Display:

Results

Viewing 151 to 126 of 126
2015-04-14
Technical Paper
2015-01-1642
Shrey Aggarwal, Rama Subbu, Sanjay Gilotra
Abstract Testing, validation & evaluation are vital factors in terms of defining vehicle reliability and durability. Setting the correct ignition timing is crucial in the performance of the engine. It affects many variables including engine longevity, fuel economy, and engine power. It needs to be measured & controlled such that vehicle performance can be improved. Sparks occurring too soon or late in the engine cycle are often responsible for excessive vibrations and even engine damage. Today's spark-advance controllers are open-loop systems that measure parameters that affect the spark-advance setting and compensate for their effects. A closed-loop scheme instead measures the result of the actual spark advance and maintains an optimal spark-advance setting in the presence of disturbances. Attempt has been made in our endeavor to develop an embedded system device which can be used hands-on to measure the ignition timing with respect to T.D.C.
2015-04-14
Technical Paper
2015-01-1603
Ahmed A. Abdel-Rehim, Ahmed A. Hamouda
Abstract As the world is going through an evolutionary development in most of the science fields, there is an essential and exceptional demand for higher efficiency power generators to recover the thermal losses. Recently thermoelectric materials have attracted extensive attention for this purpose. The recent advancement in nanotechnology has a remarkable impact on thermoelectric materials development. This resulted in nano structured materials whose thermoelectric properties exhibit a great challenge to its bulk form, such as Silicon nanowires (SiNWs). Silicon nanowires are promising thermoelectric materials as they offer large reductions in thermal conductivity over bulk Si without significant decrease in the electrical conductivity. In the present work silicon nanowires have been implemented in fabricating a thermoelectric device which can be employed in different applications, such as engines, to recover part of the energy lost in these applications.
2015-04-14
Technical Paper
2015-01-1484
Daniel E. Toomey, Eric S. Winkel, Ram Krishnaswami
Abstract Since their inception, the design of airbag sensing systems has continued to evolve. The evolution of air bag sensing system design has been rapid. Electromechanical sensors used in earlier front air bag applications have been replaced by multi-point electronic sensors used to discriminate collision mechanics for potential air bag deployment in front, side and rollover accidents. In addition to multipoint electronic sensors, advanced air bag systems incorporate a variety of state sensors such as seat belt use status, seat track location, and occupant size classification that are taken into consideration by air bag system algorithms and occupant protection deployment strategies. Electronic sensing systems have allowed for the advent of event data recorders (EDRs), which over the past decade, have provided increasingly more information related to air bag deployment events in the field.
2015-04-14
Technical Paper
2015-01-0762
Mitsuru Kowada, Isao Azumagakito, Tetsuya Nagai, Nobuyuki Iwai, Ryoji Hiraoka
Abstract Attempts were made to measure knocking phenomenon by an optical method, which is free from influences of mechanical noises and is allowing an easy installation to an engine. Using a newly developed high durability optical probe, the light intensity of hydroxyl radical component, which is diffracted from the emitted light from combustion, was measured. The intensity of this emission component was measured at each crank angle and the maximum intensity in a cycle was identified. After that, the angular range in which the measured intensity exceeded 85% of this maximum intensity was defined as “CA85”. When a knocking was purposely induced by changing the conditions of the engine operation, there appeared the engine cycles that included CA85 less than a crank angle of 4 degrees. The frequency of occurrence of CA85 equal to or less than 4 degrees within a predetermined number of engine cycles, which can be interpreted as a knocking occurrence ratio, was denoted as “CA85-4”.
2015-04-14
Technical Paper
2015-01-0174
Advaita Datar, Amey Zare
Abstract Verification and Validation (V&V) techniques commonly use static analysis to detect property violations in modern software systems. However, besides checking for general programming errors like division by zero, array index out of bound etc., certain program patterns can also be verified in order to detect inconsistencies in the software. For instance, there could be several strongly related program entities, such as groups of variables or data structure members updated together, which are often observed across various parts of a program. We term such strongly related entities as group variables. When only a subset of group variables is updated at some part of a program, it could probably be a result of some inconsistency in implementation which may lead to unexpected behavior or failure of the underlying system. Therefore, verifying group variables and their write operations is essential to ensure the safety and reliability of software.
2015-04-14
Technical Paper
2015-01-0173
Stephen Barrett, Maximilien Bouchez
Abstract Engine ECU testing requires sophisticated sensor simulation and event capture equipment. FPGAs are the ideal devices to address these requirements. Their high performance and high flexibility are perfectly suited to the rapidly changing test needs of today's advanced ECUs. FPGAs offer significant advantages such as parallel processing, design scalability, ultra-fast pin-to-pin response time, design portability, and lifetime upgradability. All of these benefits are highly valuable when validating constantly bigger embedded software in shorter duration. This paper discusses the collaboration between Valeo and NI to define, implement, and deploy a graphical, open-source, FPGA-based engine simulation library for ECU verification.
2015-04-14
Technical Paper
2015-01-0191
Priti R. Ranadive, Vinay Vaidya, Chaitanya Rajguru
Abstract Improving reliability and quality of software is a major aspect in automotive industry. Software reliability and quality improves by reducing bugs or defects in the software. However, finding these defects at an early stage in the software development life cycle is important to reduce rework and cost. Manually detecting defects or bugs in large code sets is time consuming and is less accurate. Hence, using static or dynamic analysis tools has become a standard practice in automotive industry. Though many such tools are commercially available, it is observed that these tools are less used for various reasons. Some of the major reasons are users need to spend considerable amount of time to learn to use these tools to get desired output reports, customized checks are required for an application that are not provided by the tool and reports are too lengthy as well as cumbersome to analyze.
2015-04-14
Technical Paper
2015-01-0190
Mostafa Anwar Taie, Ibrahim El-Faramawy, Mohamed Elmawazini
Abstract In embedded system software architectural design, the Real-Time (RT) behavior estimation needs special care and contains many technical challenges. Most of the current approaches depend on either the engineering judgment or the actual measurements that are performed during the integration-testing phase. Both approaches may cause errors that lead to violations in the RT constraints. Both approaches are not error proof and can yield to RT constraints violations discovered during simulation of RT architectural design or during product validation. Impact on project could even be a Central Processing Unit (CPU) change. In this work, Operating System (OS) process Execution Time (ET) is considered the basic element of RT architectural design. Each process ET is predicted based on previous software releases, using Machine Learning (ML) algorithms.
2015-04-14
Technical Paper
2015-01-0195
Satishchandra C. Wani
Abstract Bond wires are used in automotive electronic modules to carry current from external harness to components where flexibility under thermal cyclic loading is very essential between PCB (Printed Circuit Board) and connectors. They are very thin wires (few μm) made up of gold, aluminum or copper and have to undergo mechanical reliability to withstand extreme mechanical and thermal loads during different vehicle operation scenarios. Thermal reliability of bond wire is to make sure that it can withstand prescribed electric current under given boundary conditions without fusing thereby retaining electronic module's functionality. While carrying current, bond wire by virtue of its nature resists electric current flow and generates heat also called as joule heating. Joule heating is proportional to current flow and electrical resistance and if not handled properly can lead to thermal run away conditions.
2015-04-14
Technical Paper
2015-01-0180
Karsten Schmidt, Denny Marx, Kai Richter, Konrad Reif, Andreas Schulze, Torsten Flämig
Abstract With the increasing complexity of electronic vehicle systems, one particular “gap” between function development and ECU integration becomes more and more apparent, and critical; albeit not new. The core of the problem is: as more functions are integrated and share the same E/E resources, they increasingly mutually influence and disturb each other in terms of memory, peripherals, and also timing and performance. This has two consequences: The amount of timing-related errors increases (because of the disturbance) and it becomes more difficult to find root causes of timing errors (because of the mutual influences). This calls for more systematic methods to deal with timing requirements in general and their transformation from function timing requirements to software architecture timing requirements in particular.
2015-04-14
Technical Paper
2015-01-0184
James Price
Abstract More than ten years have passed since the establishment of the AUTOSAR consortium. Today, AUTOSAR has become a well-established standard for automotive electronic control unit (ECU) development and network design. In fact, several original equipment manufacturers (OEMs) now mandate AUTOSAR when sourcing ECUs. With that being said, the standard is getting more complex as new concepts are added with each new release, making integration an increasingly difficult challenge - let alone a challenge developing it alongside ECU application functionality. This paper addresses the integration of AUTOSAR 4.x basic software stack into an ECU project and offers proposed flows for the integration process starting from the ECU extract to a fully configured AUTOSAR stack.
2015-04-14
Technical Paper
2015-01-0189
Rolf Schneider, Dominik Juergens, Andre Kohn
Abstract In the context of the ARAMiS project, AUDI AG contributed the development of a multi-core demonstrator based on car functions already in production. For this demonstrator, these legacy car functions were ported from single-core platforms to a multi-core platform to gain real world close-to-production experience while utilizing the new technology. For complex functions with high demands for computational resources, it may be necessary to distribute computation over several cores. In this context, we investigated the parallelization of a legacy sequential AUTOSAR function. A main contribution of this work is an analysis of mechanisms provided by AUTOSAR, their limitations and, possible remedy. This paper will point out observations and experiences during the development of this demonstrator and show practical solutions for parallelization in an AUTOSAR environment.
2015-04-14
Technical Paper
2015-01-0186
Syed Arshad Kazmi, Jin Seo Park, Jens Harnisch
Abstract End of Line tests are brief set of tests intended to evaluate ECU's in order to ensure correct functioning of its intended functionality. As these tests are executed on the production line, available time to perform these tests is limited. On one hand, faster production demands require these tests and its framework to be designed in a time optimized manner. On the other hand, increase in ECU functionality translates to an increase in test's functional coverage, requiring more time. Therefore the time taken to execute the tests reaches a critical point in overall ECU production. Availability of multicore microcontrollers with increase in clock speed can increase the performance of end of line tests, but design challenges e.g. synchronization do not guarantee a linear performance increase. Therefore, design of test execution framework is absolutely critical to increase performance of test execution.
2015-04-14
Technical Paper
2015-01-0213
Vinuchackravarthy Senthamilarasu, Anusha Baskaran, Krishnan Kutty
Abstract In the research field of automotive systems, Advanced Driver Assistance Systems (ADAS) are gaining paramount importance. As the significance for such systems increase, the challenges associated with it also increases. These challenges can arise due to technology, human factors, or due to natural elements (haze, fog, rain etc.). Among these, natural challenges, especially haze, pose a major setback for technologies depending on vision sensors. It is a known fact that the presence of haze in the atmosphere degrades the driver's visibility as well as the information available with the vision based ADAS. To ensure reliability of ADAS in different climatic conditions, it is vital to get back the information of the scene degraded by haze prior to analyzing the images. In this paper, the proposed work addresses this challenge with a novel and faster image preprocessing technique that can enhances the quality of haze affected images both in terms of visibility and visual perception.
2015-04-14
Technical Paper
2015-01-0215
Reena Kumari Behera, Smita Nair, Vinay Vaidya
Abstract This paper presents a simple yet novel approach to remove redundant data from outdoor scenes, thus finding significant application in Advanced Driver Assistance Systems (ADAS). A captured outdoor scene has two main parts, the ground region consisting of the road area along with other lane markings and the background region consisting of various structures, trees, sky etc. To extract the ground region, first the yellow and white road markings are segmented based on the HSI (Hue Saturation Intensity) color model and these regions are filled with the surrounding road color. Further the background region is segmented based on the Lab (Color-opponent) color model, which shows significant improvement as compared to other color spaces. To extract the background region such as the sky or ground region, it is assumed that the top and bottom most portions of the image does not consist of useful information.
2015-04-14
Technical Paper
2015-01-0199
Stefan Fuchs, Hans-Peter Schmidt
Abstract Real time data transfer over Ethernet, with an inhomogeneous physical layer is studied. Within the Ethernet network 100Base-TX and BroadR Reach© physical layers are used. Synchronization of devices via Ethernet is investigated and synchronized transfer of video streams is shown. Purpose-built Ethernet-Physical Layer Adapters (E-PLAs) are applied. It is demonstrated that an Ethernet network with different physical layers may be used for real time data transfer with just a little trade-off in synchronization and transfer delay.
2015-04-14
Technical Paper
2015-01-0216
Ping-Min Hsu, Ming Hung Li, Kuo-Ching Chang
Abstract This paper discusses noise filtering in an autonomous emergency braking (AEB) system with a sensor fusion between a millimeter wave (MMW) radar and a camera. Three kinds of noise, namely twice harmonic noise, ground noise, and specular reflection noise, are then filtered. The former is caused by the reflection of a radar wave between a target object and the MMW radar; therefore, one of the sensing distances would be twice as longer as one of others. An object featuring this characteristic is treated as the noise and filtered. Next, detecting a ground metal as the target object generates the second noise with a focus of car-like objects. That is, an object-with the sensing distance from the MMW radar being smaller than that from the camera by a threshold value-is taken as the ground metal noise and ignored. Moreover, the third noise happens when there is a radar wave reflection between an object and its surroundings.
2015-04-14
Technical Paper
2015-01-0205
Steve Trythall
Abstract Rapid resolution of electrical faults reduces costs, enhances brand image and maximizes vehicle availability. Although diagnostic systems continue to improve, service technicians frequently have to consult schematics, location views and other engineering resources to fix a problem. But this data can be hard to find, hard to understand, and out of date or wrong. This session presents new technology to leverage design data directly into the service domain. The technician is presented only with relevant vehicle-specific data, is able to navigate dynamically through electrical schematics, and can seamlessly link with other resources such as 3D models and repair procedures.
2015-04-14
Technical Paper
2015-01-0247
Sonakshi Sharma, Shubhranshu Garg, Vipul Kumar, Sudhir Kashinath Gupte
Abstract There are variety of motors and generators/alternators being manufactured internationally, for variety of applications. It is a difficult task for the user to identify and select the type of motor /generator/alternator for a specific use, by the designer and ultimately the user is totally unaware of what is bought and why. There is a need to designate the motors and generators. So that by interpretation of the identification nomenclature of the motor or generator, its type can be judged. Whether it is a series motor, an induction motor etc, in case of motors. This will eventually make it easy for the manufacturer, the buyer and the consumer to identify the motor or generator type. So a universally accepted and followed identification nomenclature is required to be developed which will henceforth make dealing in motors and generators simpler for all. It will prove to be useful during troubleshooting.
2015-04-14
Technical Paper
2015-01-0248
Hiroyasu Baba, Koji Kawasaki, Hideomi Kawachi
Abstract We have developed Li-ion battery heating system which is direct resistance heating for hybrid electric vehicles (HEV), plug-in hybrid vehicles (PHEV) and electric vehicles (EV) by use of an inverter and a motor. One relay is added between a positive terminal of Li-ion battery and one-phase (e.g. U-phase) of a three-phase motor. When additional relay is turned on, the motor coils, IGBTs (Insulated-gate bipolar transistor) and diodes in the inverter and a smoothing capacitor for the inverter constitute buck-boost DC to DC converter. IGBTs are controlled to repeat charging and discharging between the battery and the smoothing capacitor. We made a system prototype and examined battery heating capability. And also we optimized charging and discharging frequency from impedance and current to improve heat generation. This method can increase battery temperature from −20 degrees C to 0 degrees C in 5 minutes and can extend EV driving range.
2015-04-14
Technical Paper
2015-01-0259
Tyler Zellmer, Julio Rodriguez, John R. Wagner, Kim Alexander, Philip Pidgeon
Abstract According to the National Highway Traffic Safety Administration (NHTSA), motor collisions account for nearly 2.4 million injuries and 37 thousand fatalities each year in the United States. A great deal of research has been done in the area of vehicular safety, but very little has been completed to ensure licensed drivers are properly trained. Given the inherent risks in driving itself, the test for licensure should be uniform and consistent. To address this issue, an inexpensive, portable data acquisition and analysis system has been developed for the evaluation of driver performance. A study was performed to evaluate the system, and each participant was given a normalized driver rating. The average driver rating was μ=55.6, with a standard deviation of σ=12.3. All but 3 drivers fell into the so-called “Target Zone”, defined by a Driver Rating of μ± 1σ.
2015-04-14
Technical Paper
2015-01-0256
Changbo Fu, Paul (Tim) Freeman, John R. Wagner
Abstract Driver modeling is essential to both vehicle design and control unit development. It can improve the understanding of human driving behavior and decrease the cost and risk of vehicle system verification and validation. In this paper, three driver models were implemented to simulate the behavior of drivers subject to a run-off-road recovery event. Target path planning, pursuit behavior, compensate behavior, physical limitations, and neuromuscular modeling were taken into consideration in the feedforward/feedback driver model. A transfer function driver model and a cost function based driver model from a popular vehicle simulation software were also simulated and a comparison of these three models was made. The feedforward/feedback driver model exhibited the best balance of performance with smallest overshoot (0.226m), medium settling time (1.20s) and recovery time (4.30s).
2015-04-14
Technical Paper
2015-01-0258
Venkatesh Kareti, Priti Ranadive, Vinay Vaidya
Abstract Various Advanced Driver Assists Systems (ADAS) are being used today to increase safety of drivers. These systems viz. Forward Collision Warning (FCW), Lane Departure Warning (LDW), Pedestrian Detection (PD), are all based on inputs captured using a front mounted camera. It would be useful to combine all these applications together and process the same input for different application purpose. Additionally, multicore processors are now easily available and can be used for integrating multiple ADAS applications. This would lead to reduced cost and maintenance of ADAS systems with the same performance benefits. Since current ADAS applications are sequential and/or use single core processors there is a need to parallelize these applications so that multiple cores can be utilized optimally. In this paper, we discuss our experiments and results while attempting to integrate two such ADAS applications on a multicore embedded platform.
2015-04-14
Technical Paper
2015-01-0328
Wilko Jansen, Joe Amodeo, Sam Wakelam, Kamalesh Bhambare
Abstract The level of infotainment in today's vehicles and the customer expectation of the functionality imply a significant effort is required on thermal management of the systems, to guarantee their full operation under all operating conditions. The worst case thermal conditions the system will get exposed to are caused by solar loading on the cabin or heat up as a result of cabin heating. Simulation of a solar load driven case will be discussed in this paper. The long soak conditions during these tests result in the modelling requirement for long natural convection periods. This is creating a challenge for the conventional CFD simulations in turnaround time. New simulation methodology has resulted in significant speed up enabling these fully transient simulations in a reasonable turnaround time to enable programme support. A two phase approach to simulating this problem is proposed in this paper.
2015-04-14
Technical Paper
2015-01-0370
Modar Horani, Osamah Rawashdeh
Abstract Traditional Heat Ventilation and Air Conditioning (HVAC) control systems are reactive by design and largely dependent on the on-board sensory data available on a Controller Area Network (CAN) bus. The increasingly common Internet connectivity offered in today's vehicles, through infotainment and telematic systems, makes data available that may be used to improve current HVAC systems. This includes real-time outside relative humidity, ambient temperature, precipitation (i.e., rain, snow, etc.), and weather forecasts. This data, combined with position and route information of the vehicle, may be used to provide a more comfortable experience to vehicle occupants in addition to improving driver visibility through more intelligent humidity, and defrost control. While the possibility of improving HVAC control utilizing internet connectivity seems obvious, it is still currently unclear as to what extent.
2015-04-14
Technical Paper
2015-01-0464
Christian-Andreas Schumann, Eric Forkel, Thomas Klein, Dieter Gerlach, Egon Mueller
Abstract Total quality is becoming increasingly important for competitiveness. In order to achieve high quality, the requirements must be continuously compared with the results achieved in the process. This is done by means of measurement parameters and comparative values. The acquisition of the data requires appropriate measurement methods. The measurement methods and procedures have to be constantly developed in order to measure more precisely and to generate an even higher quality. Thus, the achieved product quality can be determined absolutely and relatively. If deviations from the planned quality parameters occur, the operator will be able to intervene immediately. The presented procedure is one of the noncontact (optical) measurement methods using CMMs, 3D scanners and 3D cameras. It is a combination of stereo photography and photogrammetry.
2015-04-14
Technical Paper
2015-01-0475
Truong Nguyen, John Bell
Abstract Modern automotive electrical and electronic architecture is comprised of the battery and charging system, power distribution boxes, electronic control units, electrical devices, grounds, and the means of connecting all of these together - the wire harness or Electrical Distribution System (EDS). As automotive electrical content and complexity increases, it becomes imperative to optimize the weight, size, cost, and manufacturability of a vehicle [1]. In terms of an EDS, the most potential gain can be realized if the EDS supplier and vehicle Original Equipment Manufacturer (OEM) work together during the advanced electrical & electronic architecture development and packaging design process. Traditionally, the electrical content, harness partitioning, and packaging locations are designed by the vehicle OEM with limited advanced input from the EDS supplier.
2015-04-14
Technical Paper
2015-01-0266
Dominik Juergens, Dominik Reinhardt, Rolf Schneider, Georg Hofstetter, Udo Dannebaum, Andreas Graf
Abstract The German funded project ARAMiS included work on several demonstrators one of which was a multicore approach on large scale software integration (LSSI) for the automotive domain. Here BMW and Audi intentionally implemented two different integration platforms to gain both experience and real life data on a Hypervisor based concept on one side as well as using only native AUTOSAR-based methods on the other side for later comparison. The idea was to obtain figures on the added overhead both for multicore as well as safety, based on practical work and close-to-production implementations. During implementation and evaluation on one hand there were a lot of valuable lessons learned about multicore in conjunction with safety. On the other hand valuable information was gathered to make it finally possible to set up a cost model for estimation of potential overhead generated by different integration approaches for safety related software functions.
2015-04-14
Technical Paper
2015-01-0260
Ashlie B. Hocking, John C. Knight, M. Anthony Aiello, Shin'ichi Shiraishi
Abstract Software verification is a critical component of software development. Software verification techniques include different forms of testing, inspection, static analysis, and formal verification. Formal verification offers the advantage that it corresponds, at least informally, to testing all possible paths through the software. There are two primary approaches to using formal verification to establish properties of software: (a) proving properties of a formal specification, and (b) proving an implementation is a refinement of its specification. The first approach allows inference of the proven properties of the implementation provided the implementation is correct. The second approach allows inference of the correctness of the implementation. Proving properties of a specification provides a means for detecting critical design flaws early in the development process.
2015-04-14
Technical Paper
2015-01-0275
Gokul Krithivasan, William Taylor, Jody Nelson
Abstract In ISO 26262, the top-level safety goals are derived using the Hazard Analysis and Risk Assessment. Functional safety requirements (FSRs) are then derived from these safety goals in the concept phase (ISO 26262-3:2011). The standard does not call out a specific method to develop these FSRs from safety goals. However, ISO 26262-8:2011, Clause 6, does establish requirements to ensure consistent management and correct specification of safety requirements with respect to their attributes and characteristics throughout the safety lifecycle. Hence, there are expectations on the part of system engineers to bridge this gap. The method proposed in this paper utilizes concepts from process modeling to ensure the completeness of these requirements, eliminate any external inconsistencies between them and improve verifiability.
Viewing 151 to 126 of 126

Filter