Display:

Results

Viewing 181 to 210 of 21599
2015-04-14
Journal Article
2015-01-0153
Reinhold Blank
Abstract Today, the electrical and electronic system in vehicles is one of the core systems - with big influence on functionality and quality. And it is - besides the engine - the most expensive part of the vehicle. The ongoing pressure on saving cost (and weight) is also a major challenge to the developers of the E/E system. Every cent saved on a car creates substantial savings, since most systems are applied to platforms with several million cars per year. A cost saving target of $20 per car (without negative influence on the functionality and quality) sounds impossible for most insiders. This presentation identifies some areas where the potential for savings is not (fully) exhausted. For each area there are examples out of the global automotive industry where substantial savings with $10 or more have been achieved. Furthermore, the presentation will propose approaches for “Value engineering” and “Redesign2Cost”.
2015-04-14
Journal Article
2015-01-0156
Alexandr Murashkin, Luis Silva Azevedo, Jianmei Guo, Edward Zulkoski, Jia Hui Liang, Krzysztof Czarnecki, David Parker
Abstract The number of software-intensive and complex electronic automotive systems is continuously increasing. Many of these systems are safety-critical and pose growing safety-related concerns. ISO 26262 is the automotive functional safety standard developed for the passenger car industry. It provides guidelines to reduce and control the risk associated with safety-critical systems that include electric and (programmable) electronic parts. The standard uses the concept of Automotive Safety Integrity Levels (ASILs) to decompose and allocate safety requirements of different stringencies to the elements of a system architecture in a top-down manner: ASILs are assigned to system-level hazards, and then they are iteratively decomposed and allocated to relevant subsystems and components. ASIL decomposition rules may give rise to multiple alternative allocations, leading to an optimization problem of finding the cost-optimal allocations.
2015-04-14
Journal Article
2015-01-0168
Steffen Lampke, Simon Schliecker, Dirk Ziegenbein, Arne Hamann
Abstract The underlying theories of both control engineering and real-time systems engineering assume idealized system abstractions that mutually neglect central aspects of the other discipline. Control engineering theory, on the one hand, usually assumes jitter free sampling and constant input-output latencies disregarding complex real-world timing effects. Real-time engineering theory, on the other hand, uses abstract performance models that neglect the functional behavior, and derives worst-case situations that have little expressiveness for control functionalities in physically dominated automotive systems. As a consequence, there is a lot of potential for a systematic co-engineering between both disciplines, increasing design efficiency and confidence. We have taken a standard control-engineering tool, Simulink, and combined it with state-of-the-art real-time system design and analysis tools, SymTA/S and TraceAnalyzer from Symtavision.
2015-04-14
Journal Article
2015-01-0177
Thomas Fuhrman, Shige Wang, Marek Jersak, Kai Richter
Abstract Multi-core systems are promising a cost-effective solution for (1) advanced vehicle features requiring dramatically more software and hence an order of magnitude more processing power, (2) redundancy and mixed-IP, mixed-ASIL isolation required for ISO 26262 functional safety, and (3) integration of previously separate ECUs and evolving embedded software business models requiring separation of different software parts. In this context, designing, optimizing and verifying the mapping and scheduling of software functions onto multiple processing cores becomes key. This paper describes several multi-core task design and scheduling design options, including function-to-task mapping, task-to-core allocation (both static and dynamic), and associated scheduling policies such as rate-monotonic, criticality-aware priority assignment, period transformation, hierarchical partition scheduling, and dynamic global scheduling.
2015-04-14
Journal Article
2015-01-0163
Madhura Medikeri, Thomas Tasky, Johannes Richenhagen
Abstract With the increasing popularity of seamless gear changing and smooth driving experience along with the need for high fuel efficiency, transmission system development has rapidly increased in complexity. So too has transmission control software while quality requirements are high and time-to-market is short. As a result, extensive testing and documentation along with quick and efficient development methods are required. FEV responds to these challenges by developing and integrating a transmission software product line with an automated verification and validation process according to the concept of Continuous Integration (CI). Hence, the following paper outlines a software architecture called “PERSIST” where complexity is reduced by a modular architecture approach. Additionally, modularity enables testability and tracking of quality defects to their root cause.
2015-04-14
Journal Article
2015-01-0194
Hua Zeng, Isao Hoda, William Ivan, Andrew Baker, Syed Kadry, Hiroki Funato, Jia Li, Masayoshi Takahashi, Hideyuki Sakamoto, Ryuichi Saito
Abstract Electromagnetic compatibility (EMC) is becoming more important in power converters and motor drives as seen in hybrid electric vehicles (HEV) to achieve higher reliability of the vehicle and its components. Electromagnetic interference (EMI) of the electronic components for a vehicle are evaluated and validated at a component-level test bench; however, it is sometimes observed that the EMI level of the components can be changed in a vehicle-level test due to differences in the vehicle's configuration (cable routing, connecting location etc.). In this presentation, a vehicle-level EMC simulation methodology is introduced to estimate radiated emissions from a vehicle. The comparison between the simulation and measurement results is also presented and discussed.
2015-04-14
Journal Article
2015-01-0196
Varun M. Navale, Kyle Williams, Athanassios Lagospiris, Michael Schaffert, Markus-Alexander Schweiker
Abstract This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
2015-04-14
Journal Article
2015-01-0179
Ralph Mader, Armin Graf, Gerd Winkler
Abstract The combustion engine will be the dominant drive for motor vehicles despite all the advances in the electrification of the drive train, for many years. The greater are the challenges for the automotive industry, especially in fuel consumption (CO2) and the environmental impacts of other emissions. From the fuel supply to the engine, up to the exhaust after treatment, new or improved functions are needed, which are integrated into increasingly powerful control electronics. This modern electronic engine management and powertrain controller will remain key components in the vehicle. As most of the micro controllers for future applications will be MultiCores, this paper gives an overview on how PowerSAR® supports this kind of architectures. It shows the concepts applied in the basic software area as well as for the applicative software. Further it will show the impact on the development process as well as the integration support for software delivered by the OEM.
2015-04-14
Journal Article
2015-01-0183
Georg Macher, Muesluem Atas, Eric Armengaud, Christian Kreiner
Abstract Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
2015-04-14
Journal Article
2015-01-0200
Karsten Schmidt, Udo Dannebaum, Harald Zweck
Abstract In-vehicle communication faces increasing bandwidth demands, which can no longer be met by today's MOST150, FlexRay or CAN networks. In recent years, Fast Ethernet has gained a lot of momentum in the automotive world, because it promises to bridge the bandwidth gap. A first step in this direction is the introduction of Ethernet as an On Board Diagnostic (OBD) interface for production vehicles. The next potential use cases include the use of Ethernet in Driver Assistance Systems and in the infotainment domain. However, for many of these use cases, the Fast Ethernet solution is too slow to move the huge amount of data between the Domain Controllers, ADAS Systems, Safety Computer and Chassis Controller in an adequate way. The result is the urgent need for a network technology beyond the Fast Ethernet solution. The question is: which innovation will provide enough bandwidth for domain controllers, fast flashing routines, video data, MOST-replacement and internal ECU buses?
2015-04-14
Journal Article
2015-01-0201
Robert Wragge-Morley, Guido Herrmann, Phil Barber, Stuart Burgess
Abstract We present a method for the estimation of vehicle mass and road gradient for a light passenger vehicle. The estimation method uses information normally available on the vehicle CAN bus without the addition of extra sensors. A composite parameter estimation algorithm incorporating a nonlinear adaptive observer structure uses vehicle speed over ground and driving torque to estimate mass and road gradient. A system of filters is used to avoid deriving acceleration directly from wheel speed. In addition, a novel data fusion method makes use of the regressor structure to introduce information from other sensors in the vehicle. The dynamics of the additional sensors must be able to be parameterised using the same parameterisation as the complete vehicle system dynamics. In this case we make use of an Inertial Measurement Unit (IMU) which is part of the vehicle safety and Advanced Driver Assist Systems (ADAS).
2015-04-14
Journal Article
2015-01-0197
Jan Seyler, Nicolas Navet, Loïc Fejoz
Abstract Scalable Service-Oriented Middleware on IP (SOME/IP) is a proposal aimed at providing service-oriented communication in vehicles. SOME/IP nodes are able to dynamically discover and subscribe to available services through the SOME/IP Service Discovery protocol (SOME/IP SD). In this context, a key performance criterion to achieve the required responsiveness is the subscription latency that is the time it takes for a client to subscribe to a service. In this paper we provide a recap of SOME/SD and list a number of assumptions based on what we can foresee about the use of SOME/IP in the automotive domain. Then, we identify the factors having an effect on the subscription latency, and, by sensitivity analysis, quantify their importance regarding the worst-case service subscription latency. The analysis and experiments in this study provide practical insights into how to best configure SOME/IP SD protocol.
2015-04-14
Journal Article
2015-01-0198
Hironobu Akita, Nobuaki Matsudaira, Chao Chen, Takasuke Ito, Shigeki Ohtsuka
Abstract With the evolution of automotive features, larger flash program size has been required even at the local electronic control units (ECUs). As the flash programming data rate increases, Ethernet is adopted as a global data port from the external source. However, it can not be applied to the bus type network topology between the domain control unit (DCU) and the local ECUs, because it uses a peer-to-peer type network topology. On the other hand, high speed CAN-FD has been studied recently for this bus topology, but its data rate is limited at the range of several mega bps due to the signal waveform distortion caused by the multiple reflections at the non-terminated stubs. This paper describes a novel distortion cancelling for the bus topology as the pre-emphasis technique, in which the digital signal processing (DSP) compensates the complicated signal distortion caused by the multiple reflections.
2015-04-14
Journal Article
2015-01-0222
Suguru Imai, Kenji Taguchi, Tatsuya Kashiwa, Satoru Komatsu
Abstract Traditionally, the suitability of radio receivers and similar devices for automotive use has been evaluated by evaluating their reception characteristics in relation to transmitted waves via repeated driving tests. This method of evaluation presents issues in terms of reproducibility and objectivity. A method of evaluating the suitability of FM receivers for vehicle fitting using a virtual propagation environment created on a PC (termed the Two-Stage method) has been developed in order to address these issues. The major challenge in the Two-Stage method is the creation of an actual propagation environment on a PC. A test-based incoming wave estimation technology able to accurately estimate the characteristics of actual propagation environments is therefore essential. The estimation of incoming FM waves necessitates large array antennas. In addition, the incoming waves become coherent multipath waves.
2015-04-14
Journal Article
2015-01-0210
S Kevin Chen, Li-Chun Chien, Masaki Nagashima, Joel Van Ess, Sam Hashemi
Abstract Misfire detection and monitoring on US passenger vehicles are required to comply with detailed and specific requirements contained in the OBD-II regulations. Numerous technical papers and patents discuss various methods and metrics for detecting misfire in conventional all-cylinder firing engines. However, the current methods are generally not suitable for detecting misfires in a dynamic skip fire engine. For example, a detection approach based on peak crankshaft angular acceleration may work well in conventional, all-cylinder firing engine operation, since it is expected that crankshaft acceleration will remain generally consistent for a given operating condition. In a skip fire engine, any cylinder or cycle may be skipped. As a result, the crankshaft acceleration peaks and profiles may change abruptly as the firing sequence changes. This paper presents two approaches for detecting misfires in a dynamic skip fire engine.
2015-04-14
Journal Article
2015-01-0208
Hongtao Yu, Reza Langari
Abstract This paper presents a model-based approach to detect unintended acceleration (UA) as well as other vehicle problems. A diagnostic system is formulated by detecting several specific vehicle events such as acceleration peaks and gear shifting. Mathematical models are created for these events based on simulation data and the final diagnostic conclusion is drawn from the voting result of all these models. The detection algorithm is validated using independent data sets obtained from Matlab/Simulink. A three dimensional vehicle model is built to implement traffic simulation. Vehicle problems and drivers' reactions are simulated and added during the process. Sensor noise is also considered and corresponding filters are designed and applied. The results show that the fault diagnostic system is successful in detecting UA.
2015-04-14
Journal Article
2015-01-0206
Jihas Khan
Abstract Security access feature based on seed-key mechanism is widely used in automotive electronics, mainly for flashing ECU software, writing or reading specific parameter values and running diagnostic routines. There exist a number of techniques to decode the algorithm for key generation from a specific seed. Such techniques can put vehicle network at great risks due to an intruder flashing unauthorized version of ECU software, or changing internal parameters of ECU, or changing a VIN number. A lot more similar malicious attacks can be done by getting control over the ECUs. Attackers can exploit this vulnerability to alter the performance from the stock and affect the safety of the passengers. A novel and fool proof algorithm to protect the vehicle and ECU from such malicious attacks is explained in this paper. An advanced encryption technique is developed and tested in ECU to replace the current seed-key mechanisms for ECU security guarantying a secure operation of the vehicle.
2015-04-14
Journal Article
2015-01-0226
Mahdi N. Ali
Abstract Bluetooth communication systems are constrained to use a low cost filtering technology, which requires designers to implement inexpensive noise reduction techniques. Improving Bluetooth sound and audio quality has been a topic of research over the years. Sound and audio quality in vehicles are areas that still require improvements in order to achieve better customer experience when using Bluetooth communication systems. This paper proposes a low cost, simple, and effective method to reduce noise in Bluetooth systems using Kalman Filtering. Our novel method is proposed to be used in vehicular Bluetooth applications. We have created a MATLAB/SIMULINK model to validate the proposed method. Results have demonstrated significant noise reduction and improvement to the processed speech signals.
2015-04-14
Journal Article
2015-01-0225
Satoru Komatsu, Suguru Imai, Kenji Taguchi, Tatsuya Kashiwa
Abstract The suitability of FM radio receivers for automotive applications has conventionally been evaluated by evaluating the reception characteristics of broadcast waves while conducting repeated driving tests in a special test environment. Because the evaluation of sound quality while driving relies upon the auditory judgment of a limited range of test subjects, these tests present issues in terms of the reproducibility and objectivity of the evaluations. In order to resolve these issues, a method of evaluating the suitability of FM receivers for automotive applications through the creation of a virtual radio wave environment on a PC was developed (this has been termed the “Two-Stage method”). In the research described in this paper, the Two-Stage method was used to analyze the effect of multipath distortion on FM receivers when driving through arbitrary radio wave propagation environments.
2015-04-14
Journal Article
2015-01-0224
Patrick Shelly
Abstract With the dramatic mismatch between handheld consumer devices and automobiles, both in terms of product lifespan and the speed at which new features (or versions) are released, vehicle OEMs are faced with a perplexing dilemma. If the connected car is to succeed there has to be a secure and accessible method to update the software in a vehicle's infotainment system - as well as a real or perceived way to graft in new software content. The challenge has become even more evident as the industry transitions from simple analog audio systems which have traditionally served up broadcast content to a new world in which configurable and interactive Internet-based content rules the day. This paper explores the options available for updating and extending the software capability of a vehicle's infotainment system while addressing the lifecycle mismatch between automobiles and consumer mobile devices.
2015-04-14
Journal Article
2015-01-0223
Michael David Johas Teener
Abstract With the explosion of demand for connectivity and multimedia in the automobile, the need for standards-based A/V networking that can be easily deployed is now well-established. The IEEE 802.1 Audio/Video Bridging (AVB) Task Group1 and several other related IEEE Working Groups have developed a series of network enhancements that provide the components for highly reliable audio and video applications. This paper outlines these new technologies and their benefits when used for in-vehicle applications.
2015-04-14
Journal Article
2015-01-0253
Qiao Zhang, Weiwen Deng, Jian Wu
Abstract Power management of a hybrid energy storage system (HESS) with battery and supercapacitor(SC) is of critical importance for electric vehicles to achieve good driving performance, long traveling range and high energy efficiency. Due to the great differences in dynamic characteristics between battery and supercapacitor, and the complexity of a HESS, proper power management strategy between battery and supercapacitor remains to be challenging. The proposed research in this paper is to develop a power-balance and wavelet-transform based strategy for power distribution in a way such that each device can be utilized optimally. The transient dynamics is first decoupled via wavelet-transform algorithm while the power-balance algorithm is employed to improve system robustness based on the desired velocity-SOC relationship and a fuzzy logical controller. Finally some simulations have been conducted with results shown that the proposed strategy is valid and effective.
2015-04-14
Journal Article
2015-01-0243
Ludwig Brabetz, Tobias Kerner, Mohamed Ayeb
Abstract The increasing power and safety requirements of electrical systems present a challenge for future automotive electrical networks. However, the modeling of use-profiles and the overall power consumption of electrical systems proves to be difficult as the number of potential on/off combinations of the loads is tremendous. Furthermore, the operation of some loads is correlated or depends upon the operating conditions. Thus, simple worst-case calculations applied to this complexity often lead to an over-specification of components. The proposed approach is based on the probabilities of loads being in the on-state and their respective interdependencies with each other and with boundary conditions such as time of day. Applying basic statistics and a new iterative algorithm, it allows the calculation of the probability of consumed total power for a given set of boundary conditions and of, very importantly, its expected continuous period.
2015-04-14
Journal Article
2015-01-0233
Takamoto Furuichi, Takashige Nagao, Hisanori Yokura, Ryuichirou Abe, Shigemitsu Fukatsu
Abstract This paper presents two newly developed technologies of optimizing impurity diffusion concentration for silicon semiconductor material and controlling internal stress of the top SiN (Silicon Nitride) layer on a membrane of a silicon substrate to apply them to the manufacturing process of MEMS (Micro Electro Mechanical Systems) type air-flow sensor chips. Until today, in MEMS-type airflow sensors, poly-crystalline silicon (poly-Si) and platinum were widely used as a resistor material of key functional elements on a membrane of air-flow-rate measurement portion. The functional resistors on the membrane are required to monitor high temperatures of about 300 °C and to perform the self-heating operations at that temperature range because of the suppression of contaminant deposition by means of evaporation or incineration.
2015-04-14
Journal Article
2015-01-0283
Allan Lewis, Mohammad Naserian
Abstract Pedestrians A method of locating a charging target device (vehicle) in a parking lot scenario by the evaluation of Received Signal Strength Indication (RSSI) of the Dedicated Short Range Communications (DSRC) signal and Global Positioning System (GPS) data is proposed in this paper. A metric call Location Image (LI) is defined based on the RSSI received from each charger and the physical location of the parking associated to that charger. The central parking lot processor logs the GPS coordinates and LI received from the vehicle. Each pairing attempt by a vehicle loads a new LI into the central processor's database. Utilizing the LI and the proposed methods the vehicle will achieve expedited charger to system pairing while in the company of multiple chargers.
2015-04-14
Journal Article
2015-01-0254
Chunjing Lin, Sichuan Xu, Zhao Li, Guofeng Chang
Abstract A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent.
2015-04-14
Journal Article
2015-01-0255
Claudia Meis, Stefan Mueller, Stephan Rohr, Matthias Kerler, Markus Lienkamp
Abstract Battery aging in electric and hybrid vehicles is a major issue, and one which has to be taken into consideration during all stages of the vehicle lifecycle. It depends on many factors, such as the cell chemistry, the cell design and stress factors as well as the current rate, ΔDOD and temperature. The stress factors have been identified as being crucial due to their influence on two important battery parameters: capacity and inner resistance. Battery aging models are essential to describing the interacting influences that stress factors have on battery parameters. They provide insights about battery aging without the need for extensive measurements. Various battery aging models with widely varying capabilities are described in the literature. The aim of this paper is to provide a decision guide for utilizing the most appropriate aging model for the major stages of the vehicle lifecycle: vehicle development, operation (onboard and offboard) and post-operation.
2015-04-14
Journal Article
2015-01-0302
Sagar Mody, Thomas Steffen
Abstract The idea of grid friendly charging is to use electricity from the grid to charge batteries when electricity is available in surplus and cheap. The goal is twofold: to avoid putting additional load on the electricity grid and to reduce the cost to the consumer. To achieve this, a smart meter and a tariff with variable electricity prices has to be in place. In Day Ahead tariff (DA), prices are announced in advance for the next day, and this information can be used to select the cheapest times to charge the battery by the required amount. The optimization method is very simple, and it only has to be run once per day. However, the balance of supply and demand is not fully known in advance. Therefore Real Time Pricing (RTP) tariff supplies electricity at spot market rate depending on the current balance.
2015-04-14
Journal Article
2015-01-0305
Sven Bohn, Robert Feustel, Michael Agsten
Abstract The increasing number of Plug-in Electric Vehicles (PEVs) impacts the power grid due to their high demand in power and energy, and uncertainties in the charging behavior. Typical PEVs are charged single-phase up to 32 A (7.2-kVA) or tri-phase up to 32 A (22.0- kVA). Both charging technologies have to be discussed in order to determine their impact on planning and operating of low-voltage distribution grids to assure a reliable and stable PEV charging. Traditional grid planning and analysis methods, which average and evenly distribute PEV loads on the distribution grid, fail in providing a realistic answer about the grid capacity to charge PEVs. The question; How many PEVs can be charged simultaneously on a distribution grid remains unanswered. Therefore, this paper describes a novel methodology to realistically evaluate the grid capacity for PEV charging on 3-phase 0.4-kV distribution grids.
2015-04-14
Journal Article
2015-01-0313
Ugo Rosolia, Francesco Braghin, Andrew Alleyne, Edoardo Sabbioni
Abstract This paper presents a nonlinear control approach to achieve good performances in vehicle path following and collision avoidance when the vehicle is driving under cruise highway conditions. Nonlinear model predictive control (NLMPC) is adopted to achieve online trajectory control based on a simplified vehicle model. GMRES/Continuation algorithm is used to solve the online optimization problem. Simulations show that the proposed controller is capable of tracking the desired path as well as avoiding the obstacles.
Viewing 181 to 210 of 21599

Filter