Display:

Results

Viewing 241 to 22 of 22
2016-04-05
Technical Paper
2016-01-0152
Pierre Michel, Dominik Karbowski, Aymeric Rousseau
Abstract Connectivity and automation are increasingly being developed for cars and trucks, aiming to provide better safety and better driving experience. As these technologies mature and reach higher adoption rates, they will also have an impact on the energy consumption: Connected and Automated Vehicles (CAVs) may drive more smoothly, stop less often, and move at faster speeds, thanks to overall improvements to traffic flows. These potential impacts are not well studied, and any existing studies tend to focus solely on conventional engine-powered cars, leaving aside electrified vehicles such as Hybrid Electric Vehicles (HEVs) and Battery Electric Vehicles (BEVs). This work intends to address this issue by analyzing the energy impact of various CAV scenarios on different types of electric vehicles using high-fidelity models. The vehicles-all midsize, one HEV, one BEV, and a conventional-are modeled in Autonomie, a high-fidelity, forward-looking vehicle simulation tool.
2016-04-05
Journal Article
2016-01-0155
Ondrej Santin, Jaroslav Pekar, Jaroslav Beran, Anthony D'Amato, Engin Ozatay, John Michelini, Steven Szwabowski, Dimitar Filev
Abstract Automotive cruise control systems are used to automatically maintain the speed of a vehicle at a desired speed set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods. The objective of this paper is to validate an Adaptive Nonlinear Model Predictive Controller (ANLMPC) implemented in a vehicle equiped with standard production Powertrain Control Module (PCM). Application and analysis of Model Predictive Control utilizing road grade preview information has been reported by many authors, namely for commercial vehicles. The authors reported simulations and application of linear and nonlinear MPC based on models with fixed parameters, which may lead to inaccurate results in the real world driving conditions. The significant noise factors are namely vehicle mass, actual weather conditions, fuel type, etc.
2016-04-05
Technical Paper
2016-01-0154
Pritesh Jain, Purushottam Bhumre, Saakshi Jain
Abstract This paper describes the Common Automobile Program (CAP) that can be implemented to improve mass transportation. CAP is the use of automated electric vehicles using smart navigation and control technologies to improve mass transportation. In CAP, common vehicles are used by different passengers, thus, reducing the on-road traffic and also the parking space required. Various low-cost stations are to be built along specified paths and the vehicle can be used at the convenience of the commuter. Currently, buses and trains require the passengers to wait at the station and a significant amount of time is spent at intermediate stops. The vehicle in CAP runs directly from origin to destination and also eliminates the waiting time at stations. Passengers do not wait for vehicles; instead vehicles wait for the passengers. The journey starts as the passenger enters the station and selects the destination.
2016-04-05
Technical Paper
2016-01-0156
Pavel Steinbauer, Jan Macek, Josef Morkus, Petr Denk, Zbynek Sika, Adam Barak
Abstract Current vehicles, especially the electric ones, are complex mechatronic devices. The pickup vehicles of small sizes are currently used in transport considerably. They often operate within a repeating scheme of a limited variety of tracks and larger fleets. Thanks to mechatronic design of vehicles and their components and availability of high capacity data connection with computational centers (clouds), there are many means to optimize their performance, both by planning prior the trip and recalculations during the route. Although many aspects of this opportunity were already addressed, the paper shows an approach developed to further increase the range of e-vehicle operation. It is based on prior information about the route profile, traffic density, road conditions, past behaviour, mathematical models of the route, vehicle and dynamic optimization.
2016-04-05
Technical Paper
2016-01-0140
Yang Zheng, Navid Shokouhi, Nicolai Thomsen, Amardeep Sathyanarayana, John Hansen
Abstract The use of smart portable devices in vehicles creates the possibility to record useful data and helps develop a better understanding of driving behavior. In the past few years the UTDrive mobile App (a.k.a MobileUTDrive) has been developed with the goal of improving driver/passenger safety, while simultaneously maintaining the ability to establish monitoring techniques that can be used on mobile devices on various vehicles. In this study, we extend the ability of MobileUTDrive to understand the impact on driver performance on public roads in the presence of distraction from speech/voice based tasks versus tactile/hands-on tasks. Drivers are asked to interact with the device in both voice-based and hands-on modalities and their reaction time and comfort level are logged. To evaluate the driving patterns while handling the device by speech/hand, the signals from device inertial sensors are retrieved and used to construct Gaussian Mixture Models (GMM).
2016-04-05
Journal Article
2016-01-0145
Madeleine Gibson, John Lee, Vindhya Venkatraman, Morgan Price, Jeffrey Lewis, Olivia Montgomery, Bilge Mutlu, Joshua Domeyer, James Foley
Abstract The rapid increase in the sophistication of vehicle automation demands development of evaluation protocols tuned to understanding driver-automation interaction. Driving simulators provide a safe and cost-efficient tool for studying driver-automation interaction, and this paper outlines general considerations for simulator-based evaluation protocols. Several challenges confront automation evaluation, including the limited utility of standard measures of driver performance (e.g., standard deviation of lane position), and the need to quantify underlying mental processes associated with situation awareness and trust. Implicitly or explicitly vehicle automation encourages drivers to disengage from driving and engage in other activities. Thus secondary tasks play an important role in both creating representative situations for automation use and misuse, as well as providing embedded measures of driver engagement.
2016-04-05
Technical Paper
2016-01-0144
Morgan A. Price, Vindhya Venkatraman, Madeleine Gibson, John Lee, Bilge Mutlu
Abstract Increasingly sophisticated vehicle automation can perform steering and speed control, allowing the driver to disengage from driving. However, vehicle automation may not be capable of handling all roadway situations and driver intervention may be required in such situations. The typical approach is to indicate vehicle capability through displays and warnings, but control algorithms can also signal capability. Psychophysical methods can be used to link perceptual experiences to physical stimuli. In this situation, trust is an important perceptual experience related to automation capability that is revealed by the physical stimuli produced by different control algorithms. For instance, precisely centering the vehicle in the lane may indicate a highly capable system, whereas simply keeping the vehicle within lane boundaries may signal diminished capability.
2016-04-05
Technical Paper
2016-01-0146
Yonghwan Jeong, Seonwook Kim, Kyongsu Yi, Sangyong Lee, ByeongRim Jo
Abstract This paper represents a parking lot occupancy detection and parking control algorithm for the autonomous valet parking system. The parking lot occupancy detection algorithm determine the occupancy of the parking space, using LiDAR sensors mounted at each side of front bumper. Euclidean minimum spanning tree (EMST) method is used to cluster that information. After that, a global parking map, which includes all parking lots and access road, is constructed offline to figure out which cluster is located in a parking space. By doing this, searching for available parking lots has been finished. The proposed parking control algorithm consists of a reference path generation, a path tracking controller, and a parking process controller. At first, route points of the reference path are determined under the consideration of the minimum turning radius and minimum safety margin with near parking.
2016-04-05
Technical Paper
2016-01-0167
Hugh Luke Humphreys, Joshua Batterson, David Bevly, Raymond Schubert
Abstract The fuel efficiency improvement of a prototype Driver-Assistive-Truck-Platooning (DATP) system was evaluated using Computational Fluid Dynamics (CFD). The DATP system uses a combination of radar and GPS, integrated active safety systems, and V2V communications to enable regulation of the longitudinal distance between pairs of trucks without acceleration input from the driver in the following truck(s). The V2V linking of active safety systems and synchronized braking promotes increased safety of close following trucks while improving their fuel economy. Vehicle configuration, speed, and separation distance are considered. The objectives of the CFD analysis are to optimize the target separation distance and to determine the overall drag reduction of the platoon. This reduction directly results in fuel economy gains for all cooperating vehicles.
2016-04-05
Technical Paper
2016-01-0166
Hiroaki Kitano, Hitosugi Kazuo, Hideyuki Tanaka
Abstract Accuracy of positioning with GNSS (Global Navigation Satellite System) has been improved in recent years. Especially in Japan, high accuracy GNSS service, QZSS (Quasi Zenith Satellite System), will start in 2018 and the first QZS, “MICHIBIKI” has been already launched. They will broadcast correction data which enhances GNSS performance and realize cm-order positioning. In this paper, we, Mitsubishi Electric develop the estimation algorithm of vehicle position and attitude and also adapt the algorithm to a test vehicle which can trace automatically the calculated path with EPS (Electric Power Steering) and high accuracy GNSS. Although the GNSS receiver calculates the longitude and latitude of the vehicle every second, it is not enough to control vehicle dynamics smoothly. So we estimate vehicle position and attitude of the vehicle with GNSS and vehicle sensors in high frequency.
2016-04-05
Technical Paper
2016-01-0170
Vidya Nariyambut Murali, Ashley Micks, Madeline J. Goh, Dongran Liu
Abstract Camera data generated in a 3D virtual environment has been used to train object detection and identification algorithms. 40 common US road traffic signs were used as the objects of interest during the investigation of these methods. Traffic signs were placed randomly alongside the road in front of a camera in a virtual driving environment, after the camera itself was randomly placed along the road at an appropriate height for a camera located on a vehicle’s rear view mirror. In order to best represent the real world, effects such as shadows, occlusions, washout/fade, skew, rotations, reflections, fog, rain, snow and varied illumination were randomly included in the generated data. Images were generated at a rate of approximately one thousand per minute, and the image data was automatically annotated with the true location of each sign within each image, to facilitate supervised learning as well as testing of the trained algorithms.
2016-04-05
Technical Paper
2016-01-0169
Andreas Eidehall, Joel Askling, Hagen Spies
For any autonomous vehicle, understanding which area around the vehicle is free or drivable is a key component. It is important to find road boundaries such as ditches, curbs or guard rails. Finding small objects on the road, that might be blocking the vehicle path, is also critical. Most prototypes for autonomous vehicles feature laser scanners for this purpose. We propose a stereo vision based system as redundancy or as a cost efficient replacement for laser scanners in the application of drivable surface determination. The system generates a detailed map that indicates which area in front of the vehicle that is considered to be drivable and non-drivable. The base for this map is a dense 3D point cloud generated from the stereo vision system. The left and right images are used to create a disparity image which is then translated into a 3D point cloud. The 3D points are used to generate a detailed elevation grid of the observed area.
2016-04-05
Technical Paper
2016-01-0158
Toshio Ito, Arata Takata, Kenta Oosawa
Abstract Automation of vehicles can be expected to improve safety, comfort and efficiency, and is being developed in various countries. Introduction of automated driving can be ranked from 0 to 5 (0: no automation, 1: driver assistance, 2: partial automation, 3: conditional automation, 4: high automation, 5: full automation). Currently, feasible automation levels are considered to be levels 2 or 3, and human manual take-over from the automated system is needed when the automated system exceeds these levels. In this situation, time required for take-over is an important issue. This study focuses on describing driving simulator experimental results of time required for take-over. The experimental scenario is that the automated system finds an object ahead during automated driving on the highway, and issues a take-over request to the driver. The subject driver can be in the following driver situations: hands-on or hands-off the steering, and strong or weak distractions.
2016-04-05
Journal Article
2016-01-0159
Luting Wang, Chong Cao, Bo Chen
Abstract This paper studies the bi-directional power flow control between Plug-in Electric Vehicles (PEVs) and an electrical grid. A grid-tied charging system that enables both Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) charging/discharging is modeled using SimPowerSystems in Matlab/Simulink environment. A bi-directional AC-DC converter and a bi-directional DC-DC buck-boost converter are integrated to charge and discharge PEV batteries. For AC-DC converter control, Predictive Current Control (PCC) strategy is employed to enable grid current to reach a reference current after one modulation period. In addition, Phase Lock Loop (PLL) and a band-stop filter are designed to lock the grid voltage phase and reduce harmonics. Bi-directional power flow is realized by controlling the mode of the DC-DC converter. Simulation tests are conducted to evaluate the performance of this bi-directional charging system.
2016-04-05
Technical Paper
2016-01-0161
Valentin Soloiu, Imani Augusma, Deon Lucien, Mary Thomas, Roccio Alba-Flores
Abstract This study presents the design and development of a vehicle platform with intelligent sensors that has the capabilities to drive independently and cooperatively on roads. An integrated active safety system has been designed to optimize the human senses using ultrasonic infrared sensors and transmitter/receiver modules, to increase the human vision, feel and communication for increased road safety, lower congestion rates, and decrease CO2 emissions. Ultrasonic sensors mounted on the platform, emitted longitudinal 40 kHz waves and received echoes of these sound waves when an object was within its direction. The duration was converted to a distance measurement to detect obstacles as well as using distance measurement threshold values to implement adaptive cruise control. Infrared sensors equipped with an IR LED and a bipolar transistor detected a change in light intensity to identify road lanes.
2016-04-05
Journal Article
2016-01-0160
Takayuki Shimizu, Tomoya Ono, Wataru Hirohashi, Kunihiko Kumita, Yasuhiro Hayashi
Abstract In this paper, we consider smart charging and vehicle-to-home (V2H) technologies for plugin electric vehicles coordinated with home energy management systems (HEMS) for automated demand response. In this system, plugin electric vehicles automatically react to demand response events with or without HEMS’s coordination, while vehicles are charged and discharged (i.e., V2H) in appropriate time slots by taking into account demand response events, time-ofuse rate information, and users’ vehicle usage plan. We introduce three approaches on home energy management: centralized energy control, distributed energy control, and coordinated energy control. We implemented smart charging and V2H systems by employing two sets of standardized communication protocols: one using OpenADR 2.0b, SEP 2.0, and SAE standards and the other using OpenADR 2.0b, ECHONET Lite, and ISO/IEC 15118.
2016-04-05
Technical Paper
2016-01-1510
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Pratapnaidu Vallabhaneni, Munenori Shinada, Kazuto Sato
Abstract Many active safety systems are being developed with the intent of protecting pedestrians namely; pedestrian airbags, active hood, active emergency braking (AEB), etc. Effectiveness of such protection system relies on the efficiency of the sensing systems. The pop-uphood system was developed to help reduce pedestrian head injuries. A pop-up system is expected to make full deployment of the hood before the pedestrian’s head could hit the hood. The system should have the capability to detect most road users ranging from a six year old (6YO) child to a large male. To test the sensing system, an impactor model (PDI-2) was developed. Sensor response varies for vehicles with different front end profile dimensions.
2016-04-05
Journal Article
2016-01-1553
Akihito Yamamoto, Wataru Tanaka, Takafumi Makino, Shunya Tanaka, Ken Tahara
Abstract This paper reports that estimation accuracy of suspension stroke velocity is increased by considering the damping force delay characteristics to an observer. Thereby ride comfort is improved, using the simple and low-cost semi active suspension systems that use only three vertical acceleration sensors.
2016-04-05
Technical Paper
2016-01-1547
Jun Yin, Xinbo Chen, Lixin Wu, Jianqin Li
Abstract Traditional active suspension which is equipped with hydraulic actuator or pneumatic actuator features slow response and high power consumption. However, electromagnetic actuated active suspension benefits quick response and energy harvesting from vibration at the same time. To design a novel active and energy regenerative suspension (AERS) utilizing electromagnetic actuator, this paper investigates the benchmark cars available on the market and summaries the suspension features. Basing on the investigation, a design reference for AERS design is proposed. To determine the parameters of the actuator, a principle is proposed and the parameters of the actuator are designed accordingly. Compared the linear type and rotary type Permanent Magnet Synchronous Motor (PMSM), the rotary type is selected to construct the actuator of the AERS. Basing on the suspension structure of the design reference model and utilizing rotary type PMSM, a novel AERS structure is proposed.
2016-04-05
Technical Paper
2016-01-1467
Neal Carter, Alireza Hashemian, Nathan A. Rose, William T.C. Neale
Abstract Improvements in computer image processing and identification capability have led to programs that can rapidly perform calculations and model the three-dimensional spatial characteristics of objects simply from photographs or video frames. This process, known as structure-from-motion or image based scanning, is a photogrammetric technique that analyzes features of photographs or video frames from multiple angles to create dense surface models or point clouds. Concurrently, unmanned aircraft systems have gained widespread popularity due to their reliability, low-cost, and relative ease of use. These aircraft systems allow for the capture of video or still photographic footage of subjects from unique perspectives. This paper explores the efficacy of using a point cloud created from unmanned aerial vehicle video footage with traditional single-image photogrammetry methods to recreate physical evidence at a crash scene.
2016-04-05
Technical Paper
2016-01-1465
John Zolock, Carmine Senatore, Ryan Yee, Robert Larson, Brian Curry
Abstract As a result of the development of Event Data Recorders (EDR) and the recent FMVSS regulation 49 CFR 563, today’s automobiles provide a limited subset of electronic data measurements of a vehicle’s state before and during a crash. Prior to this data, the only information available about the vehicle movements before or during a collision had come from physical evidence (e.g. tire marks), witnesses, aftermarket camera systems on vehicles, and ground-based cameras that were monitoring vehicle traffic or used for security surveillance. Today’s vehicles equipped with Advanced Driver Assistance Systems (ADAS) have vehicle-based sensors that measure information about the environment around a vehicle including other vehicles, pedestrians, and fixed wayside objects.
2016-04-05
Technical Paper
2016-01-1469
Craig Luker
High image quality video surveillance systems have proliferated making it more common to have collision-related video footage that is suitable for detailed analysis. This analysis begins by using variety of methods to reconstruct a series of positions for the vehicle. If the frame rate is known or can be estimated, then the average travel speed between each of those vehicle positions can be found. Unfortunately with video surveillance systems, the frame rates are typically low and the vehicle may be hidden from view for multiple frames. As a result there are often relatively large time steps between known vehicle positions and the average speed between known positions becomes less useful. The method outlined here determines the instantaneous speed and acceleration time history of the vehicle that was required for it to arrive at the known positions, at the known times.
2016-04-05
Technical Paper
2016-01-1457
John M. Scanlon, Kerry Page, Rini Sherony, Hampton C. Gabler
Abstract There are over 4,500 fatal intersection crashes each year in the United States. Intersection Advanced Driver Assistance Systems (I-ADAS) are emerging active safety systems designed to detect an imminent intersection crash and either provide a warning or perform an automated evasive maneuver. The performance of an I-ADAS will depend on the ability of the onboard sensors to detect an imminent collision early enough for an I-ADAS to respond in a timely manner. One promising method for determining the earliest detection opportunity is through the reconstruction of real-world intersection crashes. After determining the earliest detection opportunity, the required sensor range, orientation, and field of view can then be determined through the simulation of these crashes as if the vehicles had been equipped with an I-ADAS.
2016-04-05
Journal Article
2016-01-1456
Rini Sherony, Renran Tian, Stanley Chien, Li Fu, Yaobin Chen, Hiroyuki Takahashi
Abstract Many vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions.
2016-04-05
Technical Paper
2016-01-1454
Libo Dong, Stanley Chien, Jiang-Yu Zheng, Yaobin Chen, Rini Sherony, Hiroyuki Takahashi
Abstract Pedestrian Automatic Emergency Braking (PAEB) for helping avoiding/mitigating pedestrian crashes has been equipped on some passenger vehicles. Since approximately 70% pedestrian crashes occur in dark conditions, one of the important components in the PAEB evaluation is the development of standard testing at night. The test facility should include representative low-illuminance environment to enable the examination of the sensing and control functions of different PAEB systems. The goal of this research is to characterize and model light source distributions and variations in the low-illuminance environment and determine possible ways to reconstruct such an environment for PAEB evaluation. This paper describes a general method to collect light sources and illuminance information by processing large amount of potential collision locations at night from naturalistic driving video data.
2016-04-05
Technical Paper
2016-01-1463
Jeffrey Aaron Suway, Judson Welcher
Abstract It is extremely important to accurately depict photographs or video taken of a scene at night, when attempting to show how the subject scene appeared. It is widely understood that digital image sensors cannot capture the large dynamic range that can be seen by the human eye. Furthermore, todays commercially available printers, computer monitors, TV’s or other displays cannot reproduce the dynamic range that is captured by the digital cameras. Therefore, care must be taken when presenting a photograph or video while attempting to accurately depict a subject scene. However, there are many parameters that can be altered, while taking a photograph or video, to make a subject scene either too bright or too dark. Similarly, adjustments can be made to a printer or display to make the image appear either too bright or too dark. There have been several published papers and studies dealing with how to properly capture and calibrate photographs and video of a subject scene at night.
2016-04-05
Technical Paper
2016-01-1461
William T. Neale, David Danaher, Sean McDonough, Tomas Owens
Abstract There are numerous publically available smart phone applications designed to track the speed and position of the user. By accessing the phones built in GPS receivers, these applications record the position over time of the phone and report the record on the phone itself, and typically on the application’s website. These applications range in cost from free to a few dollars, with some, that advertise greater functionality, costing significantly higher. This paper examines the reliability of the data reported through these applications, and the potential for these applications to be useful in certain conditions where monitoring and recording vehicle or pedestrian movement is needed. To analyze the reliability of the applications, three of the more popular and widely used tracking programs were downloaded to three different smart phones to represent a good spectrum of operating platforms.
2016-04-05
Journal Article
2016-01-1462
Louis R. Peck, Mu-Hua Cheng
Abstract Three targeted vehicles of varying size were measured using an optimized, practical photogrammetry technique and the results were compared to measurements acquired via total station. The photogrammetry method included the use of a field-calibrated DSLR camera equipped with a fixed 20 mm lens, retroreflective targets sized for vehicular modeling, and a CNC-machined scale bar. Eight photographs were taken from proper angles and processed using a commercially available photogrammetry package. This data was merged with the total station data using a cloud-to-cloud registration process for point-to-point comparison of positional data. The average residual between corresponding photogrammetry and total station points was 1.7 mm (N = 258, SD = 0.8 mm) with a 95% confidence limit of 3.1 mm. Considering this low residual, one of the sample vehicles was re-measured using a high accuracy FaroArm for comparison to the photogrammetry technique.
2016-04-05
Technical Paper
2016-01-1458
Ryuta Ono, Wataru Ike, Yuki Fukaya
Abstract Toyota Safety Sense is a safety system package developed to help drivers avoid accident types with a high frequency of occurrence. This paper deals with pre-collision system which forms the core of Toyota Safety Sense, especially Toyota Safety Sense P which uses a combined sensor configuration consisting of a monocular camera paired with millimeter wave radar, in order to achieve both high recognition performance and reliability. The use of a wide-angle monocular camera, millimeter wave radar integrated in the front grill emblem, and a collision determination algorithm for pedestrian targets enabled the development of a pre-collision system comprising detection capability of crossing pedestrians. Toyota has developed warning and pre-collision brake assist for driver to assist in avoiding a collision effectively; In addition, Pre-collision brake has achieved high level of performance for the drivers who cannot avoid a collision.
2016-04-05
Technical Paper
2016-01-1446
Rini Sherony, Qiang Yi, Stanley Chien, Jason Brink, Mohammad Almutairi, Keyu Ruan, Wensen Niu, Lingxi Li, Yaobin Chen, Hiroyuki Takahashi
Abstract According to the U.S. National Highway Traffic Safety Administration, 743 pedal cyclists were killed and 48,000 were injured in motor vehicle crashes in 2013. As a novel active safety equipment to mitigate bicyclist crashes, bicyclist Pre-Collision Systems (PCSs) are being developed by many vehicle manufacturers. Therefore, developing equipment for evaluating bicyclist PCS is essential. This paper describes the development of a bicycle carrier for carrying the surrogate bicyclist in bicyclist PCS testing. An analysis on the United States national crash databases and videos from TASI 110 car naturalistic driving database was conducted to determine a set of most common crash scenarios, the motion speed and profile of bicycles. The bicycle carrier was designed to carry or pull the surrogate bicyclist for bicycle PCS evaluation. The carrier is a platform with a 4 wheel differential driving system.
Viewing 241 to 22 of 22

Filter