taken to execute the tests reaches a critical point in overall ECU production. Availability of multicore microcontrollers with increase in clock speed can increase the performance of end of line tests, but design challenges e.g. synchronization do not guarantee a linear performance increase. Therefore, design of test execution framework is absolutely critical to increase performance of test execution.
2015-04-14
Technical Paper
2015-01-0184
James Price
Abstract More than ten years have passed since the establishment of the AUTOSAR consortium. Today, AUTOSAR has become a well-established standard for automotive electronic control unit (ECU) development and network design. In fact, several original equipment manufacturers (OEMs) now mandate AUTOSAR when sourcing ECUs. With that being said, the standard is getting more complex as new concepts are added with each new release, making integration an increasingly difficult challenge - let alone a challenge developing it alongside ECU application functionality. This paper addresses the integration of AUTOSAR 4.x basic software stack into an ECU project and offers proposed flows for the integration process starting from the ECU extract to a fully configured AUTOSAR stack.
2015-04-14
Technical Paper
2015-01-0202
Armin Wasicek, Andre Weimerskirch
Abstract Combatting the modification of automotive control systems is a current and future challenge for OEMs and suppliers. ‘Chip-tuning’ is a manifestation of manipulation of a vehicle's original setup and calibration. With the increase in automotive functions implemented in software and corresponding business models, chip tuning will become a major concern. Recognizing and reporting of tuned control units in a vehicle is required for technical as well as legal reasons. This work approaches the problem by capturing the behavior of relevant control units within a machine learning system called a recognition module. The recognition module continuously monitors vehicle's sensor data. It comprises a set of classifiers that have been trained on the intended behavior of a control unit before the vehicle is delivered. When the vehicle is on the road, the recognition module uses the classifier together with current data to ascertain that the behavior of the vehicle is as intended.
2015-04-14
Technical Paper
2015-01-1401
Pawel Skruch, Rafal Dlugosz, Krzysztof Kogut, Pawel Markiewicz, Dominik Sasin, Maciej Różewicz
Abstract Active Safety (AS) and Advanced Driver Assistance Systems (ADAS) can nowadays be considered as distributed embedded software systems where independent microprocessor systems communicate together using different communication protocols. Typical AS or ADAS functionality is then realized by several microprocessors communicating with each other. AS and ADAS systems interact with other Electronic Control Units in a vehicle via communication networks and gather vehicle's surroundings via camera, radar or laser sensors. Quality assurance and safety standards combined with increasing complexity and reliability demands related to vision sensing, radar sensing and data fusion, often together with a short time to market, make the development of such systems challenging.
2015-04-14
Technical Paper
2015-01-1154
Benjamin Black, Tomohiro Morita, Yusuke Minami, David Farnia
Abstract Test and validation of control systems for hybrid vehicle power trains provide a unique set of challenges. Not only does the electronic control unit (ECU), or pair of ECUs, need to smoothly coordinate power flow between two or more power plants, but it also must handle the power electronics' high-speed dynamics due to PWM signals frequently in the 10-20 kHz range. The trend in testing all-electric and hybrid-electric ECUs has moved toward using field-programmable gate arrays (FPGAs) as the processing node for simulating inverter and electric motor dynamics in real time. Acting as a purpose-built processor colocated with analog and digital input and output, the FPGA makes it possible for real-time simulation loop rates on the order of one microsecond.
2015-04-14
Journal Article
2015-01-1209
Zhengyu Liu, Thomas Winter, Michael Schier
Abstract This paper presents the development of a novel direct coil cooling approach which can enable high performance for electric traction motor, and in further significantly reduce motor losses. The proposed approach focuses on bypassing critical thermal resistances in motor by cooling coils directly in stator slots with oil flow. Firstly, the basic configuration and features are shown: sealed stator slots to air gap, pressure reservoirs on both side of the slots and slot channels for oil flow. The key to enhance thermal performance of the motor here is based on introducing fluid guiding structure in the slot channels. Next, heat transfer in the channel with guiding structure is investigated by CFD and compared with bare slot channel without guiding structure. For studying the effectiveness of proposed cooling concept, numerical analysis is conducted to compare it with HEV favored oil impingement cooling.
2015-04-14
Technical Paper
2015-01-1202
Weimin Zhang, Saeed Anwar, Daniel J. Costinett, Fred Wang
Abstract A cost-effective SiC based hybrid switch and an improved inductor design procedure for boost converter in electric vehicles (EVs) and hybrid electric vehicles (HEVs) are presented in this paper. The feasibility of a hybrid switch using low power SiC MOSFET and high power Si IGBT is investigated to provide a cost-effective and failure-resistant method to employ the fast switching characteristics of SiC devices. The operation of the hybrid switch is tested in double pulse test experiment and compared with the single IGBT. Additionally, the boost inductor design is discussed, which allows the optimization of weight and power loss across different core materials. An improved powder core inductor design procedure is presented to avoid the iterative design procedure provided by the manufacture. Both the powder material and nanocrystalline material are considered in the inductor design procedure.
2015-04-14
Technical Paper
2015-01-1203
Subhashree Rajagopal, Sebastien Desharnais, Balamurugan Rathinam, Upendra Naithani
Abstract Electromagnetic brakes are found in a variety of applications. They offer tremendous advantages including: absence of fading, high braking torque and controllability. However they suffer from decreasing torque at low and high speeds. In this study, a novel concept of permanent magnet eddy-current brake is proposed that maintains a flat braking torque profile over a broad speed range. The principle is analytically investigated and numerically validated through finite element simulations using MAXWELL. It is demonstrated that a usably flat braking torque profile can be achieved by altering the path of eddy-currents by magnetic field orientation, thereby affecting the apparent rotor resistance.
Viewing 1 to 30 of 4277

Filter