Display:

Results

Viewing 1 to 30 of 5803
Technical Paper
2014-10-13
Ramadhas Arumugam Sakunthalai, Hongming Xu, Dai Liu, Jianyi Tian, Miroslaw Wyszynski, Jakub Piaszyk
The cold start performance of diesel engines has been receiving more attention when the European Commission emission regulations directed to include the cold start emissions in the legislative emission driving cycles. The cold start performance of diesel engines is influenced by the ambient conditions, engine design, fuel, lubricant and engine operating conditions. The present research work investigates the effect of the cold ambient conditions on the engine idle speed stability and the exhaust emissions (gaseous and particle emissions) from the diesel engine during the cold start and followed by idle conditions. The engine startability and idling tests were carried out on the diesel engine in the cold cell at the different ambient temperatures ranges between +20 ºC and -20 ºC. The higher fuel consumption and peak speed observed at very cold ambient temperatures have been compared to those at ambient conditions. The exhaust emissions of the engine were higher at cold start and then it started decreasing during idle.
Technical Paper
2014-10-13
Balaji Bandaru, L. Navaneetha Rao, P. S. S. Babu, Krishna Kumar Varathan, J. Balaji
The present work describes an approach for simulation of on-road-driving cycles (duty cycles) in transient engine testbed to predict the fuel economy for different vehicles from ICV to HCV. The driving cycles investigated in the current study are generated from the typical experimental data measured from instrumented vehicles in real world traffic conditions ranging from different cities, highways and village roads in India. The measured driving cycle data is analyzed using MATLAB programing, and then sub-divided into several zones depend on the time of operation over the engine operating area. Later, the engine driving cycle data was corrected in terms of speed and torque before simulating in engine testbed, which is essential for minimizing dynamometer influence on the fuel consumption. The power consumed by auxiliary equipment and other losses were considered in the study. The main objective of the work is to develop a procedure to estimate the likely performance, fuel economy and emissions of an upcoming/under development engine or vehicle, by a given drive cycle simulation, without having to go through the costly route of building the vehicle.
Technical Paper
2014-10-13
Nicolas Arnault, Guy Monsallier
Cold weather is a challenge for compression ignition engines. As Diesel fuel creates wax crystals and gel when temperature goes down enough (sometimes just below 0°C), it comes to plug the fuel filter and the fuel injection system, leading to undesirable effects like loss of power, engine stall after start or even engine not starting at all. Side effects like fuel feeding pump durability can also be linked to it. Moreover, it has been shown that BioDiesel, and especially FAME coming from Palm, Tallow or Used Kitchen Oil has negative impacts on vehicle cold flow operability. Literature has even identified the key fuel components which impact the cold flow properties. Fuel cold flow properties can be improved through additives, which can be already included in the fuel at the pump, or manually added by the driver. But, obviously this cannot be easily controlled on the field and car manufacturers cannot handle in advanced where the fuel fill-up will be done, nor the quality of the fuel fed in the vehicle tank.
Technical Paper
2014-10-13
Dai Liu, Hongming Xu, Ramadhas Arumugam Sakunthalai, Jianyi Tian
Cold start is a critical operating condition for diesel engines because of the resultant pollutant emissions produced by the unstable combustion at lower temperatures. In this research work, a light-duty, turbocharged diesel engine equipped with a common rail injection system was tested on a transient engine testing bed for an investigation of the starting process in terms of engine performance and emissions. The engine (including engine coolant, engine oil and fuel) was soaked in a cold cell at -7°C for at least 8 hours before starting of the test. The engine operating parameters such as engine speed, air/fuel ratio and EGR rate were recorded during the tests. Pollutant emissions (HC, NOx and particles both in mode of nucleation and accumulation) were measured before and after DOC. The results showed that conversion efficiency of NOx was higher during acceleration period at -7°C start than the case at 20°C start. The reduction of NOx and THC by DOC was less during idle period at -7°C cold start.
Technical Paper
2014-10-13
Jianyi Tian, Hongming Xu, Ramadhas Arumugam Sakunthalai, Dai Liu, Cheng Tan, Akbar Ghafourian
Engine transients have attracted high attentions from researchers due to their high frequency of occurrence during daily vehicle driving. More emissions are expected compared to steady states as a result of the turbo-lag problem. Ambient temperature has a significant influence on engine transients especially at the start. The effects of ambient temperature on engine-out emissions under the New European Driving Cycle (NEDC) were investigated in this study. The transient engine tests were carried out on a modern 3.0 L, V6 turbocharged common rail diesel engine fuelled with winter diesel in the cold cell at the different ambient temperatures ranges between +20 and -7 ºC. The engine including, fuel, coolant, combustion air and lubricating oil were soaked and maintained at the desired test temperatures during the whole transient tests. Instantaneous engine performances including torque and speed, gaseous emissions such as CO, HC and NOx, and particle emissions for its number and size distribution were analysed during each transient test at different ambient conditions.
Technical Paper
2014-10-13
Cheng Tan, Hongming Xu, He Ma, Jianyi Tian, Akbar Ghafourian
Automotive engines especially turbocharged diesel engines produce higher level of emissions during transient operation than in steady state. Therefore, the study of engine transients has received increasing attention for meeting the new emission legislations. In order to improve understanding of the engine transients and develop advanced technologies to reduce the transient emissions, the engine researchers require accurate data acquisition and appropriate post-processing techniques which are capable of dealing with noise and synchronization issues. The objective of this study is to develop a methodology for the measurement and processing of data during transient engine tests concerning the noise in time-resolved data during the transient which requires proper filtering. A common practice in engine tests is ensemble averaging the data of a number of cycles for the steady state experiments but this method is not suitable for the transient cases. In this study, four alternative automated methods were implemented on in-cylinder pressure data of each individual cycle to compare and analyze the suitability of combustion diagnostic.
Technical Paper
2014-10-13
Antonino La Rocca, David MacMillan, Paul Shayler, Michael Murphy, Ian Pegg
Cold idle operation of a modern design light duty diesel engine and the effect of multiple pilot injections on stability were investigated. Magnitude and cycle-to-cycle variation of indicated parameter have been used as key indicators of cold idle performance. The utility of different injection strategies, up to three pilot injections before a main, is investigated. The investigation was initially carried out experimentally at 1000rpm, a speed representative of idle conditions, and at -20ºC. Benefits of mixture preparation were initially explored by a heat release analysis performed for each case. A CFD investigation was then used to visualise the effect of multiple pilots on in-cylinder mixture distribution, with particular emphasis on how the injection patterns affect the mixture distribution in the proximity of the glow plug. Kiva 3v was used to model the combustion system and fuel injections. A 60º mesh was used taking advantage of rotational symmetry. Combustion system and injector arrangements mimic the HPCR diesel engine used in the experimental investigation.
Technical Paper
2014-10-13
Xianjing Li, Liguang Li
Gasoline Direct Injection (GDI) engines have attracted interest as automotive powerplants because of their potential advantages in down-sizing, fuel efficiency and in emissions reduction. In modern gasoline combustion concepts the application of direct injection combined with stratification is one of the most promising strategies. However, GDI engines suffer from elevated unburned hydrocarbon (HC) emissions at the start up process, which are sometimes worsened by misfires and partial burns. Moreover, as the engine is cranked to idle speed quickly in HEV mode, the transients are more dramatically than that in traditional vehicle, which are harmful to combustion and emission performance. This paper concerned about the GDI engine performances for ISG HEVs during the start-up process. A servo motor was connected directly to the engine output shaft to simulate the ISG. Based on the test system, cycle-controlled of the fuel injection mass, fuel injection timing, ignition timing and so on, can be obtained, as well as the cycle-resolved measurement of the HC concentrations and NO emissions.
Technical Paper
2014-10-13
Krzysztof Jan Siczek
Nowadays microbes like bacteria are used to wring out electrical energy trapped in wastewater. Such bacterial batteries use oxygen at the cathode to soak up the harvested electrons. Oxygen is used because of its efficiency during collecting electrons. Unfortunately such mini power plants can be treacherous and sensitive to leak of oxygen and microbes. The oxygen can bubble over to the anode and the bacteria can migrate closer to the cathode to swipe the gas for their own energy production. They can also case risks a short circuit. In the case of such battery it is a real problem the control of gas flow and behaviour. To prevent spillover between electrodes in such batteries, engineers use the complex membrane barriers should be used. Replacing of bubbling oxygen with solid silver oxide that gobbles up electrons allows creating rechargeable bacterial battery. For both fuel cell and microbe-based battery it is needed a place to send electrons, but putting oxygen in there is a real problem.
Technical Paper
2014-09-30
Daofei Li, Lei Wang, Huanxiang Xu, Zhipeng Fan, Xiaoli Yu
Abstract Braking energy recovery can significantly contribute to fuel economy and emission reduction, particularly for commercial vehicles driving in urban environment. By using the compressed air storage, rather than expensive and vulnerable batteries, this paper proposes a pneumatic hybrid system with an integrated compressor/expander unit (CEU) for commercial vehicles, in order to achieve stop/start function and braking energy recovery. During braking, the compressed air is recovered by CEU working in compressor mode and is charged to the air tanks. When the vehicle starts from stop, the CEU works as an expander to crank the engine with compressed air. The compressed air can also be used to supply the air tank of brake boost system, thus reducing its energy consumption. The mathematical models of energy conversion units, including the two modes of CEU and the air brake system, are established and analyzed. A preliminary case study of an urban bus application shows that, in an urban driving cycle, the compressed air recovered from braking is sufficient both for engine cranking and air brake system.
Technical Paper
2014-09-30
Hiroyuki Ishizaka, Kazuo Tanaka, Motoyasu Tanaka, Yusuke Tanaka
Abstract For the purpose of reducing fuel consumption, a hybrid heavy duty truck was considered. Generally, HV (Hybrid Vehicle)'s energy is regenerated from deceleration energy in urban area. Hybrid heavy duty truck's energy is regenerated from potential energy on highway. Under this circumstance, some portion of energy may not be accumulated, because capacity of HV battery is limited. In order to maximize accumulating energy in the next descent, HV battery's energy shall be adequately reduced beforehand. This can be achieved by optimizing motor assist torque considering road's altitude and gradient. In this paper, performance of the algorithm is discussed.
Technical Paper
2014-09-16
David Gras, Christophe Pautrel, Amir Fanaei, Gregory Thepaut, Maxime Chabert, Fabien Laplace, Gonzalo Picun
Abstract In this paper we present a set of integrated circuits specifically designed for high temperature power applications such as isolated power transistor drivers and high efficiency power supplies. The XTR26010 is the key circuit for the isolated power gate drive application. The XTR26010 circuit has been designed with a high focus in offering a robust, reliable and efficient solution for driving a large variety of high-temperature, high-voltage, and high-efficiency power transistors (SiC, GaN, Si) existing in the market. The XTR40010 is used for isolated data communication between a microcontroller or a PWM controller and the power driver (XTR26010). The isolated power transistor driver features a dual turn-on channel, a turn-off channel and a Miller Clamp channel with more than 3A peak current drive strength for each channel. The dV/dt immunity between XTR26010 and XTR40010 exceeds 50kV/μs. To demonstrate the performance and reliability at system level, a half-bridge driver test-board has been developed for driving SiC MOSFETs.
Technical Paper
2014-09-16
Shweta Sanjeev, Goutham Selvaraj, Patrick Franks, Kaushik Rajashekara
Abstract The transition towards More Electric Aircraft (MEA) architectures has challenges relating to integration of power electronics with the starter generator system for on-engine application. To efficiently operate the power electronics in the hostile engine environment at high switching frequency and for better thermal management, use of silicon carbide (SiC) power devices for a bi-directional power converter is examined. In this paper, development of a 50 kVA bi-directional converter operating at an ambient temperature of about 2000C is presented. The design and operation of the converter with details of control algorithm implementation and cooling chamber design are also discussed.
Technical Paper
2014-09-16
Michael L. Zierolf, Thomas Brinson, Andrew Fleming
Abstract Recent emphasis on optimization of engine technologies with ancillary subsystems such as power and thermal management has created a need for integrated system modeling. These systems are coupled such that federated design methods may not lead to the most synergetic solution. Obtaining an optimal design is often contingent on developing an integrated model. Integrated models, however, can involve combining complex simulation platforms into a single system of systems, which can present many challenges. Model organization and configuration control become increasingly important when orchestrating various models into a single simulation. Additionally, it is important to understand such details as the interface between models and signal routing to ensure the integrated behavior is not contaminated or biased. This paper will present some key learnings for model integration to help alleviate some of the challenges with system-based modeling.
Technical Paper
2014-09-16
Steven David Angus Fletcher, Patrick Norman, Stuart Galloway, Graeme Burt
Abstract The development of the More-Electric Engine (MEE) concept will see an expansion in the power levels, functionality and criticality of electrical systems within engines. However, to date, these more critical electrical systems have not been accounted for in existing engine certification standards. To begin to address this gap, this paper conducts a review of current engine certification standards in order to determine how these standards will impact on the design requirements of More-Electric Engine (MEE) electrical system architectures. The paper focuses on determining two key architectural requirements: the number of individual failures an architecture can accommodate and still remain functional and the rate at which these failures are allowed to occur. The paper concludes by discussing how the derived failure rates begin to define a set of design requirements for MEE electrical architectures, considering various operating strategies, and demonstrates their application to example MEE electrical system architecture designs.
Technical Paper
2014-09-16
Jennifer C. Shaw, Patrick Norman, Stuart Galloway, Graeme Burt
Abstract Radical new electrically propelled aircraft are being considered to meet strict future performance goals. One concept design proposed is a Turboelectric Distributed Propulsion (TeDP) aircraft that utilises a number of electrically driven propulsors. Such concepts place a new and significant reliance on an aircraft's electrical system for safe and efficient flight. Accordingly, in addition to providing certainty that supply reliability targets are being met, a contingency analysis, evaluating the probability of component failure within the electrical network and the impact of that failure upon the available thrust must also be undertaken for architecture designs. Solutions that meet specified thrust requirements at a minimum associated weight are desired as these will likely achieve the greatest performance against the proposed emissions targets. This paper presents a Fault Tree Analysis (FTA) based design approach for the electrical system and thrust reliability analysis of TeDP aircraft architectures.
Technical Paper
2014-09-16
Fidele Moupfouma, Amadou Ndoye, Mohsen Jalali, William Tse
Abstract Advanced commercial aircraft increasingly use more composite or hybrid (metal and composite) materials in structural elements and, despite technological challenges to be overcome, composites remain the future of the aviation industry. Composite and hybrid aircraft today are equipped with digital systems such as fly by wire for reliable operations no matter what the flying environment is. These systems are however very sensitive to electromagnetic energy. During flight, aircraft can face High Intensity Radiated Fields (HIRF), static electricity, or lightning. The coupling of any of these threats with airframe structure induces electromagnetic energy that can impair the operation of avionics and navigation systems. This paper focuses on systems susceptibility in composite aircraft and concludes that the same electromagnetic rules dedicated to all metal aircraft for systems and wiring integration cannot be applied directly as such for composite aircraft.
Technical Paper
2014-09-16
Karen Davies, Patrick Norman, Catherine Jones, Stuart Galloway, Graeme Burt
Abstract Turboelectric Distributed Propulsion (TeDP) is actively being investigated as a means of providing thrust in future generations of aircraft. In response to the lack of published work regarding the system-level fault behaviour of a fully superconducting network, this paper presents key points from a two stage Failure Modes and Effects Analysis (FMEA) of a representative TeDP network. The first stage FMEA examines the qualitative behaviour of various network failure modes and considers the subsequent effects on the operation of the remainder of the network, enabling the identification of key variables influencing the fault response of the network. For the second stage FMEA, the paper focuses on the characterisation of the rate at which electrical faults develop within a TeDP network. The impact of system quench and associated rise in network resistance as well as network parameters such as network voltage and pre-fault current, on the resulting fault profile are also examined using a range of sensitivity studies.
Technical Paper
2014-09-16
Christine Ross, Michael Armstrong, Mark Blackwelder, Catherine Jones, Patrick Norman, Steven Fletcher
Abstract The Turboelectric Distributed Propulsion (TeDP) concept uses gas turbine engines as prime movers for generators whose electrical power is used to drive motors and propulsors. For this NASA N3-X study, the motors, generators, and DC transmission lines are superconducting, and the power electronics and circuit breakers are cryogenic to maximize efficiency and increase power density of all associated components. Some of the protection challenges of a superconducting DC network are discussed such as low natural damping, superconducting and quenched states, and fast fault response time. For a given TeDP electrical system architecture with fixed power ratings, solid-state circuit breakers combined with superconducting fault-current limiters are examined with current-source control to limit and interrupt the fault current. To estimate the protection system weight and losses, scalable models of cryogenic bidirectional current-source converters, cryogenic bidirectional IGBT solid-state circuit breakers (CBs), and resistive-type superconducting fault current limiters (SFCLs) are developed to assess how the weight and losses of these components vary as a function of nominal voltage and current and fault current ratings.
Technical Paper
2014-09-16
Marco Amrhein, Jason Wells, Eric Walters, Seana McNeal, Brett Jordan, Peter Lamm
Abstract Transient operating conditions in electrical systems not only have significant impact on the operating behavior of individual components but indirectly affect system and component reliability and life. Specifically, transient loads can cause additional loss in the electrical conduction path consisting of windings, power electronic devices, distribution wires, etc., particularly when loads introduce high peak vs. average power ratios. The additional loss increases the operating temperatures and thermal cycling in the components, which is known to reduce their life and reliability. Further, mechanical stress caused by dynamic loading, which includes load torque cycling and high peak torque loading, increases material fatigue and thus reduces expected service life, particularly on rotating components (shaft, bearings). This article investigates the aforementioned stress mechanisms and provides analysis techniques and metrics to quantify the impact of transient operating conditions onto system and component reliability and life.
Technical Paper
2014-09-16
James Borg Bartolo, Chris Gerada
Abstract A 45kW, switched reluctance type, starter-generator, having a 1:4 constant power speed range has been designed as a possible candidate for a regional jet application. In the first section of this paper, a review of the major starter-generator topologies considered for the aerospace application is provided, highlighting the advantages of choosing the Switched reluctance topology for such a safety critical application. Following this, the required torque speed characteristic of the machine, along with the imposed physical constraints, in terms of cooling and outer dimensions, are also detailed. Section III provides a description of the Electromagnetic design, and challenges encountered in meeting both the low speed, peak torque node, at 8000rpm, and the high speed, high power node, at 32000rpm. The induced mechanical stresses in the rotor at such high speeds have also been evaluated and used as a material selection criterion for such a design as presented in section III. Section IV, describes the thermal model developed to estimate the radial temperature distribution within the machine, taking into account end winding phenomena and cooling fluid constraints.
Technical Paper
2014-09-16
Puvan Arumugam, Chris Gerada, Serhiy Bozhko, He Zhang, Weeramundage Fernando, Antonino La Rocca, Stephen Pickering
Abstract This paper describes a high-speed electrical machine for an aircraft starter-generator. A surface mounted permanent magnet machine is designed to have minimal rotor losses and a novel cooling system for the stator. An inner stator sleeve is adopted to allow for a flooded stator whilst minimizing rotor windage losses. Different slot-pole combinations are compared in view of attaining an optimal combination that provides minimum losses whilst satisfying the electromagnetic, mechanical and thermal constraints.
Technical Paper
2014-09-16
James H. Graham, Roger Dixon, Peter Hubbard, Ian Harrington
On future UAVs it is envisaged that the power requirements of all on-board electrical systems will increase. In most flight (mission) situations the installed power generation will have adequate capacity to operate the aircraft. It is possible that during abnormal situations such as coolant blockage the generators on-board may be forced to operate under very high load conditions. The main failure mechanism for a generator is overheating and subsequent disintegration of windings, hence the research problem being addressed here is to manage the loads upon the generator to prevent overheats. The research presented here summarizes the modeling of the generator and formation of the load management system. Results are presented showing the system reallocating loads after a fault during flight, preventing overheat of the generators and successfully completing the mission.
Technical Paper
2014-09-16
Gregory J. Moore, Frank Puglia, Lawrence Myron, Stephen Lasher, Bob Doane, Joe Gnanaraj, Seth Cohen, Arthur Dobley, Ryan Lawrence, Rong Yan
Abstract For 70 years Yardney has been a leader in specialty battery and energy systems for military, space, avionics, weapon systems and undersea vehicles. In addition to battery systems, Yardney also delivers hybrid systems for ground, space, undersea and avionic applications. The beauty of hybrid systems, combining energy sources such as batteries, capacitors, fuel cells and solar, is that they can be used to optimize energy and power density, and with proper design, the systems can also lead to longevity of components and an overall cost savings. For ground applications, utilization of hybrid systems can assist in conservation of fuel by making vehicle applications more efficient. For space applications, satisfying pulses can be improved by a capacitor and battery hybrid energy storage system. To optimize aircraft performance and decrease operating costs, avionics are beginning to move towards more electric aircrafts (MEA). This embraces the concept of utilizing electrical power for driving aircraft subsystems currently powered by mechanical means.
Technical Paper
2014-09-16
Didier Regis, Julie Berthon, Marc Gatti
Abstract For more than 40 years, Gordon Moore's experimental law has been predicting the evolution of the number of transistors in integrated circuits, thereby guiding electronics developments. Until last years, this evolution did not have any measurable impact on components' quality; but the trend is beginning to reverse. This paper is addressing the impact of scaling on the reliability of integrated circuits. It is analyzing - from both qualitative and quantitative point of view - the behavior of Deep Sub-Micron technologies in terms of robustness and reliability. It is particularly focusing on three basics of safety analyses for aeronautical systems: failure rates, lifetimes and atmospheric radiations' susceptibility.
Technical Paper
2014-09-16
Fan Frank Wang
Abstract This article is about the issues associated with the published thermal data from commercial off the shelf (COTS) component manufacturers. Some of the published electrical component thermal data can be confusing and/or misleading. This article discusses the possibility of wrong design decisions that can be made using published COTS thermal data. There are two major issues of the published thermal data associated with the use of COTS components. One is the published ambient temperature rating. Another is the published thermal resistance. This paper will discuss these two major issues in details and provide mitigation suggestions.
Technical Paper
2014-09-16
Hitoshi Oyori, Shingo Nakagawa, Hidefumi Saito, Norio Takahashi, Manabu Seta, Noriko Morioka
Abstract With the growth in onboard electrification referred to the movement of the More Electric Aircraft, or MEA, and constant improvement in ECO standards, aircraft electricity load has continued to soar. The airline and authors have discussed the nature of future aircraft systems in the next two decades, which envisages the further More Electric Aircraft or the All-Electric Aircraft, or AEA, concept helping provide some effective aviation improvements. The operators, pilots and maintenance crews anticipate improved operability, ease of maintenance and fuel saving, while meetings depends for high reliability and safety by electrification. As part of initial progress, the authors approach the methodology of energy management for aircraft systems. This study proposes some system options from three elements involving improvements to total energy management of several onboard systems, namely the environment control system, flight-control system, engine control system, landing gear system and electric power system.
Technical Paper
2014-09-16
Javier Gazzarri, Nishant Shrivastava, Robyn Jackey, Craig Borghesani
Abstract Battery Management System (BMS) design is a complex task requiring sophisticated models that mimic the electrochemical behavior of the battery cell under a variety of operating conditions. Equivalent circuits are well-suited for this task because they offer a balance between fidelity and simulation speed, their parameters reflect direct experimental observations, and they are scalable. Scalability is particularly important at the real time simulation stage, where a model of the battery pack runs on a real-time simulator that is physically connected to the peripheral hardware in charge of monitoring and control. With modern battery systems comprising hundreds of cells, it is important to employ a modeling and simulation approach that is capable of handling numerous simultaneous instances of the basic unit cell while maintaining real time performance. In previous publications we presented a technique for the creation of a battery cell model that contains the electrochemical fingerprints of a battery cell based on equivalent circuit model fitting to experimental data.
Technical Paper
2014-09-16
Mike Boost
Abstract Rechargeable lithium batteries are essentially ubiquitous in our daily lives and in virtually every industry from pocket key fobs to billion dollar space programs, in benign as well as extreme environments. Cell production in 2012 was estimated at 4.4 billion cells and expected to double by 2016. However within civil aviation, lithium batteries are still in the early stages of deployment. The general consensus within the industry is that the use of lithium batteries within civil aviation will increase substantially in the coming years. This paper focuses on design considerations with respect to deployment of rechargeable, or secondary, lithium batteries within civil aviation.
Technical Paper
2014-09-16
Noriko Morioka, Hidefumi Saito, Norio Takahashi, Manabu Seta, Hitoshi Oyori
Abstract Electrical power management is a key technology in the AEA (All-Electric Aircraft) system, which manages the supply and demand of the electrical power in the entire aircraft system. However, the AEA system requires more than electrical power management alone. Adequate thermal management is also required, because the heat generated by aircraft systems and components increases with progressive system electrification, despite limited heat-sink capability in the aircraft. Since heat dissipation from power electronics such as electric motors, motor controllers and rectifiers, which are widely introduced into the AEA, becomes a key issue, an efficient cooling system architecture should be considered along with the AEA system concept. The more-electric architecture for the aircraft has been developed; mainly targeting reduced fuel burn and CO2 emissions from the aircraft, as well as leveraging ease of maintenance with electric/electronic components. The AEA should pursue more efficient and eco-friendlier systems, which are easier to maintain than those of conventional aircraft/MEA (More-Electric Aircraft), to enhance benefits for passengers and operators.
Viewing 1 to 30 of 5803

Filter

  • Book
    38
  • Collection
    11
  • Magazine
    257
  • Technical Paper
    2306
  • Standard
    3191
  • Article
    0
  • Article
    0