Display:

Results

Viewing 181 to 210 of 22709
2016-04-05
Technical Paper
2016-01-0068
Yoshihiro Ujiie, Takeshi Kishikawa, Tomoyuki Haga, Hideki Matsushima, Tohru Wakabayashi, Masato Tanabe, Yoshihiko Kitamura, Jun Anzai
Abstract Controller area network (CAN) technology is widely adopted in vehicles, but attention has been drawn recently to its lack of security mechanisms. Numerous countermeasures have been proposed, but none can be regarded as a generic solution, in part because all the proposed countermeasures require extensive modifications to existing in-vehicle systems. To arrive at a solution to this problem, we propose a new method of protecting CAN without the need to modify existing systems. In this paper, we explain the principle of our proposed method and the architecture of the electronic control unit (ECU) that implements it. We report the result of our experiments and show its efficacy against typical security threats faced by CAN.
2016-04-05
Technical Paper
2016-01-0067
Ryan Wilson, Wayne Music, Brian Anderson
Modern vehicular systems rely on millions of lines of code that must occasionally be updated to add new functions or to patch flaws to ensure safe and secure operation. Updates accomplished through a compromised cellular base station could lead to an update process that may be vulnerable to attack. We have been investigating techniques for determining whether an LTE base station (known as an eNodeB) appears to be suspicious, so that an update could be paused or terminated until a trusted eNodeB is available. We describe a detector we developed as part of our research that scans LTE signals for anomalies and provides an alert when an anomaly is found.
2016-04-05
Technical Paper
2016-01-0066
Joe Hupcey, Bryan Ramirez
Abstract The number one priority in vehicle security is to harden the root-of-trust; from which everything else - the hardware, firmware, OS, and application layer’s security - is derived. If the root-of-trust can be compromised, then the whole system is vulnerable. In the near future the root-of-trust will effectively be an encryption key - a digital signature for each vehicle - that will be stored in a secure memory element inside all vehicles. In this paper we will show how a mathematical, formal analysis technique can be applied to ensure that this secure storage cannot (A) be read by an unauthorized party or accidentally “leak” to the outputs or (B) be altered, overwritten, or erased by unauthorized entities. We will include a real-world case study from a consumer electronics maker that has successfully used this technology to secure their products from attacks 24/7/365.
2016-04-05
Technical Paper
2016-01-0073
Peter Subke, Muzafar Moshref
Abstract Passenger cars are equipped with an OBD connector according to SAE J1962 / ISO 15031-3. Passenger cars that support ISO UDS on DoIP use the same connector with Ethernet pins according to ISO/DIS 13400-4 (Ethernet diagnostic connector). If external test equipment is connected to the Ethernet diagnostic connector via a 100BASE-TX cable with the RJ45 connector at the tester, a VCI is not necessary anymore. With a device that fits the Ethernet diagnostic connector physically and acts as a converter between the Ethernet signals and WLAN, external test equipment that supports wireless communication, can be connected to the vehicle. Examples for such wireless external test equipment include Android/iOS- based smart phones and tablets with purpose-made applications (APPs). The software components of external test equipment are standardized in ISO 22900 (MVCI). The MVCI D-Server processes data in ODX (ISO 22901) and sequences in OTX (ISO 13209).
2016-04-05
Journal Article
2016-01-0065
Xinyu Du, Shengbing Jiang, Atul Nagose, Yilu Zhang, Natalie Wienckowski
Abstract Wire shorts on an in-vehicle controller area network (CAN) impact the communication between electrical control units (ECUs), and negatively affects the vehicle control. The fault, especially the intermittent fault, is difficult to locate. In this paper, an equivalent circuit model for in-vehicle CAN bus is developed under the wire short fault scenario. The bus resistance is estimated and a resistance-distance mapping approach is proposed to locate the fault. The proposed approach is implemented in an Arduino-based embedded system and validated on a vehicle frame. The experimental results are promising. The approach presented in this paper may reduce trouble shooting time for CAN wire short faults and may enable early detection before the customer is inconvenienced.
2016-04-05
Technical Paper
2016-01-0072
Jihas Khan
Abstract Unified Diagnostic Service and On Board Diagnostics require a client side device with necessary software to implement certain specific algorithms. This paper proposes a highly optimized and generic model based architecture to implement client side algorithms used in Unified Diagnostic Service systems and with On Board Diagnostics which can be reused for any hardware target. The proposed method can implement particular algorithms which include flow control, timing control, database parsing, logging of messages, diagnostic database parsing, security unlock, intuitive HMI layer, DTC display with textual information, frame control, multi network - multi ECU support, software flashing, physical-functional message handling, and interfacing for multiple hardware host devices. Re-usability of this model based product ensures that it can be ported to the diagnostic tool used by a work shop engineer or by a diagnostics validation engineer working at OEM or Tier 1suppliers.
2016-04-05
Journal Article
2016-01-0070
Takeshi Sugashima, Dennis Kengo Oka, Camille Vuillaume
Abstract Modern vehicles utilize various functionalities that require security solutions such as secure in-vehicle communication and ECU authentication. Cryptographic keys are the basis for such security solutions. We propose two approaches for secure and efficient invehicle key management. In both approaches, an ECU acting as a Key Master in the vehicle is required. The first approach is based on SHE. The Key Master generates and distributes new keys to all ECU based on the SHE key update protocol. The second approach performs key establishment based on key derivation. The Key Master sends a trigger in form of a counter and all ECUs derive new keys based on the received counter value and pre-shared keys. It is thus possible to handle in-vehicle key management without the need for an OEM backend to manage all keys. This reduces cost and complexity of the solution.
2016-04-05
Technical Paper
2016-01-0069
Dae-Kyoo Kim, Eunjee Song, Huafeng Yu
Abstract Cyber security concerns in the automotive industry have been constantly increasing as automobiles are more computerized and networked. AUTOSAR is the standard architecture for automotive software development, addressing various aspects including security. The current version of AUTOSAR is concerned with only cryptography-based security for secure authentication at the communication level. However, there has been an increasing need for authorization security to control access on software resources such as data and services in the automobile. In this paper, we introduce attribute-based access control (ABAC) to AUTOSAR to address authorization in automotive software.
2016-04-05
Journal Article
2016-01-0078
Eric DiBiaso, Bert Bergner, Jens Wuelfing, Robert Wuerker, Carlos Almeida
Abstract Ethernet technology using a single unshielded twisted pair (UTP) is considered to have a promising future in the automotive industry. While 100Mbps transmission speeds can be achieved with standard connector platforms, 1Gbps requires specific design rules in order to ensure error free transmissions. This paper explains the specific challenges for high speed UTP solutions applied in automotive environments. Automotive relevant signal integrity (SI) and electromagnetic compatibility (EMC) connector limitations are also discussed in detail. Through simulations and testing, the connector design criteria and rules necessary for meeting all the electrical and mechanical requirements for such automotive applications are evaluated and shown. This is followed by the introduction of a modular and scalable MATEnet Ethernet connection system utilizing an optimized cable termination technology.
2016-04-05
Journal Article
2016-01-0079
Tomohisa Harada, Yoshiyuki Hattori, Shinya Ito, Mitoshi Fujimoto, Toshikazu Hori
Abstract Recently, the electromagnetic interference in an AM radio by the noise generated from a power control unit (DC-DC converters, inverters) in a hybrid vehicle (HV) has become a serious problem. To solve the problem, most noise suppression methods, for example, use noise filters for noise sources and shield wiring and ferrite cores for noise propagation paths. In this paper, we propose a noise suppression method using the digital signal processing in an AM radio receiver. In this method, first the receiving AM radio signal containing HV noise is quadrature demodulated. Next, a replica signal of the noise is generated by using the noise signal in the quadrature component. Then, the replica signal is subtracted from the AM radio signal containing the noise of the in-phase component. We construct a prototype of the radio receiver system based on this method and demonstrate that the system can reduce the HV noise superimposed on the AM radio signal by more than 20 dB.
2016-04-05
Technical Paper
2016-01-0080
Hiroyuki Miyake
Abstract This paper explains a performance enhancement of the lane guidance function in car navigation systems. In order to achieve intuitive lane guidance, a function is considered that displays lane guidance on an image of the front scene that matches what drivers actually see outside the vehicle. Therefore, two developed items were lane accurate positioning based on image recognition and augmented reality visualization that renders lane guidance images overlaid on the scenery of the road ahead. The eye glance time to the navigation screen has been reduced in a comparison test with a conventional lane guidance method. It is confirmed that this lane guidance function is more intuitive than the conventional method.
2016-04-05
Journal Article
2016-01-0081
Husein Dakroub, Adnan Shaout, Arafat Awajan
Abstract Connectivity has become an essential need for daily device users. With the car projected to be the “ultimate mobile device”, connectivity modules will eventually be mainstream in every car. Network providers are expanding their infrastructure and technology to accommodate the connected cars. Besides making voice and emergency calls the connected car will be sharing data with telematics service providers, back end systems and other vehicles. This trend will increase vehicle modules, complexity, entry points and vulnerabilities. This paper will present the current connected car architectures. The paper will present current architectural issues of the connected car and its vulnerabilities. The paper will present a new proposed architecture for the future connected car that enhances efficiency and security.
2016-04-05
Journal Article
2016-01-0074
Michael Jensen
Abstract Electronics now control or drive a large part of automotive system design and development, from audio system enhancements to improvements in engine and drive-train performance, and innovations in passenger safety. Industry estimates suggest that electronic systems account for more than 30% of the cost of a new automobile and represent approximately 90% of the innovations in automotive design. As electronic content increases, so does the possibility of electronic system failure and the potential for compromised vehicle safety. Even when designed properly, electronics can be the weakest link in automotive system performance due to variations in component reliability and environmental conditions. Engineers need to understand worst-case system performance as early in the design process as possible.
2016-04-05
Journal Article
2016-01-0076
Mostafa Anwar Taie, Eman Magdy Moawad, Mohammed Diab, Mohamed ElHelw
Abstract New challenges and complexities are continuously increasing in advanced driver assistance systems (ADAS) development (e.g. active safety, driver assistant and autonomous vehicle systems). Therefore, the health management of ADAS’ components needs special improvements. Since software contribution in ADAS’ development is increasing significantly, remote diagnosis and maintenance for ADAS become more important. Furthermore, it is highly recommended to predict the remaining useful life (RUL) for the prognosis of ADAS’ safety critical components; e.g. (Ultrasonic, Cameras, Radar, LIDAR). This paper presents a remote diagnosis, maintenance and prognosis (RDMP) framework for ADAS, which can be used during development phase and mainly after production. An overview of RDMP framework’s elements is explained to demonstrate how/when this framework is connected to database servers and remote analysis servers.
2016-04-05
Journal Article
2016-01-0077
Satoru Komatsu, Suguru Imai, Kenji Taguchi, Tatsuya Kashiwa
Abstract We developed “Two-Stage Method” that makes it possible to evaluate the automotive suitability of FM receivers by generating a virtual radio wave environment on a PC. The major technological challenge for the Two-Stage Method was reproducing an actual radio wave environment on PC. It was necessary to estimate the characteristics of the FM radio wave environment in tests using the Multiple Signal Classification (MUSIC) method. However, when the MUSIC method is applied to FM reception, restrictions in factors including the number of array antenna elements and the occupied bandwidth result in issues of separation performance in relation to multipath waves in urban environments. We therefore developed a MUSIC Method using a virtual array antenna, making it possible to create combinations of numbers of array and sub-array elements as desired, thus boosting multipath wave separation performance. This development was reported at the 2015 SAE World Congress.
2016-04-05
Journal Article
2016-01-0091
Hikaru Watanabe, Tsutomu Segawa, Takumi Okuhira, Hiroki Mima, Norishige Hoshikawa
Abstract This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
2016-04-05
Journal Article
2016-01-0082
Satoru Komatsu, Yoshio Karasawa, Tatsuya Kashiwa, Kenji Taguchi, Suguru Imai
Abstract The suitability of FM radio receivers for automobiles has conventionally been rated by evaluating reception characteristics for broadcast waves in repeated driving tests in specific test environments. The evaluation of sound quality has relied on the auditory judgment due to difficulties to conduct quantitative evaluations by experiments. Thus the method had issues in terms of the reproducibility and objectivity of the evaluations. To address these issues, a two-stage method generating a virtual radio wave environment on a PC was developed. The research further defined the multipath distortion rate, MDr, as an index for the sound quality evaluation of FM receivers, and the findings concerning the suitability of the evaluation of FM terminals for automobiles were reported at the 2015 SAE World Congress.
2016-04-05
Journal Article
2016-01-0083
Satoru Komatsu, Akira Nagao, Taro Suzuki, Nobuaki Kubo
Abstract Positional accuracy of GPS measurement has been based on simulation and actual measurement due to the difficulty of conducting 24-hour actual running tests. However, the conventional measurement is only based on brief evaluation; hence variability of positional accuracy which varies depending on measurement time and location had been an issue. Thus, it is significant to show the validity by the estimation of positional accuracy, and actual measurement using of lengthy simulation. In this study, actual measurement data in an urban area was obtained for long hours, and a simulation using 3D maps was implemented. A high precision positional measurement system was equipped on a vehicle in order to collect actual measurements and positional data at each measurement time. The data obtained by the measurement system was used as the reference coordinate for both the simulation and the actual measurements.
2016-04-05
Journal Article
2016-01-0084
Paul Weindorf, James Krier, Carl Evans
Abstract An optical configuration has been developed which offers a seamless appearance where the display aperture is less visible in the “off” condition and is minimized in the “on” condition.
2016-04-05
Technical Paper
2016-01-0097
Felix Gow, Lifeng Guan, Jooil Park, Jaekwon Kim
Abstract Tire Pressure Monitoring System (TPMS) has become a popular system due to regulation in many countries. TPMS consists of sensors that measure air pressure and temperature in the tires. Each sensor transmits tire information to TPMS central unit for display purpose via RF. Commercial trailers having bodies longer than 7 m require RF repeaters to increase the data transmission range. Located near to rear wheels, RF repeater receives sensor signal in the rear wheels and transmits the signal to TPMS central unit. In this paper, we discuss RF repeater which transmits at multiple frequencies in order to increase signal reception. On TPMS central unit, RF receiver is able to tune to receive frequencies used in sensors and RF repeater. Other method for improving reception is to transmit same payload multiple times at same frequency as that of sensor. In the paper, other important specifications are discussed as RF repeater design is concerned.
2016-04-05
Technical Paper
2016-01-0096
Daniel Pachner, Jaroslav Beran, Jonathan Tigelaar
Abstract On downsized turbocharged engines, turbo speed is correlated with maximum engine airflow and therefore with maximum engine power. To ensure safe operation in the field, auto makers introduce significant engineering margins to the turbocharger maximum speed limit. Physical turbo speed sensors provide one way to reduce this engineering margin, but are not appropriate for some applications. An accurate mathematical estimation of turbocharger speed using virtual sensor can help reduce these margins, therefore increasing available power. This paper examines the best turbo speed estimation accuracy that can be achieved using a given set of production engine sensors. “Best” is defined in a minimax sense as the smallest turbo speed error interval achievable assuming the worst case combination of sensor and actuator errors and plant parameter mismatch.
2016-04-05
Technical Paper
2016-01-0099
Deepak Venkatesh, Arockia Selvakumar
Abstract The concept of camless engines enables us to optimize the overall engine efficiency and performance, as it provides great flexibility in valve timing and valve displacement. This paper deals with design of camless engines with pneumatic actuator. The main objective is to build a prototype and test its performance at different engine speeds. Also an extensive research on the sensors is done to detect the various sensors that could be used to identify the crankshaft position. Here the features and advantages over conventional engines are discussed. In addition the overview of the camless system in the engine is focused along with the design principle and the components used. The system thus designed is capable of actuating at 1500 rpm and demonstrates the ability of pneumatic actuators to be used in an internal combustion engine with low rpm needs.
2016-04-05
Technical Paper
2016-01-0098
Malavika Menon, Sunil Kakaye, Sudharsan Sundaram
Abstract The world today is moving more towards convenience and luxury. Auto manufacturers are being constantly challenged to provide innovative additions to conventional vehicles in terms of attractive features. This paper describes one such invention proposed to add convenience and novelty to the use of two wheelers. The proposed system is called a “Keyless Scooter”. Derived from the idea of keyless entry in four wheelers, the system aims at extending this luxury to a larger band of population in India, i.e. users of two wheeled vehicles. The system eliminates use of a mechanical lock and key arrangement. All functions carried out by the mechanical arrangement of lock and key are replaced with an equivalent electronic system. A “Keyless Scooter” is one in which a user can just approach it with a key fob on himself/herself and start the vehicle, open the luggage box, etc. without having to insert a key physically into the lock body.
2016-04-05
Technical Paper
2016-01-0093
Haizhen Liu, Rui He, Jian Wu, Wenlong Sun, Bing Zhu
Abstract With the development of modern vehicle chassis control systems, such as Anti-Lock Brake System (ABS), Acceleration Slip Regulation (ASR), Electronic Stability Control (ESC), and Regenerative Braking System (RBS) for EVs, etc., there comes a new requirement for the vehicle brake system that is the precise control of the wheel brake pressure. The Electro-Hydraulic Brake system (EHB), which owns an ability to adjust four wheels’ brake pressure independently, can be a good match with these systems. However, the traditional control logic of EHB is based on the PWM (Pulse-Width Modulation), which has a low control accuracy of linear electromagnetic valves. Therefore, this paper presents a research of the linear electro-magnetic valve characteristic analysis, and proposes a precise pressure control algorithm of the EHB system with a feed forward and a PID control of linear electro-magnetic valves.
2016-04-05
Journal Article
2016-01-0092
Stijn Kerst, Barys Shyrokau, Edward Holweg
Abstract Active vehicle safety and driving assistance systems can be made more efficient, more robust and less complex if wheel load information would be available. Although this information could be determined via numerous different methods, due to various reasons, no commercially feasible approach has yet been introduced. In this paper the approach of bearing load estimation is topic of interest. Using the bearing for load measurement has considerable advantages making it commercially attractive as: i) it can be performed on a non-rotating part, ii) all wheel loads can be measured and iii) usually the bearing serves the entire lifetime of the vehicle. This paper proposes a novel approach for the determination of wheel loading. This new approach, based on the strain variance on the surface of the bearing outer ring, is tested on a dedicated bearing test setup.
2016-04-05
Technical Paper
2016-01-0095
Qiao Fengying, Vincenzo Sacco, Gilles Delorme, Yevheniy Soloshenko
Abstract In this work, we analyze the use of the Local Interconnect Network (LIN) bus (and some of its potential variants) as Safety Element out of Context (SEooC) from an ISO-26262 perspective and provide the reader with an analysis methodology to compare between a range of different LIN protocol configurations and benchmark them against Automotive Safety Integrity Level (ASIL) targets as defined in ISO-26262. A methodology for a quantitative residual failure probability analysis is shown before applying it to the standard LIN protocol. The residual failure rate in time (RF) of LIN (compliant with ISO26262) has been investigated with a range of reasonable application assumptions. This paper shows that a high bit error probability assumption of 3e-5 yields an RF of 3e-4/h which is too high to satisfy the assumed ASIL-B target (1e-7/h) or higher functional safety requirements in noisy application.
2016-04-05
Technical Paper
2016-01-0105
Yogesh Chandra Sharma
Abstract This technical paper aims to provide a framework for simulating the thermal behavior of an automotive electrical connector with the current flow across each terminal. An automotive electrical connector uses multiple terminals fitted in the respective cavity of a connector. Temperature at terminal increases with the current flow level across it. This temperature rise occurs due to resistive heat loss in the terminal. Due to this, temperature in the surrounding cavities also rises; hence, the current carrying capacity of those cavities reduces. Analysis of similar scenarios for design alternatives and design decisions is important to develop reliable and optimized solutions. The reliable and optimized solution helps to save the cost. There is a large variation of different terminals used in the wiring harness, and there are various parameters attributing to this variation (shape, size, material, plating etc…).
2016-04-05
Journal Article
2016-01-0094
Jaya Gaitonde, R B Lohani
Abstract Photodetectors are important components in automotive industry. Sensitivity, speed, responsivity, quantum efficiency, photocurrent gain and power dissipation are the important characteristics of a photodetector. We report a high performance photodetector based on GaAs Metal- Semiconductor Field Effect Transistor (MESFET), with very high responsivity, excellent quantum efficiency, high sensitivity, moderate speed, tremendous gain and low power dissipation, surpassing their photodiode, phototransistor and other counterparts. A theoretical model of GaAs front illuminated Optical Field Effect transistor is presented. The photovoltaic and photoconductive effects have been taken into account. The gate of the OPFET device has been left open to make a reduction in the number of power supplies. The results are in line with the experiments. The device shows high potential in automotive applications.
2016-04-05
Journal Article
2016-01-0104
Khalil Maalouf, David Stull, Keith Nicholas
Abstract In copper wire, real time crimp monitoring has traditionally been based on force measurement during the crimp cycle. The force attributed to molding the copper wire into the terminal is a significant portion of the total force needed to form the crimp. Therefore, any wire deviation from the norm is translated into a force pattern aberration that can be detected using basic signal pattern analysis. As the mobility industry is contemplating replacing copper with aluminum wire, in order to save on weight and material cost, the traditional force monitoring becomes ineffective in detecting wire faults in the crimp. The reason is that aluminum is softer than copper, and most of the force exerted during the crimp cycle is consumed by forming the copper terminal itself. The small force deviation due to an aluminum wire fault becomes much more difficult to detect. Therefore, a new technique is needed to monitor crimped aluminum wires.
2016-04-05
Journal Article
2016-01-0101
Carl Arft, Yin-Chen Lu, Jehangir Parvereshi
Abstract Oscillators are key components in automotive electronics systems. For example, a typical automotive camera module may have three or more oscillators, providing the clocks for microcontrollers, Ethernet controllers, and video chipsets. These oscillators have historically been built around a quartz crystal resonator connected to an analog sustaining circuit driving the crystal to vibrate at its resonant frequency. However, quartz-based devices suffer from poor performance and reliability in harsh automotive environments. SiTime has developed timing solutions based on silicon micro-electromechanical systems (MEMS) technology that exhibit better electromagnetic noise rejection and better performance under shock and vibration. In this paper, we first discuss the design and manufacturing of the MEMS-based device, with emphasis on the specific design aspects that improve reliability and resilience in harsh automotive environments.
Viewing 181 to 210 of 22709

Filter