Viewing 1 to 30 of 5840
Technical Paper
Takahiro Masuda, Kouji Sakai, Yuki Yamaguchi, Jun-ichi Kaku, Hirobumi Nagasaka
Abstract This paper proposes a novel engine starter system composed of a small-power electric motor and a simple mechanical valve train. The system makes it possible to design more efficient starters than conventional systems, and it is especially effective to restart engines equipped with idling stop systems. Recently, several idling stop systems, having intelligent start-up functions and highly-efficient generate capabilities have been proposed for motorcycles. One of challenges of the idling stop systems is the downsizing of electric motors for starting-up. However, there are many limitations to downsize the electric motors in the conventional idling stop systems, since the systems utilize the forward-rotational torque of the electric motors to compress the air-fuel mixture gas in the cylinders. Our studies exceeded the limitations of downsizing the electric motors by mainly using the engine combustion energy instead of the electric energy to go over the first compression top dead center.
WIP Standard
This procedure measures the resistance to radiant heat flow of insulating materials in sleeve form. The sleeve's effectiveness (S{sub}E) is determined by measuring the difference in surface temperature of a flat black, single- diameter ceramic cylinder with and without the standard diameter sleeve at the specified temperature, position, and distance from the radiant heat source.
This specification covers four series of electrical connectors (plugs and receptacles) with removable crimp contacts and accessories (see 6.1). AS81511 connectors are not recommended for new design. All AS81511 detail sheets that specified class D and/or H have been cancelled without replacement, therefore all class D and H requirements have been deleted from this specification.
This SAE Recommended Practice establishes uniform procedures for testing fuel cell and hybrid fuel cell electric vehicles, excluding low speed vehicles, designed primarily for operation on the public streets, roads and highways. The procedure addresses those vehicles under test using compressed hydrogen gas supplied by an off-board source or stored and supplied as a compressed gas onboard. This practice provides standard tests that will allow for determination of fuel consumption and range based on the US Federal Emission Test Procedures, using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS). Chassis dynamometer test procedures are specified in this document to eliminate the test-to-test variations inherent with track testing, and to adhere to standard industry practice for fuel consumption and range testing. Communication between vehicle manufacturer and the governing authority is essential when starting official manufacturer in-house and official government confirmatory testing that incorporates this practice.
Viewing 1 to 30 of 5840


  • Book
  • Collection
  • Magazine
  • Technical Paper
  • Standard
  • Article