Display:

Results

Viewing 91 to 120 of 22708
2016-04-05
Technical Paper
2016-01-0419
Whitney Poling, Vesna Savic, Louis Hector, Anil Sachdev, Xiaohua Hu, Arun Devaraj, Fadi Abu-Farha
Abstract The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
2016-04-05
Journal Article
2016-01-1239
Xueyu Zhang, Zoran Filipi
Abstract This paper develops a methodology to optimize the supervisory controller for a heavy-duty series hybrid electric vehicle, with consideration of battery aging and cooling loss. Electrochemistrybased battery aging model is integrated into vehicle model. The side reaction, reductive electrolyte decomposition, is modeled to determine battery aging rate, and the thermal effect on this reaction rate is considered by Arrhenius Law. The resulting capacity and power fading is included in the system-level study. Sensitivity analysis shows that battery aging could cause fuel economy loss by 5.9%, and increasing temperature could improve fuel economy at any given state-of-health, while accelerating battery aging. Stochastic dynamic programming algorithm is applied to a modeled system to handle the tradeoff between two objectives: maximizing fuel economy and minimizing battery aging.
2016-04-05
Journal Article
2016-01-1234
Toshikazu Sugiura, Atsushi Tanida, Kazutaka Tamura
Abstract The adoption of silicon carbide (SiC) power semiconductors is regarded as a promising means of improving the fuel efficiency of all types of electrically powered vehicles, including plug-in, electric, fuel cell, and hybrid vehicles (PHVs, EVs, FCVs, and HVs). For this reason, adoption in a wide variety of vehicles is currently being studied, including in the fuel cell (FC) boost converter of an FC bus. The FC boost converter controls the output voltage of the FC up to 650 V. In this research, SiC Schottky barrier diodes (SiC-SBDs) were adopted in the upper arm of an FC boost converter. Since the forward voltage (Vf) of SiC-SBDs is smaller than conventional Si-PiN diodes (Si-PiNDs), the conduction loss of SiC-SBDs is correspondingly smaller. Recovery loss can also be reduced by at least 90% compared to Si-PiNDs since the recovery current of SiC-SBDs is substantially smaller.
2016-04-05
Technical Paper
2016-01-1233
Kensuke Sasaki, Apoorva Athavale, Brent Gagas, Takashi Fukushige, Takashi Kato, Robert Lorenz
Abstract Variable flux permanent magnet synchronous machines (VFPMSMs) have been designed by using finite element analysis (FEA) to evaluate speed-torque capability considering requirement for magnetization state (MS) manipulation. However, due to its unique characteristic to change the MS, numerous combinations of design parameters need to be evaluated to achieve a final design. To accelerate the design process, this paper presents a method that consists of an equivalent magnetic circuit model and a process to obtain magnet width and thickness that satisfy target maximum torque and power factor (P.F.) capability. This model includes magnet operating point analysis under given magnet width and thickness condition to achieve target MS and avoid demagnetization at full load. This analysis provides desired stator magnetomotive force, magnet and stator induced flux linkage. Therefore, expected torque and P.F. capability is calculated.
2016-04-05
Technical Paper
2016-01-1236
Jun Yeon PARK, Hojoong Lee
Abstract One of the ways to improve the fuel efficiency of the HEV (Hybrid and Electric Vehicles) is to optimize automotive electric system. In order to achieve this, the LDC (Low voltage DC-DC Converter) variable voltage was controlled. Using the ADAS (Advanced Driver Assistance System) map, the charge-discharge behaviors of 12V lead-acid battery was predicted during driving so that, the battery could be charged efficiently. In this study, the feedback control system for 12V battery discharging was designed to compromise between the 12V battery SOC (State of Charge) and the driving conditions at different traffic points. In contrast to earlier approaches, this experimental result indicates that the LDC variable voltage control based on ADAS is able to reduce the LDC average output power by 17.1% therefore, increasing fuel efficiency and ensuring the durability of the 12V battery.
2016-04-05
Technical Paper
2016-01-1235
Johannes Gragger, Alessandro Zanon, Michele De Gennaro, Jonathan Juergens, Antonio Fricassè, Luca Marengo, Igor Olavarria, Jutta Kinder
Abstract The widespread of hybrid and battery electric vehicles is vital for the future of low-carbon mobility. In this context the delivery of affordable and efficient electric motor technologies together with high energy density storage devices are key aspects to enable the mass market take-off of electrified vehicles. The objective of this paper is to provide the scientific community with the results and design features of an innovative and rare-earth free electric motor technology based on the synchronous reluctance machine concept. This technology is capable to provide sufficient power density and higher driving cycle energy efficiency compared to the current state-of-the-art rare-earth permanent magnet synchronous machines used for automotive applications. The motor is designed to be integrated within a hatchback rear driving axle vehicle, achieving the maximum energy efficiency in urban operational conditions.
2016-04-05
Technical Paper
2016-01-1290
J. Groenewald, James Marco, Nicholas Higgins, Anup Barai
Abstract While a number of publications have addressed the high-level requirements of remanufacturing to ensure its commercial and environmental sustainability, considerably less attention has been given to the technical data and associated test strategies needed for any evidence-based decision as to whether a vehicle energy storage system should be remanufactured - extending its in-vehicle life, redeployed for second-life (such as domestic or grid storage) or decommissioned for recycling. The aim of this paper is to critically review the strategic requirements for data at the different stages of the battery value-chain that is pertinent to an Electric Vehicle (EV) battery remanufacturing strategy. Discussed within the paper is the derivation of a feasible remanufacturing test strategy for the vehicle battery system.
2016-04-05
Technical Paper
2016-01-1289
Francis Assadian, Kevin R. Mallon, Bo Fu
Abstract Heavy-duty electric powertrains provide a potential solution to the high emissions and low fuel economy of trucks, buses, and other heavy-duty vehicles. However, the high-capacity batteries needed to power these vehicles are both cost and weight prohibitive. One possible method of supplementing battery power is to mount flexible solar panel modules to the roof of these vehicles, thereby allowing for a smaller battery (reducing battery cost and weight) or extended vehicle range. Electric buses identified as the type of vehicle that would derive the most benefit from roof-mounted solar panels due to their low operating speed (including frequent idling) and large available surface area. In this paper, the performance of an electric bus with combined battery and photovoltaic power sources is simulated on the Orange County Bus Cycle for average weather in Davis, CA.
2016-04-05
Journal Article
2016-01-1191
Saher Al Shakhshir, Torsten Berning
Abstract Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste heat. One critical technical problem of these fuel cells is still the water management: the proton exchange membrane in the center of these fuel cells has to be hydrated in order to stay proton-conductive while on the other hand excessive liquid water can lead to cell flooding and increased degradation rates. Clearly, a fundamental understanding of all aspects of water management in PEMFC is imperative. This includes the fuel cell water balance, i.e. which fraction of the product water leaves the fuel cell via the anode channels versus the cathode channel.
2016-04-05
Technical Paper
2016-01-1190
Terry A. Johnson, Christopher Ainscough, Danny Terlip, Graham Meadows, Liam Quinlan, Brad Wong
Abstract With the introduction of more fuel cell electric vehicles (FCEVs) on U.S. roadways, especially in California, the need for available hydrogen refueling stations is growing. While funding from the California Energy Commission is helping to solve this problem, solutions need to be developed and implemented to help reduce the time to commission a hydrogen station. The current practice of hydrogen station acceptance can take months because each vehicle manufacturer conducts their own testing and evaluation. This process is not practical or sufficient to support the timely development of a hydrogen fueling station network. To address this issue, as part of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Sandia National Laboratories and the National Renewable Energy Laboratory along with a team of stakeholders and contractor Powertech Labs has developed the Hydrogen Station Equipment Performance (HyStEP) Device.
2016-04-05
Technical Paper
2016-01-1195
Atsushi Baba, Kinnosuke Itabashi, Nozomu Teranishi, Yoshihiro Edamoto, Kensuke Osamura, Ichiro Maruta, Shuichi Adachi
Abstract This paper proposes a battery state estimation on a battery management system (BMS) for hybrid electric vehicles (HEVs) and electric vehicles (EVs). It is important to estimate a state of charge (SOC) and parameters of the battery such as a state of health (SOH), internal resistances and dynamics of electrochemical reactions. The BMS can provide information on the driving range of the EVs to the drivers by accurately estimating SOC and SOH. It can also calculate a state of power (SOP) to use the battery safely by accurately estimated SOC, internal resistances and others. For that purpose, this paper proposes the BMS adopted a simultaneous state of charge (SOC) and parameter estimation method using log-normalized unscented Kalman filter (LnUKF). The key idea is a lognormalization of the parameters to improve numerical stability and robustness of the algorithm. The proposed system is verified by a series of simulations using experimental data with EVs.
2016-04-05
Technical Paper
2016-01-1196
Yazhou Guo, Maji Luo, Jia Zou, Yunpeng Liu, Jianqiang Kang
Abstract Traction batteries are operated in severe working conditions of wide temperature range as the vehicles run in different seasons and regions, which effects battery performance deeply. Investigation on the effect of temperature under such circumstances on battery performance is very significant to promote the application of traction battery. In this paper, some tests are conducted on a ternary-material lithium-ion battery at various temperatures. The cycling performance and some significant parameters are evaluated at the whole temperature range, especially at the extreme temperatures (below -10°C or above 45°C). The results show that the battery performance becomes poor obviously at low temperatures, which is reflected in the decreased terminal voltage and the faded discharge capacity, and at too high temperatures (above 45°C), power and capacity also decrease, which happens in the later period of discharge process.
2016-04-05
Technical Paper
2016-01-1194
Panos D. Prezas, L. Somerville, P Jennings, A McGordon, J. K. Basco, T. Duong, I. Bloom
Abstract The effect of charge rate was determined using constant-current (CC) and the USABC Fast-Charge (FC) tests on commercial lithium-ion cells. Charging at high rates caused performance decline in the cells. Representing the resistance data as ΔR vs. Rn-1 plots was shown to be a viable method to remove the ambiguity inherent in the time-based analyses of the data. Comparing the ΔR vs. Rn-1 results, the change in resistance was proportional to charge rate in both the CC and FC cell data, with the FC cells displaying a greater rate of change. Changes, such as delamination, at the anode were seen in both CC and FC cells. The amount of delamination was proportional to charge rate in the CC cells. No analogous trend was seen in the FC cells; extensive delamination was seen in all cases. These changes may be due to the interaction of processes, such as lithium plating and i2R heating.
2016-04-05
Technical Paper
2016-01-1182
Andrej Ivanco, Balan Mariappan Selvaraj, Kawshik Murali, Arjun Narayanan, Avik Sarkar, Aviral Singh, Akshay Soni, Mark Benton, Prasanth Muralidharan, Johnell Brooks, Paul Venhovens, Craig Payne
Abstract The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the sixth generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development and implementation of a dual-purpose powertrain system enabling vehicle propulsion as well as stationary activities of the Deep Orange 6 vehicle concept. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish vehicle target and subsystem requirement, which formed the foundation of the Unique Selling Points (USPs) of the concept.
2016-04-05
Technical Paper
2016-01-1211
Hua Tian, WeiGuang Wang, Ge-Qun Shu, Xingyu Liang, Haiqiao Wei
Abstract Power lithium-ion battery is the core component of electric vehicles and hybrid electric vehicles (EVs and HEVs). Thermal management at different operating conditions affects the life, security and stability of lithium-ion battery pack. In this paper, a one-dimensional, multiscale, electrochemical-thermal coupled model was applied and perfected for a flat-plate-battery pack. The model is capable of predicting thermal and electrochemical behaviors of battery. To provide more guidance for the selection of thermal management, temperature evolutions and distributions in the battery pack at various ambient temperatures, discharge rates and thermal radiation coefficients were simulated based on six types of thermal management (adiabatic, natural convection, air cooling, liquid cooling, phase change material cooling, isothermal).
2016-04-05
Technical Paper
2016-01-1210
Koji Shiozaki, Ken Toshiyuki, Jae Seung Lee, Kyosuke Miyagi, Adam Barkley, Zach Cole, Brandon Passmore, Ty McNutt, Alexander B. Lostetter
Abstract This paper presents a new application of a vehicle on-board battery charger utilizing high frequency Silicon Carbide (SiC) power devices. SiC is one of the most promising alternatives to Silicon (Si) for power semiconductor devices due to its superior material characteristics such as lower on-state resistance, higher junction temperature, and higher switching frequency. An on-board charger prototype is developed demonstrating these advantages and a peak system efficiency of 95% is measured while operating with a switching frequency of 250 kHz. A maximum output power of 6.06 kW results in a gravimetric power density of 3.8 W/kg and a volumetric power density of 5.0 kW/L, which are about 10 times the densities compared with the current Prius Plug-In Si charger. SiC technology is indispensable to eco-friendly PHV/EV development.
2016-04-05
Technical Paper
2016-01-1209
Zhenli Zhang, Zhihong Jin, Perry Wyatt
Abstract Passively parallelizing two energy storage systems, one is energy type and the other is power type, requires minimal modifications of auto makers and thus a cost-effective method to enable advanced start stop technology. Traditional lead acid battery, lithium-ion battery, capacitor, are all candidate chemistries for dual energy storage solutions. However due to the dual nature of the technology the open circuit potential, resistance, and some other control variables should match in order to achieve optimal performance. In this work we use coupled equivalent circuit model and electrochemical model to study a few options of dual systems, namely the lead acid with NMC/LTO, lead acid with LFP-Graphite, and lead acid with capacitor. A few charging and discharging pulses are designed and simulated to evaluate the regen receiving capability and cranking capability of different chemistries.
2016-04-05
Technical Paper
2016-01-1207
Hiroki Nagai, Masahiro Morita, Koichi Satoh
Abstract Toyota introduced the first generation Prius in 1997. The vehicle was conceived, designed and launched as a dedicated, mass-produced global hybrid vehicle platform, the first of its kind. The introduction of the 2nd and 3rd generation Prius (2003, 2009) saw vehicles with significantly improved performance, including fuel efficiency. The Prius Alpha (Japan/EU), launched in 2011, represented Toyota first foray with Li-ion battery in a strong hybrid configuration. For the Prius Alpha, the adoption of a compact Li-ion battery resulted in sufficient cabin space to allow a 3rd row of seats while maintaining high fuel efficiency. Before and after the launch of the Prius Alpha, an extensive list of tests was performed on the Li-ion battery pack, including electrical, electrochemical, mechanical, and safety. The evaluations were performed in the lab, in the field (demonstration fleets) and by acquiring vehicles used by customers.
2016-04-05
Technical Paper
2016-01-1215
Zhenhai Gao, Xiaoting Zhang, Hongyu Hu, Dalei Guo, Hui Zhao, Huili Yu
Abstract The poor low-temperature behavior of Li-ion batteries has limited its application in the field of electric vehicles and hybrid electric vehicles. Many previous studies concentrate on developing new type of electrolyte to solve this problem. However, according to recent research, the key limitation at low temperature is the low diffusivity of lithium ion in the anode electrodes. Hence, it is potential to study anode materials to improve low-temperature behavior of LIBs. ZnFe2O4 with higher theoretical capacity is low toxicity and abundance, contributing to its commercial application. Different ZnFe2O4 crystalline shapes have different particle sizes. Among them, the cubic ZnFe2O4 with smaller particle size will increase its own electronic and ionic conductance at lower temperature. In this regard, we evaluated low-temperature performance of LIBs with ZnFe2O4 cubes as anode materials at -25°C.
2016-04-05
Technical Paper
2016-01-1214
Hillol Kumar Roy, Andrew McGordon, Paul A Jennings
Abstract Battery sizing has significant importance for the performance of hybrid electric vehicles (HEVs). Although several research has been done over the years for the battery sizing, no research has focused on battery system efficiency which affects fuel economy. This paper has investigated battery system efficiencies of different optimum battery sizes which were optimised using two design optimisation methodologies. The first methodology considered a single driving pattern at a time, whereas, the second methodology considered different driving patterns simultaneously for the optimisation. The study considered a simulation model of a power-split HEV for the optimisation of battery size along with internal combustion engine, motor, and generator. An electric-assist charge sustaining supervisory control strategy was considered as the energy management. The maximum speed, acceleration, and gradeability were considered as design constraints.
2016-04-05
Technical Paper
2016-01-1213
Ram Vijayagopal, Kevin Gallagher, Daeheung Lee, Aymeric Rousseau
Abstract Present-day battery technologies support a battery electric vehicle with a 300mile range (BEV 300), but the cost of such a vehicle hinders its large-scale adoption by consumers. The U.S. Department of Energy (DOE) has set aggressive cost targets for battery technologies. At present, no single technology meets the cost, energy, and power requirements of a BEV 300, but a combination of multiple batteries with different capabilities might be able to lower the overall cost closer to the DOE target. This study looks at how such a combination can be implemented in vehicle simulation models and compares the vehicle manufacturing and operating costs to a baseline BEV 300. Preliminary analysis shows an opportunity to modestly reduce BEV 300 energy storage system cost by about 8% using a battery pack that combines an energy and power battery. The baseline vehicle considered in the study uses a single battery sized to meet both the power and energy requirements of a BEV 300.
2016-04-05
Technical Paper
2016-01-1212
Yupu Chen, Miaohua Huang
Abstract Lithium-ion battery plays a key role in electric vehicles, which is critical to the system availability. One of the most important aspects in battery managements systems(BMS) in electric vehicles is the stage of health(SOH) estimation. The state of health (SOH) estimation is very critical to battery management system to ensure the safety and reliability of EV battery operation. The classical approach of current integration(coulomb counting) can't get the accurate values because of accumulative error. In order to provide timely maintenance and replacements of electric vehicles, several estimation approaches have been proposed to develop a reliable and accurate battery state of health estimation. A common drawback of previous algorithm is that the computation quantity is huge and not quite accurate, that is updated partially in this study.
2016-04-05
Technical Paper
2016-01-1200
Zhiyun Zhang, Miaohua Huang, Yupu Chen, Dong Gao
Abstract Whether the available energy of the on-board battery pack is enough for the driver’s next trip is a major contributor in slowing the growth rate of Electric Vehicles (EVs). What’s more, the actual capacity of the battery pack depend on so many factors that a real-time estimation of the state of charge of the battery pack is often difficult. We proposed a big-data based algorithm to build a battery pack dynamic model for the online state of charge estimation and a stochastic model for the energy consumption prediction. And the good performance of sensors, high-bandwidth communication systems and cloud servers make it convenient to measure and collect the related data, which are grouped into three categories: standard, historical and real-time data. First a resistance-capacitance ( RC )-equivalent circuit is taken consideration to simplify the battery dynamics.
2016-04-05
Technical Paper
2016-01-1199
Yao Hong, Cheol W. Lee
Abstract This paper begins with a baseline multi-objective optimization problem for the lithium-ion battery cell. Maximizing the energy per unit separator area and minimizing the mass per unit separator area are considered as the objectives when the thickness and the porosity of the positive electrode are chosen as design variables in the baseline problem. By employing a reaction zone model of a Graphite/Iron Phosphate Lithium-ion Cell and the Genetic Algorithm, it is shown the shape of the Pareto optimal front for the formulated optimization takes a convex form. The identified shape of the Pareto optimal front is expected to guide Design of Experiments (DOE) and product design. Compared with the conventional studies whose optimizations are based on a single objective of maximizing the specific energy, the proposed multi-objective optimization approach offers more flexibility to the product designers when trade-off between conflicting objectives is required.
2016-04-05
Journal Article
2016-01-1198
Pascal Schmalen, Peter Plapper, Wayne Cai
Abstract Laser welding of dissimilar metals such as Aluminum and Copper, which is required for Li-ion battery joining, is challenging due to the inevitable formation of the brittle and high electrical-resistant intermetallic compounds. Recent research has shown that by using a novel technology, called laser braze-welding, the Al-Cu intermetallics can be minimized to achieve superior mechanical and electrical joint performance. This paper investigates the robustness of the laser braze-welding process. Three product and process categories, i.e. choice of materials, joint configurations, and process conditions, are studied. It is found that in-process effects such as sample cleanness and shielding gas fluctuations have a minor influence on the process robustness. Furthermore, many pre-process effects, e.g. design changes such as multiple layers or anodized base material can be successfully welded by process adaption.
2016-04-05
Technical Paper
2016-01-1197
Zhengbin Wu, Rongcheng Weng, Zhiqun Zhang, Juan Li
Abstract An equivalent circuit model for lithium-ion battery including capacitor and inductor with complex parameters is proposed. The imaginary part of the complex-valued capacitor expresses diffusion processes instead of constant phase element, which leads to a higher computational efficiency by removing the exponential variant calculation. The inductor with the complex parameter, the imaginary part accounting for the frequency-dependent magnetic hysteresis loss of battery current collectors and cables, can accurately regenerate the impedance characteristics at high frequencies with various linear slope angles to the real axis in a Nyquist plot. The fitted electrochemical impedance spectrum of a lithium iron phosphate/graphite battery with this proposed model is compared to the measured data. The maximum relative error of the impedance magnitude is 4.94% at the frequencies between 0.01 Hz and 10 kHz.
2016-04-05
Technical Paper
2016-01-1205
Chih-Hung (Erik) Yen, Taeyoung Han, Shailendra Kaushik, Bahram Khalighi
Abstract As one of many pack-level battery simulation approaches developed within the General Motors-led Computer-Aided Engineering of Automotive Batteries (CAEBAT) Phase 1 project, the system approach treats the entire battery pack as a dynamic system which includes multiple engineering disciplines for simulation. It is the most efficient approach of all the CAEBAT battery pack-level approaches in terms of computational time and resources. This paper reports the application of the system approach for a 24-cell liquid-cooled prototype battery pack. It also summarizes the verification of the approach by comparing the simulation results with the measurement data. The results using the system approach are found to have a very good agreement with the measurements.
2016-04-05
Technical Paper
2016-01-1204
Dongchang Pan, Sichuan Xu, Chunjing Lin, Guofeng Chang
Abstract As one of the most crucial components in electric vehicles, power batteries generate abundant heat during charging and discharging processes. Thermal management system (TMS), which is designed to keep the battery cells within an optimum temperature range and to maintain an even temperature distribution from cell to cell, is vital for the high efficiency, long calendar life and reliable safety of these power batteries. With the desirable features of low system complexity, light weight, high energy efficiency and good battery thermal uniformity, thermal management using composite phase change materials (PCMs) has drawn great attention in the past fifteen years. In the hope of supplying helpful guidelines for the design of the PCM-based TMSs, this work begins with the summarization of the most commonly applied heat transfer enhancement methods (i.e., the use of thermally conductive particles, metal fin, expanded graphite matrix and metal foam) for PCMs by different researchers.
2016-04-05
Technical Paper
2016-01-1203
Zhang Qiao, Weiwen Deng, Jian Wu, Feng Ju, Jingshan Li
Abstract This paper describes a novel power management control strategy of battery and supercapacitor hybrid energy storage system to improve system efficiency and battery lifetime. In the presented research, the high and low frequency power demand in the load is separated by a Haar wavelet transform algorithm to overcome the problem of battery overload work and associated degeneration in battery lifetime resulting from an ineffective distribution between battery and supercapacitor. The purpose of frequency distribution is that the supercapacitor is used to share high frequency power components of load power demand to smooth the power demand applied to battery. However, the sole frequency control often fails to realize the optimal utilization of supercapacitor because of the uncertain variation in the driving cycle.
2016-04-05
Technical Paper
2016-01-1202
Jihas Khan
Abstract With the advent of hybrid and electric cars battery monitoring systems and battery management systems have become bundled with more and more sophisticated algorithms and specifications. The validation of these systems are a head ache for OEMs and Tier ones considering the massive battery, high voltage and the current involved with the real loads directly or in directly connected to them. This paper is aimed at providing an intuitive explanation of these challenges and solutions which employ HILS for the component level validation of the above units. . Conventional validation for these systems produce test results much later in the embedded product development life cycle which calls for an additional over head of cost, resource, time and effort. A Proposed solution is to find the accuracy of SOC, SOH estimation algorithm in the battery monitoring sensor which usually will be clamped to the real battery itself.
Viewing 91 to 120 of 22708

Filter