Criteria

Display:

Results

Viewing 1 to 30 of 4082
2017-10-08
Technical Paper
2017-01-2301
Hongli Gao, Fujun Zhang, Wenwen Zeng, Tianpu Dong, Zhengkai Wang
Abstract The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
2017-09-23
Technical Paper
2017-01-1955
Yandong Ruan, Hui Chen, Jiancong Li
Abstract An integrated automatic driving system consists of perception, planning and control. As one of the key components of an autonomous driving system, the longitudinal planning module guides the vehicle to accelerate or decelerate automatically on the roads. A complete longitudinal planning module is supposed to consider the flexibility to various scenarios and multi-objective optimization including safety, comfort and efficiency. However, most of the current longitudinal planning methods can not meet all the requirements above. In order to satisfy the demands mentioned above, a new Potential Field (PF) based longitudinal planning method is presented in this paper. Firstly, a PF model is constructed to depict the potential risk of surrounding traffic entities, including obstacles and roads. The shape of each potential field is closely related to the property of the corresponding traffic entity.
2017-09-23
Technical Paper
2017-01-1963
Yuande Jiang, Weiwen Deng, Rui He, Shun Yang, Shanshan Wang, Ning Bian
Abstract Adaptive cruise control (ACC), as one of the advanced driver assistance systems (ADAS), has become increasingly popular in improving both driving safety and comfort. Since the objectives of ACC can be multi-dimensional, and often conflict with each other, it is a challenging task in its control design. The research presented in this paper takes ACC control design as a constrained optimization problem with multiple objectives. A hierarchical framework for ACC control is introduced, aimed to achieve optimal performance on driving safety and comfort, speed and/or distance tracking, and fuel economy whenever possible. Under the hierarchical framework, the operational mode is determined in the upper layer, in which a model predictive control (MPC) based spacing controller is employed to deal with the multiple control objectives. On the other hand, the lower layer is for actuator control, such as braking and driving control for vehicle longitudinal dynamics.
2017-09-19
Technical Paper
2017-01-2101
Jon Barton Shields, Brian Peirce Barker
Abstract This paper discusses the merits, benefits and usage of autonomous key management (with implicit authentication) (AKM) solutions for securing Electronic Module to Electronic Module (i.e. ECUs, FCC, REUs, etc.) communication within air (and defense) vehicles and IoT applications; particularly for transmissions between externally exposed, edge Electronic Module sensors connected to Electronic Modules within the air (and defense) vehicle infrastructure. Specific benefits addressed include reductions of communication latency, implementation complexity, processing power and energy consumption. Implementation issues discussed include provisioning, key rotation, synchronization, re-synchronization, digital signatures and enabling high entropy.
2017-09-19
Technical Paper
2017-01-2160
Ferdinand Spek, Maarten Weehuizen, Ilja Achterberg
Abstract In new aircraft programs, systems’ functionality is increasingly becoming integrated into modular avionics. Controllers may not be delivered by the systems supplier so this trend creates a new interface between systems and controllers. A functional software specification is therefore needed to facilitate the building of the software by the controller supplier. In the case of an ECS system controller, the hardware was obtained from different suppliers and a software functional specification was needed for the controller supplier. To be able to design and verify the system functionality, an integrated ECS simulation model was created which coupled the thermodynamics of the aircraft and ECS system to the controller actions. The model also included functionality to simulate sensor noise and component failures. The thermodynamic model was created in Matlab/Simulink and consisted of a combination of direct programming as well as data on a Flowmaster model for the bleed system.
2017-09-19
Technical Paper
2017-01-2115
Gilberto Burgio, Leonardo Mangeruca, Alberto Ferrari, Marco Carloni, Virgilio Valdivia-Guerrero, Laura Albiol-Tendillo, Parithi Govindaraju, Marcel Gottschall, Olaf Oelsner, Sören Reglitz, Jann-Eve Stavesand, Andreas Himmler, Lionel Yapi
Abstract Multi-physics interactions between structural, electrical, thermal, or hydraulic components and the high level of system integration, characteristic of new aircraft designs, is increasing the complexity of both design and verification processes. Therefore the availability of tools, supporting integrated modelling, simulation, optimization and testing across all stages of aircraft design remains a critical challenge. This paper presents some results of the project MISSION (Modelling and Simulation Tools for Systems Integration on Aircraft). It is a collaborative task being developed under the European Union Clean Sky 2 Program, which is a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The first levels of integration of different models and tools proposed in the MISSION framework will be presented, along with simulation results.
2017-09-17
Technical Paper
2017-01-2514
Wei Han, Lu Xiong, Zhuoping Yu, Haocheng Li
Abstract BBW (Brake-by-wire) can increase the electric and hybrid vehicles performance and safety. This paper proposes a novel mechatronic booster system, which includes APS (active power source), PFE (pedal feel emulator), ECU (electronic control unit). The system is easily disturbed when the system parameters and the outside conditions change. The system performance is weakened. The cascade control technique can be used to solve the problem. This paper develops an adaptive cascade optimum control (ACOC) algorithm based on the novel mechatronic booster system. The system is divided into main loop and servo loop, both of them are closed-loop system. The servo-loop system can eliminate the disturbance which exists in the servo loop. So the robustness of the cascade control system is improved than which of the general closed-loop control system. Different control object is respectively chosen. The control-oriented mathematical model is designed.
2017-07-10
Technical Paper
2017-28-1935
Vellavedu Velumani Praveen, P Baskara Sethupathi
Abstract Formula SAE is a prestigious engineering design competition, where student team design, fabricate and test their formula style race car, with the guidelines of the FSAE rulebook, according to which the car is designed, for example the engine must be a four-stroke, Otto-cycle piston engine with a displacement no greater than 710cc. According to FSAE 2017 Rule Book [1], ARTICLE 3, IC3.2 and IC3.3 state that the maximum sound level should not exceed 110 dBC at an average piston speed of 15:25 m/s (for the KTM 390 engine, which has 60 mm stroke length, the noise level will be measured at 7500 RPM) and 103 dBC at Idle RPM. So, the active muffler which works as a normal reflective muffler till the 7500 RPM range, after which an electronic controlled throttle mechanism is used to reduce the backpressure (since after 7500 RPM the noise level doesn't matter in FSAE) by using tach signal from the engine to control the throttle (two position).
2017-05-18
Journal Article
2017-01-9680
Husain Kanchwala, Pablo Luque Rodriguez, Daniel Alvarez Mantaras, Johan Wideberg, Sagar Bendre
Abstract In recent times, electric vehicles (EV) are gaining a lot of attention as they run clean and are environment friendly. Recent advances in the applications of integrating control systems in automotive vehicles have made it practicable to accomplish improvement in vehicle's longitudinal and lateral dynamics. This paper deals with a brief overview of current state of art vehicle technologies like direct yaw moment control, traction control and side slip control of EV. There are various controller algorithms available in literature with different torque vectoring strategies. As EV can be precisely controlled because of quick in hub wheel motor response times, therefore various torque vectoring strategies can be comfortably used for enhancing vehicle dynamics. Moreover, by using four independent in-wheel motors, several types of motion controls can be performed.
2017-03-28
Technical Paper
2017-01-1726
Sameer Shah, Aayoush Sharma, Raghav Angra, Nitin Singh, Khalique Ahmed
Abstract In an unavoidable event of a suspect being chased by police, there is high probability for the criminal to evade the police while driving his vehicle. At many instances, criminal escapes without leaving a trail behind and becomes untraceable. A new concept of Vigilance Assistance System Network (VASN) has been developed, which is spread across the city and helps in catching the escaping criminals. At every junction, the traffic-signals are installed with a microcontroller chip and these connected traffic signals form a network with distinct city areas demarcated on the map. The vehicle is installed with GPS and a RFID module on their ECU when it approaches any intersection or junction; they receive wireless signals from traffic-signals and transmit another registering signal to the traffic-light wirelessly through RFID.
2017-03-28
Technical Paper
2017-01-1728
Nitin Singh, Aayoush Sharma, Sameer Shah, Balakumar Gardampaali
Abstract In any unlikely event of accidents or vehicle breakdown, there is accumulation of traffic which results in road-blockage and causes in convenience to other vehicles. If this happens in remote areas, the accidents victims are left unattended and there is delay in providing emergency services. In case of traffic, it obstructs the entry of ambulance and rescue team which results in death of passengers. To prevent this mishap, a mechatronics based road block avoidance and accident alarming system is designed which is automated by the use of sensors. The road-block is detected with the help sensors located at regular intervals on road. This input is given to a Local Control Unit (LCU) which is integrated on every road. Several such LCUs are connected to a Main Control Unit (MCU) which is located at the nearest police station. A single MCU covers the area administered by that police station. Additional CCTV cameras are present to give graphical view of accident.
2017-03-28
Technical Paper
2017-01-1382
Michelle L. Reyes, Cheryl A. Roe, Ashley B. McDonald, Julia E. Friberg, Daniel V. McGehee
Abstract Advanced driver assistance systems (ADAS) show tremendous promise for increasing safety on our roadways. However, while these technologies are rapidly infiltrating the American passenger vehicle market, many consumers have little to no experience or knowledge of them prior to getting behind the wheel. The Technology Demonstration Study was conducted to evaluate how the ways in which drivers learn about ADAS affect their perceptions of the technologies. This paper investigates drivers’ knowledge of the purpose, function, and limitations of the advanced driver assistance technology of adaptive cruise control (ACC), along with ratings of perceived usefulness, apprehension, and effort required to learn to use ACC.
2017-03-28
Technical Paper
2017-01-0081
Majid Majidi, Majid Arab, Vahid Tavoosi
Abstract In this research, an optimal real-time trajectory planning method is proposed for autonomous ground vehicles in case of overtaking a moving obstacle. When an autonomous vehicle detects a moving vehicle ahead of it in a proper speed and distance and the braking is not efficient due to the lost of its kinematic energy, the autonomous vehicle decides to overtake the obstacle by performing a double lane-change maneuver. A two-phase nonlinear optimal problem is developed for generating the path for the overtaking maneuver. The cost function of the first phase is defined in such a way that the vehicle approaches the moving obstacle as close as possible. Besides, the cost function of the second phase is defined as the minimization of the sum of the vehicle lateral deviation from the reference path and the rate of steering angle during the overtaking maneuver while the lateral acceleration of the vehicle does not exceed a safe limit.
2017-03-28
Technical Paper
2017-01-0432
Bing Zhu, Zhipeng Liu, Jian Zhao, Weiwen Deng
Abstract Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
2017-03-28
Technical Paper
2017-01-1668
Amin Emrani, Steve Spadoni
Abstract The demand for more features in a vehicle is growing at an extraordinary rate. This trend especially with emerging autonomous functions shows no sign of slowing. The energy requires to supply this ever growing system goes through multiple conversion, protection and other elements before it actually powers the loads. Considering the loss of each of these elements for a vehicle and multiplying the value by the total numbers of cars, underlines the need for an optimized electrical distribution system to power all loads efficiently. In this paper, Smart Step-Down Convertor is introduced as a power supply to power devices which operate at voltages below the power net voltage while protecting the power net and the devices against faults.
2017-03-28
Technical Paper
2017-01-1679
Felix Martin, Michael Deubzer
Abstract In the automotive industry a steady increase in the number of functions driven by innovative features leads to more complex embedded systems. In the future even more functions will be implemented in the software, especially in the areas of automatic driving assistance functions, connected cars, autonomous driving, and mobility services. To satisfy the increasing performance requirements, multi- and many-core controllers are used, even in the classic automotive domains. This case study has been conducted in the steering system domain, but the results can be applied to other areas as well. Safety critical functions of classic automotive domains must fulfill strict real-time requirements to avoid malfunctions, which can potentially endanger people and the environment. For this reason, ISO 26262 requires verification of the performance and timing behavior of system critical functions.
2017-03-28
Technical Paper
2017-01-1681
Kyaw Soe
Abstract This paper describes a test system for improving the completeness and representativeness of automotive electrical/electronic (E/E) test benches. This is with the aim to enable more testing and hence increase the usage and effectiveness of these facilities. A proportion of testing for automotive electrical and electronics systems and components is conducted using E/E testing boards (“test-boards”). These are table-like rigs consisting of most or all electrical and electronic parts connected together as per a car/truck/van. A major problem is that the testing is conducted on the equivalent of a static vehicle: test-boards lack basic dynamic elements such as a running engine, vehicle motion, environmental, component and fluid temperatures, etc. This limits the testing that can be carried out on such a test-board.
2017-03-28
Technical Paper
2017-01-1616
Scott A. Rush
Abstract Modern automotive manufacturing and after-sale service environments require tailoring of configuration values or “calibrations” within the vehicle’s various electronic control units (ECUs) to that vehicle’s specific option content. Historically, ECU hardware and software limitations have led designers to implement calibratable values using opaque binary blocks tied directly to ECU internal software data structures. Such coupling between calibration data files and ECU software limits traceability and reuse across different software versions and ECU variants. However, more and more automotive ECUs are featuring fast microprocessors, large memories, and preemptive, multi-tasking operating systems that open opportunities to object-oriented approaches. This paper presents the CalDef system for automotive ECU calibration software architecture.
2017-03-28
Technical Paper
2017-01-1618
Max Mauro Dias Santos, Victor Ambiel, Mauro Acras, Peter Gliwa
Abstract Modern cars contain more and more safety-relevant features which require addressing safety aspects during all development phases: on the functional level, on the architectural level, during integration as well as throughout the verification. The workflow of designing safe and reliable automotive embedded systems start with appropriate requirements definitions. According to the automotive safety standard ISO 26262, functional as well as non-functional threats need to be addressed. Non-functional aspects of safe software include a sound and safe timing of the software. The right methods, tools and standards enable OEMs and suppliers developing and providing applications which meet their timing requirements and a high level of quality. We present with this paper some important aspects related to timing in automotive embedded systems as well as the major standards such as TIMMO and AUTOSAR.
2017-03-28
Technical Paper
2017-01-1619
Charles Loucks
Abstract The introduction of floating point math in Embedded Application ECU’s has made the implementation of complex math functions less error prone but not error proof. This paper shall focus on raising awareness of the pitfalls that come from the use of the basic floating point arithmetic operations, that is, Divide, Multiply, Add and Subtract. Due to the known pitfalls inherent in these basic math operations, it is proposed that a standard library with common functions appropriate for Powertrain Embedded applications (but not limited to Powertrain) be identified. This paper shall explore what these common functions will look like for both standard C code as well as the equivalent versions in Matlab™ Simulink™. The particular pitfalls this paper shall discuss are Divide-By-Zero, Overflow, Underflow and Loss-Of-Precision for both single and double precision floating point variables. This paper shall reference the IEEE-754 Floating Point standard used by most Embedded C applications.
2017-03-28
Technical Paper
2017-01-1137
Xiaofeng Yin, Han Lu, Xiaohua Wu, Yongtong Zhang, Wei Luo
Abstract For the vehicle equipped with stepped automatic transmission (SAT) that has a fixed number of gears, gearshift schedule is crucial to improve the comprehensive performance that takes into account power performance, fuel economy, and driver’s performance expectation together. To optimize and individualize the gearshift schedule, an optimization method and an improved performance evaluation approach for multi-performance gearshift schedule were proposed, which are effective in terms of reflecting the driver's expectation on different performance. However, the proposed optimization method does not consider the influence of the road slope on the comprehensive performance. As the road slope changes the load of vehicle that is different from the load when a vehicle runs on a level road, the optimized gearshift schedule without considering road slope is obviously not the optimal solution for a vehicle equipped with SAT when it runs on ramp.
2017-03-28
Technical Paper
2017-01-0021
Takashi Yasuda, Hideki Goto, Hiroki Keino, Kaoru Yoshida, Hiroyuki Mori, Miyuki Mizoguchi
Abstract In recent years, the demand for high-speed/high-bandwidth communication for in-vehicle networks has been increasing. This is because the usage of high-resolution screens and high-performance rear seat entertainment (RSE) systems is expanding. Additionally, it is also due to the higher number of advanced driver assistance systems (ADAS) and the future introduction of autonomous driving systems. High-volume data such as high definition sensor images or obstacle information is necessary to realize these systems. Consequently, automotive Ethernet, which meets the requirements for high-speed/high-bandwidth communication, is attracting a lot of attention. The application of automotive Ethernet to in-vehicle networks requires that technology developments satisfy EMC performance requirements. In-vehicle EMC requirements consist of two parts: emission and immunity. The emission requirement is to restrict the electromagnetic noise emitted from vehicle.
2017-03-28
Technical Paper
2017-01-0090
Ondrej Santin, Jaroslav Beran, Jaroslav Pekar, John Michelini, Junbo Jing, Steve Szwabowski, Dimitar Filev
Abstract Conventional cruise control systems in automotive applications are usually designed to maintain the constant speed of the vehicle based on the desired set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods namely adopting the Model Predictive Control (MPC) technology utilizing the road grade preview information and allowance of the vehicle speed variation. This paper is focused on the extension of the Adaptive Nonlinear Model Predictive Controller (ANLMPC) reported earlier by application to the trailer tow use-case. As the connected trailer changes the aerodynamic drag and the overall vehicle mass, it may lead to the undesired downshifts for the conventional cruise controller introducing the fuel economy losses. In this work, the ANLMPC concept is extended to avoid downshifts by translating the downshift conditions to the constraints of the underlying optimization problem to be solved.
2017-03-28
Technical Paper
2017-01-1446
Allen Charles Bosio, Paul Marable, Marcus Ward, Bradley Staines
Abstract A dual-chambered passenger airbag was developed for the 2011 USNCAP to minimize neck loading for the belted 5th female dummy while restraining the unbelted 50th dummy for FMVSS208. This unique, patented design adaptively controlled venting between chambers based on occupant stature. A patented pressure-responsive vent on the second chamber permitted aspiration into the second chamber before a delayed outflow to the environment. The delayed flow through the pressure-responsive vent from the second chamber acted like a pressure-limiting membrane vent to advantageously reduce the injury assessment values for the HIC and the Nij for the 5th female dummy.
2017-03-28
Technical Paper
2017-01-0016
Don Zaremba, Emily Linehan, Carlos Ramirez Ramos
Abstract For over thirty years, the silicon power MOSFET’s role has expanded from a few key components in electronic engine control to a key component in nearly every automotive electronics system. New and emerging automotive applications such as 48 V micro hybrids and autonomous vehicle operation require improved power MOSFET performance. This paper reviews mature and state of the art power MOSFET technologies, from planar to shield gate trench, with emphasis on applicability to automotive electronic systems. The automotive application environment presents unique challenges for electronic systems and associated components such as potential for direct short to high capacity battery, high voltage battery transients, high ambient temperature, electromagnetic interference (EMI) limitations, and large delta temperature power cycling. Moreover, high reliability performance of semiconductor components is mandatory; sub 1 ppm overall failure rate is now a fundamental requirement.
2017-03-28
Journal Article
2017-01-0002
Nate Rolfes
Abstract Driver assistance features are increasingly dependent upon system architectures that distribute and share responsibilities across various function-based ECUs to minimize cost and redundancy while maximizing engineering efficiency. Clear and accurate system requirements are critical to success, and a robust methodology for validating and testing requirements is essential. Distributed systems are highly sensitive to requirement ambiguity and inaccuracy as they are designed on the assumptions of predictable logical behavior of each functional component. Requirement ambiguity drives variance in implementations which results in system incompatibilities. Errors in requirements lead to faulty implementations that fail not just the component test but also hinder the testing of the entire system of components.
2017-03-28
Journal Article
2017-01-0011
Kesav Kumar Sridharan, Swaminathan Viswanathan
Abstract Current generation automobiles are controlled by electronic modules for performing various functions. These electronic modules have numerous semiconductor devices mounted on printed circuit boards. Solders are generally used as thermal interface material between surface mount devices and printed circuit boards (PCB) for efficient heat transfer. In the manufacturing stage, voids are formed in solders during reflow process due to outgassing phenomenon. The presence of these voids in solder for power packages with exposed pads impedes heat flow and can increase the device temperature. Therefore it is imperative to understand the effect of solder voids on thermal characteristics of semiconductor devices. But the solder void pattern will vary drastically during mass manufacturing. Replicating the exact solder void pattern and doing detail simulation to predict the device temperature for each manufactured module is not practical.
2017-03-28
Journal Article
2017-01-0019
Yang Zhao, Weiwen Deng, Jian Wu, Rui He
Abstract Electric vehicle (EV) has been regarded as not only an effective solution for environmental issues but also a more controllable and responsible device to driving forces with electric motors and precise torque measurement. For electric vehicle equipped with four in-wheel motors, its tire longitudinal forces can be generated independently and individually with fully utilized tire adhesion at each corner. This type of the electric vehicles has a distributed drive system, and often regarded as an over-actuated system since the number of actuators in general exceeds the control variables. Control allocation (CA) is often considered as an effective means for the control of over-actuated systems. The in-vehicle network technology has been one of the major enablers for the distributed drive systems. The vehicle studied in this research has an electrohydraulic brake system (EHB) on front axle, while an electromechanical brake system (EMB) on rear axle.
2017-03-28
Journal Article
2017-01-1621
Andre Kohn, Karsten Schmidt, Jochen Decker, Maurice Sebastian, Alexander Züpke, Andreas Herkersdorf
Abstract The increasing complexity of automotive functions which are necessary for improved driving assistance systems and automated driving require a change of common vehicle architectures. This includes new concepts for E/E architectures such as a domain-oriented vehicle network based on powerful Domain Control Units (DCUs). These highly integrated controllers consolidate several applications on different safety levels on the same ECU. Hence, the functions depend on a strictly separated and isolated implementation to guarantee a correct behavior. This requires middleware layers which guarantee task isolation and Quality of Service (QoS) communication have to provide several new features, depending on the domain the corresponding control unit is used for. In a first step we identify requirements for a middleware in automotive DCUs. Our goal is to reuse legacy AUTOSAR based code in a multicore domain controller.
2017-03-28
Journal Article
2017-01-1689
Peter Subke, Muzafar Moshref, Andreas Vach, Markus Steffelbauer
Abstract (Summary) Remote diagnostic systems support diagnostic communication by having the capability of sending diagnostic request services to a vehicle and receiving diagnostic response services from a vehicle. These diagnostic services are specified in diagnostic protocols, such as SAE J1979, SAE J1939 or ISO 14229 (UDS). For the purpose of diagnostic communication, the tester needs access to the electronic control units as communication partners. Physically, the diagnostic tester gets access to the entire vehicle´s E/E system, which consists of connectors, wiring, the in-vehicle network (e.g. CAN), the electronic control units, sensors, and actuators. Any connection of external test equipment and the E/E system of a vehicle poses a security vulnerability. The combination can be used for malicious intrusion and manipulation.
Viewing 1 to 30 of 4082