Display:

Results

Viewing 151 to 180 of 21633
2015-04-14
Journal Article
2015-01-0295
Dominik Moser, Harald Waschl, Roman Schmied, Hajrudin Efendic, Luigi del Re
Abstract Modern cars feature a variety of different driving assistance systems, which aim to improve driving comfort and safety as well as fuel consumption. Due to the technical advances and the possibility to consider vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, cooperative adaptive cruise control (CACC) strategies have received significant attention from both research and industrial communities. The performance of such systems can be enhanced if the future velocity of the surrounding traffic can be predicted. Generally, human driving behavior is a complex process and influenced by several environmental impacts. In this work a stochastic model of the velocity of a preceding vehicle based on the incorporation of available information sources such as V2I, V2V and radar information is presented. The main influences on the velocity prediction considered in this approach are current and previous velocity measurements and traffic light signals.
2015-04-14
Technical Paper
2015-01-0298
Wontaek Lim, Junsoo Kim, Kichun Jo, Yongwoo Jo, Myoungho Sunwoo
Abstract Parking path planning is an essential technology for intelligent vehicles. Under a confined area, a parking path has to guide a vehicle into a parking space without collision. To realize this technology, circle-based planning algorithms have been studied. The main components of these algorithms are circles and straight lines; subsequently, the parking path of the algorithm is designed by the combination of these geometric lines. However, the circle-based algorithm was developed in an open space within an unlimited parking lot width, so a feasible path cannot always be guaranteed in a narrow parking lot. Therefore, we present a parking planning algorithm based on Turning Standard Line (TSL) that is a straight line segment. The algorithm uses the TSL lines to guide sequential quadratic Béizer curves. A set of these curves from parking start to goal position creates a continuous parking path.
2015-04-14
Journal Article
2015-01-0297
Jianbo Lu, Dimitar Filev, Finn Tseng
Abstract This paper proposes an approach that characterizes a driver's driving behavior and style in real-time during car-following drives. It uses an online learning of the evolving Takagi-Sugeno fuzzy model combined with the Markov model. The inputs fed into the proposed algorithm are from the measured signals of on-board sensors equipped with current vehicles, including the relative distance sensors for Adaptive Cruise Control feature and the accelerometer for Electronic Stability Control feature. The approach is verified using data collected using a test vehicle from several car-following test trips. The effectiveness of the proposed approach has been shown in the paper.
2015-04-14
Journal Article
2015-01-0371
Rupesh Sonu Kakade, Prashant Mer
Abstract The human thermal comfort, which has been a subject of extensive research, is a principal objective of the automotive climate control system. Applying the results of research studies to the practical problems require quantitative information of the thermal environment in the passenger compartment of a vehicle. The exposure to solar radiation is known to alter the thermal environment in the passenger compartment. A photovoltaic-cell based sensor is commonly used in the automotive climate control system to measure the solar radiation exposure of the passenger compartment of a vehicle. The erroneous information from a sensor however can cause thermal discomfort to the occupants. The erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to the opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement.
2015-04-14
Technical Paper
2015-01-0370
Modar Horani, Osamah Rawashdeh
Abstract Traditional Heat Ventilation and Air Conditioning (HVAC) control systems are reactive by design and largely dependent on the on-board sensory data available on a Controller Area Network (CAN) bus. The increasingly common Internet connectivity offered in today's vehicles, through infotainment and telematic systems, makes data available that may be used to improve current HVAC systems. This includes real-time outside relative humidity, ambient temperature, precipitation (i.e., rain, snow, etc.), and weather forecasts. This data, combined with position and route information of the vehicle, may be used to provide a more comfortable experience to vehicle occupants in addition to improving driver visibility through more intelligent humidity, and defrost control. While the possibility of improving HVAC control utilizing internet connectivity seems obvious, it is still currently unclear as to what extent.
2015-04-14
Technical Paper
2015-01-0463
Kasiraja Thangapandian, Immanuel Rajkumar
Abstract In recent years the automotive industry is facing unprecedented influx of new technology advancements and ever-increasing consumer demands for media, entertainment and connectivity applications. This drives the automotive industry to deliver the products at a faster pace, thereby reducing time to market which results in issues from end users and dealers. Automotive industries are striving hard to keep pace with these radical changes with increase in software and electronics which in turn necessitates a systematic and effective software engineering approach to deliver high quality product from the core embedded software industry. This paper details how embedded software projects are developed globally and customer issues are collected and analyzed. It also discuss about the method used for performing effective Root cause analysis for identifying the systemic issues and formulating the systemic improvement actions.
2015-04-14
Technical Paper
2015-01-0464
Christian-Andreas Schumann, Eric Forkel, Thomas Klein, Dieter Gerlach, Egon Mueller
Abstract Total quality is becoming increasingly important for competitiveness. In order to achieve high quality, the requirements must be continuously compared with the results achieved in the process. This is done by means of measurement parameters and comparative values. The acquisition of the data requires appropriate measurement methods. The measurement methods and procedures have to be constantly developed in order to measure more precisely and to generate an even higher quality. Thus, the achieved product quality can be determined absolutely and relatively. If deviations from the planned quality parameters occur, the operator will be able to intervene immediately. The presented procedure is one of the noncontact (optical) measurement methods using CMMs, 3D scanners and 3D cameras. It is a combination of stereo photography and photogrammetry.
2015-04-14
Journal Article
2015-01-0460
Saket Kansara, Sumeet Parashar, Zhendan Xue
Abstract Decision making in engineering design is complicated, especially when dealing with high-dimensional data. Modern software tools are able to produce a large amount of data while performing optimization studies. A typical optimization problem with many objectives may produce 100s or even 1000s of Pareto Optimal solutions. It is a challenge to analyze this data and make a decision about which design/s to choose for further testing or as a final design. To tackle the problem, two data analysis techniques are used in this paper. Partitive Clustering (PC) is used to locate groups of similar designs in the dataset while Principal Component Analysis (PCA) is used to reduce the dimensionality of the data and visualize it in two and three dimensions. Although these techniques can be used independently, when used together, they prove to be a tremendous help in decision making. This paper underlines the benefit of using these two methods together.
2015-04-14
Technical Paper
2015-01-0475
Truong Nguyen, John Bell
Abstract Modern automotive electrical and electronic architecture is comprised of the battery and charging system, power distribution boxes, electronic control units, electrical devices, grounds, and the means of connecting all of these together - the wire harness or Electrical Distribution System (EDS). As automotive electrical content and complexity increases, it becomes imperative to optimize the weight, size, cost, and manufacturability of a vehicle [1]. In terms of an EDS, the most potential gain can be realized if the EDS supplier and vehicle Original Equipment Manufacturer (OEM) work together during the advanced electrical & electronic architecture development and packaging design process. Traditionally, the electrical content, harness partitioning, and packaging locations are designed by the vehicle OEM with limited advanced input from the EDS supplier.
2015-04-14
Technical Paper
2015-01-0310
R Danymol, Krishnan Kutty
Abstract Camera sensors that are made of silicon photodiodes and used in ordinary digital cameras are sensitive to visible as well as Near-Infrared (NIR) wavelength. However, since the human vision is sensitive only in the visible region, a hot mirror/infrared blocking filter is used in cameras. Certain complimentary attributes of NIR data are, therefore, lost in this process of image acquisition. However, RGB and NIR images are captured entirely in two different spectra/wavelengths; thus they retain different information. Since NIR and RGB images compromise complimentary information, we believe that this can be exploited for extracting better features, localization of objects of interest and in multi-modal fusion. In this paper, an attempt is made to estimate the NIR image from a given optical image. Using a normal optical camera and based on the compressed sensing framework, the NIR data estimation is formulated as an image recovery problem.
2015-04-14
Technical Paper
2015-01-0309
Mayurika Chatterjee, Atchyuta Rao, Chaitanya Rajguru
Abstract Parking assist systems have become very common in current vehicles. The purpose of such a system is to assist the driver to park the vehicle without collision. The sensors serve as eyes of the driver during parking maneuver by sensing any obstacle in the path. The parking sensors, typically ultrasonic sensors, are mounted on front and rear of vehicle to assist the driver to park the vehicle. Thus, such a system can cover only the front and rear portion of the vehicle and is unable to cover the side portions of the vehicle. This paper proposes a novel method to monitor the perimeter of a vehicle while parking using minimum sensors placed at strategic locations. A local map of the parking area is generated using data from sensors which helps in identifying static obstacles. The map is constantly updated in real time during parking. The algorithm ascertains that the entire perimeter of the vehicle is protected from impending collisions in real time.
2015-04-14
Technical Paper
2015-01-0312
Jiji Gangadharan, Shanmugaraj Mani, Krishnan Kutty
Abstract Advanced Driver Assistance System (ADAS) in combination with other active safety features like air bags etc. is gaining popularity. Vision based ADAS systems perform well under ideal lighting, illumination and environmental conditions. However, with change in illumination and other lighting related factors, the effectiveness of vision based ADAS systems tend to deteriorate. Under conditions of low light, it is therefore important to develop techniques that would offset the effects of low illumination and generate an image that appears as if it were taken under ideal lighting conditions. To accomplish this, we have developed a method, that uses local color statistics from the host image with low illumination, and enhance the same using an adaptive color transfer mechanism.
2015-04-14
Technical Paper
2015-01-0311
Reecha Yadav, Vinuchackravarthy Senthamilarasu, Krishnan Kutty, Vinay Vaidya, Sunita Ugale
Abstract In view of the continuous efforts by the automotive fraternity, for achieving traffic safety, detecting pedestrians from image/video has become an extensively researched topic in recent times. The task of detecting pedestrians in the urban traffic scene is complicated by the considerations involving pedestrian figure size, articulation, fast dynamics, background clutter, etc. A number of methods using different sensor technologies have been proposed in the past for the problem of pedestrian detection. To limit the scope, this paper reviews the techniques involved in day-time detection of pedestrians, with emphasis on the methods making use of a monocular visible-spectrum sensor. The paper achieves its objective by discussing the basic framework involved in detecting a pedestrian, while elaborating the requisites and the existing methodologies for implementing each stage of the basic framework.
2015-04-14
Journal Article
2015-01-0305
Sven Bohn, Robert Feustel, Michael Agsten
Abstract The increasing number of Plug-in Electric Vehicles (PEVs) impacts the power grid due to their high demand in power and energy, and uncertainties in the charging behavior. Typical PEVs are charged single-phase up to 32 A (7.2-kVA) or tri-phase up to 32 A (22.0- kVA). Both charging technologies have to be discussed in order to determine their impact on planning and operating of low-voltage distribution grids to assure a reliable and stable PEV charging. Traditional grid planning and analysis methods, which average and evenly distribute PEV loads on the distribution grid, fail in providing a realistic answer about the grid capacity to charge PEVs. The question; How many PEVs can be charged simultaneously on a distribution grid remains unanswered. Therefore, this paper describes a novel methodology to realistically evaluate the grid capacity for PEV charging on 3-phase 0.4-kV distribution grids.
2015-04-14
Technical Paper
2015-01-0307
Hongfeng Wang, Lei He, Qianfei Liu, Changfu Zong
Abstract Nowadays active collision avoidance has become a major focus of research, and a variety of detection and tracking methods of obstacles in front of host vehicle have been applied to it. In this paper, laser radars are chosen as sensors to obtain relevant information, after which an algorithm used to detect and track vehicles in front is provided. The algorithm determines radar's ROI (Region of Interest), then uses a laser radar to scan the 2D space so as to obtain the information of the position and the distance of the targets which could be determined as obstacles. The information obtained will be filtered and then be transformed into cartesian coordinates, after that the coordinate point will be clustered so that the profile of the targets can be determined. A threshold will be set to judge whether the targets are obstacles or not. Last Kalman filter will be used for target tracking. To verify the presented algorithm, related experiments have been designed and carried out.
2015-04-14
Technical Paper
2015-01-0306
Satoru Shinzaki, Hakaru Sadano, Yutaka Maruyama, Willett Kempton
Abstract In order to reduce emissions and enhance energy security, renewable power sources are being introduced proactively. As the fraction of these sources on a power grid grows, it will become more difficult to maintain balance between renewable power supply and coincident demand, because renewable power generation changes frequently and significantly, depending on weather conditions. As a means of resolving this imbalance between supply and demand, vehicle-to-grid (V2G) technology is being discussed, because it enables vehicles to contribute to stabilizing the power grid by utilizing on-board batteries as a distributed energy resource as well as an energy storage for propulsion. The authors have built a plug-in vehicle with a capability of backfeeding to the power grid, by integrating a bi-directional on-board AC/DC and DC/AC converter (on-board charger) and a digital communication device into the vehicle.
2015-04-14
Technical Paper
2015-01-0328
Wilko Jansen, Joe Amodeo, Sam Wakelam, Kamalesh Bhambare
Abstract The level of infotainment in today's vehicles and the customer expectation of the functionality imply a significant effort is required on thermal management of the systems, to guarantee their full operation under all operating conditions. The worst case thermal conditions the system will get exposed to are caused by solar loading on the cabin or heat up as a result of cabin heating. Simulation of a solar load driven case will be discussed in this paper. The long soak conditions during these tests result in the modelling requirement for long natural convection periods. This is creating a challenge for the conventional CFD simulations in turnaround time. New simulation methodology has resulted in significant speed up enabling these fully transient simulations in a reasonable turnaround time to enable programme support. A two phase approach to simulating this problem is proposed in this paper.
2015-04-14
Journal Article
2015-01-0321
Pan Song, Changfu Zong, Masayoshi Tomizuka
Abstract This paper presents a simultaneous longitudinal and lateral motion control strategy for a full drive-by-wire autonomous vehicle. A nonlinear model predictive control (NMPC) problem is formulated in which the nonlinear prediction model utilizes a spatial transformation to derive the dynamics of the vehicle about the reference trajectory, which facilitates the acquisition of the tracking errors at varying speeds. A reference speed profile generator is adopted by taking account of the road geometry information, such that the lateral stability is guaranteed and the lane guidance performance is improved. Finally, the nonlinear multi-variable optimization problem is simplified by considering only three motion control efforts, which are strictly confined within a convex set and are readily distributed to the four tires of a full drive-by-wire vehicle.
2015-04-14
Journal Article
2015-01-0322
Jieyun Ding, Keqiang Li, Karl Hedrick
Abstract To provide a feasible transitional solution from all-by-human driving style to fully autonomous driving style, this paper proposed concept and its control algorithm of a robust lane-keeping ‘co-pilot’ system. In this a semi-autonomous system, Learning based Model Predictive Control (LBMPC) theory is employed to improve system's performance in target state tracking accuracy and controller's robustness. Firstly, an approximate LTI model which describes driver-vehicle-road closed-loop system is set up and real system's deviations from the LTI system resulted by uncertainties in the model are regarded as bounded disturbance. The LTI model and bounded disturbances make up a nominal model. Secondly, a time-varying model which is composed of LTI model and an ‘oracle’ component is designed to observe the possible disturbances numerically and it is online updated using Extended Kalman Filter (EKF).
2015-04-14
Technical Paper
2015-01-0317
Jongsang Seo, Kyongsu Yi
Abstract This paper describes a robust Model Predictive Control (MPC) framework of lane change for automated driving vehicles. In order to develop a safe lane change for automated driving, the driving mode and lane change direction are determined considering environmental information, sensor uncertainties, and collision risks. The safety margin is calculated using predicted trajectories of surround and subject vehicles. The MPC based combined steering and longitudinal acceleration control law has been designed with extended bicycle model over a finite time horizon. A reachable set of vehicle state is calculated on-line to guarantee that MPC state and input constraints are satisfied in the presence of disturbances and uncertainties. The performance of the proposed algorithm has been conducted simulation studies.
2015-04-14
Journal Article
2015-01-0320
Dezhao Zhang, Shengbo Li, Qiang Yang, Li Liu
Abstract The reference path played a very important role in the parking schemes. In this paper, an arc tangent liked polynomial trajectory model is proposed, and an optimal trajectory is obtained for automatic parallel parking based on genetic algorithm, which ensures that the vehicle does not collide with obstacles or other vehicles during parking. The proposed algorithm has strong robustness because of that all the parameters of the vehicle and the parallel parking spaces are parameterized. Using the trajectory model with the vehicle and parking space parameters, a cost function with multi-constraints, were established for path planning. The start and end points of the planning trajectory are the actual starting point and the desired final parking point of the vehicle by choosing three parameters of the trajectory model appropriately. Simulation results illustrate the effectiveness of the proposed algorithm.
2015-04-14
Journal Article
2015-01-0319
Reena Kumari Behera, Jiji Gangadharan, Krishnan Kutty, Smita Nair, Vinay Vaidya
Abstract This paper presents a vision based pedestrian detection system. The presented algorithm is a novel method that accurately segments the pedestrian regions in real time. The fact that the pedestrians are always vertically aligned is taken into consideration. As a result, the edge image is scanned from bottom to top and left to right. Both the color and edge data is combined in order to form the segments. The segmentation is highly dependent on the edge map. Even a single pixel dis-connectivity would lead to incorrect segments. To improve this, a novel edge linking method is performed prior to segmentation. The segmentation would consist of foreground and background segments as well. The background clutter is removed based on certain predefined conditions governed by the camera features. A novel edge based head detection method is proposed for increasing the probability of pedestrian detection. The combination of head and leg pattern will determine the presence of pedestrians.
2015-04-14
Journal Article
2015-01-0313
Ugo Rosolia, Francesco Braghin, Andrew Alleyne, Edoardo Sabbioni
Abstract This paper presents a nonlinear control approach to achieve good performances in vehicle path following and collision avoidance when the vehicle is driving under cruise highway conditions. Nonlinear model predictive control (NLMPC) is adopted to achieve online trajectory control based on a simplified vehicle model. GMRES/Continuation algorithm is used to solve the online optimization problem. Simulations show that the proposed controller is capable of tracking the desired path as well as avoiding the obstacles.
2015-04-14
Technical Paper
2015-01-0316
Kazuto Yokoyama, Masahiro Iezawa, Yohei Akashi, Toshihide Satake, Yukiyasu Akemi, Satoru Inoue, Ryotaro Suzuki
Abstract Parking assist systems which relieve burden of drivers have been put into practice in the world. Mitsubishi Electric has also been developing several technologies to realize the system, where our products such as sonar (ultrasonic sensor), electric power steering (EPS), a motor, and an inverter are used. In the parking assist system, peripheral environment of the vehicle in a parking lot is detected with our sonar sensors and determine whether or not there is a parking space available. Estimation of the position and the attitude of the vehicle is also carried out. On the basis of the detection and the estimation, a smooth and efficient path to drive and park the vehicle is generated with an optimization technique. In particular, this paper focuses on a drive control for electrified vehicles to track the reference trajectory at a desired speed given from the assist system.
2015-04-14
Technical Paper
2015-01-0745
Petter Dahlander, Stina Hemdal
Abstract To contribute to knowledge required to meet new emission requirements, relationships between multiple injection parameters, degrees of fuel stratification, combustion events, work output and flame luminosity (indicative of particulate abundance) were experimentally investigated using a single-cylinder optical GDI engine. A tested hypothesis was that advancing portions of the mass injected would enhance the fuel-air mixing and thus reduce flame luminescence. An outward-opening piezo actuated fuel injector capable of multiple injections was used to inject the fuel using different triple injection strategies, with various combinations of late and earlier injections leading to various degrees of fuel stratification. Sprays and combustion events were captured using two high-speed cameras and cylinder pressure measurements.
2015-04-14
Technical Paper
2015-01-1658
Xi Luo, Xin Yu, Marcis Jansons
Abstract As engine efficiency targets continue to rise, additional improvements must consider reduction of heat transfer losses. The development of advanced heat transfer models and realistic boundary conditions for simulation based engine design both require accurate in-cylinder wall temperature measurements. A novel dual wavelength infrared diagnostic has been developed to measure in-cylinder surface temperatures with high temporal resolution. The diagnostic has the capability to measure low amplitude, high frequency temperature variations, such as those occurring during the gas exchange process. The dual wavelength ratio method has the benefit of correcting for background scattering reflections and the emission from the optical window itself. The assumption that background effects are relatively constant during an engine cycle is shown to be valid over a range of intake conditions during motoring.
2015-04-14
Technical Paper
2015-01-1648
Hendrik Golzke, Heiko Holler, Wolfgang Friedrich, Philippe Leick, Ulrich Schoenauer, Andreas Dreizler
Abstract The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
2015-04-14
Technical Paper
2015-01-1702
Alex Wang, Jung Hsien Yen
Abstract This paper presents a novel technology to achieve very power (4W, 3.2W LED+0.8W driver) FOG lamp by single LED design which is much enhanced than the existing 2-3 LEDs solutions. This design saves 92.7% energy than conventional Halogen lamp (55W) and saves 38.4% than existing LED FOG lamp (6.5W). The optical design adopts the optimized multifaceted reflector, with precise and unique optimization design scheme, we are able to generate a very sharp cut-off line with a 3.2W LED to enable stronger light penetration in low vision weather condition. The efficiency of multifaceted reflector optics in this study is 50.9% which is 27% higher than the existing reflector design. Design details, anti-block skills and the manufacturing tolerance control are analyzed in this paper. The total light output of the LED fog lamp is 210lm; the L6-line minimal is 4200cd above the ECE R19 requirement of 2700cd.
2015-04-14
Journal Article
2015-01-1699
Kan Zha, Stephen Busch, Paul C. Miles, Sameera Wijeyakulasuriya, Saurav Mitra, P. K. Senecal
Abstract Flow field asymmetry can lead to an asymmetric mixture preparation in Diesel engines. To understand the evolution of this asymmetry, it is necessary to characterize the in-cylinder flow over the full compression stroke. Moreover, since bowl-in-piston cylinder geometries can substantially impact the in-cylinder flow, characterization of these flows requires the use of geometrically correct pistons. In this work, the flow has been visualized via a transparent piston top with a realistic bowl geometry, which causes severe experimental difficulties due to the spatial and temporal variation of the optical distortion. An advanced optical distortion correction method is described to allow reliable particle image velocimetry (PIV) measurements through the full compression stroke. Based on the ensemble-averaged velocity results, flow asymmetry characterized by the swirl center offset and the associated tilting of the vortex axis is quantified.
2015-04-14
Technical Paper
2015-01-1688
Eric Wood, Jeremy S. Neubauer, Evan Burton
Abstract With support from the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory developed BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles. The addition of high-resolution spatial-temporal travel histories enables BLAST-V to investigate user-defined infrastructure rollouts of publically accessible charging infrastructure, as well as quantify impacts on vehicle and station owners in terms of improved vehicle utility and station throughput. This paper presents simulation outputs from BLAST-V that quantify the utility improvements of multiple distinct rollouts of publically available Level 2 electric vehicle supply equipment (EVSE) in the Seattle, Washington, metropolitan area. Publically available data on existing Level 2 EVSE are also used as an input to BLAST-V. The resulting vehicle utility is compared to a number of mock rollout scenarios.
Viewing 151 to 180 of 21633

Filter