Display:

Results

Viewing 91 to 120 of 21705
2015-04-15
Book
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Telematics, the convergence of telecommunications and informatics, uses electronic and computer technology built in to the vehicle to provide vehicle tracking, satellite navigation, wireless technology, and diagnostic information. In the episode “Diagnostics and Prognostics: Telematics Deep Dive” (8:09), an engineer from Delphi’s Telematics program discusses the advantages and challenges of telematics devices for the automotive industry, demonstrates the installation of an aftermarket telematics device, and shows how telematics can enhance diagnostics and preventative maintenance.
2015-04-15
Standard
J2974_201504
This SAE Technical Information Report provides information on Automotive Battery Recycling. This document provides a compilation of current recycling definitions, technologies and flow sheets and their application to different battery chemistries.
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Automated Vehicles: Sensors and Future Technologies” (24:31), highly automated driving is looked at in detail as the culmination of years of research in automotive technology, sensors, infrastructure, software, and systems integration. Real-life case studies show how organizations are actually developing solutions to the challenge of making cars safer with less driver intervention. IAV Automotive Engineering demonstrates how a highly automated vehicle capable of lane changing was created.
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Just how prevalent is the problem of counterfeit electronic parts? What are the consequences of using sub-par components in safety or mission critical systems? The Federal Aviation Administration estimates that 2% of the 26 million airline parts installed each year are counterfeit, accounting for more than 520,000 units, maybe more.
2015-04-15
Book
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Automated driving is made possible through the data acquisition and processing of many different kinds of sensors working in unison. Sensors, cameras, radar, and lidar must work cohesively together to safely provide automated features. In the episode “Automated Vehicles: Converging Sensor Data” (8:01), engineers from IAV Automotive Engineering discuss the challenges associated with the sensor data fusion, and one of Continental North America’s technical teams demonstrate how sensors, radars, and safety systems converge to enable higher levels of automated driving.
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention” (21:04), Delphi engineers explain how they leverage the growing number of sensors and computing power in vehicles to diagnose and proactively solve emerging mechanical or electronic problems, before a breakdown occurs. This video also looks at the next generation of automotive telematics, with HEM Data demonstrating how in-vehicle data acquisition is used to monitor the inner workings of vehicles.
2015-04-15
WIP Standard
J1939/14
This document defines a physical layer having a higher bandwidth capacity than other physical layers defined for SAE J1939. Newer transceiver technologies are utilized to minimize EMI. This SAE Recommended Practice is intended for light- and heavy-duty vehicles on- or off-road as well as appropriate stationary applications which use vehicle derived components (e.g., generator sets). Vehicles of interest include but are not limited to: on- and off-highway trucks and their trailers; construction equipment; and agricultural equipment and implements.
2015-04-15
WIP Standard
J1939/11
This document defines a physical layer having a robust immunity to EMI and physical properties suitable for harsh environments. These SAE Recommended Practices are intended for light- and heavy-duty vehicles on- or off-road as well as appropriate stationary applications which use vehicle derived components (e.g., generator sets). Vehicles of interest include but are not limited to: on- and off-highway trucks and their trailers; construction equipment; and agricultural equipment and implements.
2015-04-14
Collection
Active Safety and Driver assistance systems are gaining importance as many passive safety systems have already been found to have yielded significant safety benefits that are possible from the deployment of those systems in the fleet. Similar success will much depend upon how fast these systems proliferate the entire passenger vehicle fleet. It will also depend on the deployment strategies used by the industry and the government as well as consumer acceptance and market demand for these systems. Additionally, opportunities exist to use the information gained from the various onboard sensors and vision systems in active safety systems for improving the effectiveness of today’s passive safety systems such as seat belts, airbags, and post-crash safety systems even further by the integration of active and passive safety systems.
2015-04-14
Collection
Model-Based Design has become a well-accepted development style for embedded control and software. This technical paper collection is designed to cover new processes, methods, and applications of new processes / methods to reduce development time and improve software quality. A particular emphasis will be placed on methods such as executable specification, design through simulation, early verification, automatic code generation, and model-in-the-loop testing.
2015-04-14
Collection
This technical paper collection covers the control, calibration, and diagnostics of the engine, powertrain, and supporting electromechanical subsystems related to energy management in conventional and hybrid operation, considering the simultaneous optimization of hardware design parameters and control software calibration parameters.
2015-04-14
Collection
The success of HEV's, PHEV's & EV's is highly dependent on their batteries. This collection focuses on advanced battery technologies, including, but not limited to: advanced materials and cell chemistries, battery management systems and controls, modeling, testing, diagnosis and health monitoring, safety, reliability, durability, battery charging, battery economics/cost reduction, and system integration/optimization.
2015-04-14
Collection
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
2015-04-14
WIP Standard
AS6509
Fibre Channel is the primary avionics bus on many modern military aircraft. It is also the defined High-Speed bus for MIL-STD-1760E weapons applications. Profiled Ethernet networks are the primary avionics bus in many commercial aircraft and Commercial Ethernet is an ever increasing presence in modern military aircraft as well. This network standard is a convergence of Fibre Channel and Ethernet into a unified network standard which will provide a seamless approach to integrating end systems from either technology into a merged network structure. This work is based upon the commercial data storage market industry’s work on the Converged Data Storage Network or FCoE (Fibre Channel over Ethernet). This effort will look at profiling the FCoE work done in the commercial industry and adding information where necessary to affect a networking standard that will seamlessly integrate end systems from Commercial Ethernet, Fibre Channel, or FCoE enhanced devices.
2015-04-14
Technical Paper
2015-01-1197
Chao Chen, Franz Diwoky, Zoran Pavlovic, Johann Wurzenberger
This paper presents a system-level thermal model of a fluid-cooled Li-Ion battery module. The model is a reduced order model (ROM) identified by results from finite element analysis (FEA)/computational fluid dynamic (CFD) coupling simulation using the linear and time-invariant (LTI) method. The ROM consists of two LTI sub-systems: one of which describes the battery temperature response to a transient battery current, and the other of which takes into account of the battery temperature variation due to a heat flux induced by a varied inlet temperature of the battery cooling circuit. The thermal LTI model can be coupled to an electrical model to build a complete system-level battery ROM. Test examples show that the ROM is able to provide as accurate results as those from FEA/CFD coupling simulations.
2015-04-14
Technical Paper
2015-01-1190
Matthew Shirk, Jeffrey Wishart
Abstract As part of the U.S. Department of Energy's Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level two electric vehicle supply equipment, while two were exclusively DC fast charged with a 50 kilowatt fast charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals throughout on-road mile accumulation. Battery tests performed include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests.
2015-04-14
Technical Paper
2015-01-1189
Satyam Panchal, Scott Mathewson, Roydon Fraser, Richard Culham, Michael Fowler
Abstract A major challenge in the development of the next generation electric and hybrid electric vehicle (EV and HEV) technology is the control and management of heat generation and operating temperatures. Vehicle performance, reliability and ultimately consumer market adoption are integrally dependent on successful battery thermal management designs. In addition to this, crucial to thermal modeling is accurate thermo-physical property input. Therefore, to design a thermal management system and for thermal modeling, a designer must study the thermal characteristics of batteries. This work presents a purely experimental thermal characterization of thermo-physical properties of a lithium-ion battery utilizing a promising electrode material, LiFePO4, in a prismatic pouch configuration. In this research, the thermal resistance and corresponding thermal conductivity of prismatic battery materials is evaluated.
2015-04-14
Technical Paper
2015-01-1191
Jiangong Zhu, Zechang Sun, Xuezhe Wei, Haifeng Dai
Abstract An electrochemical impedance spectroscopy battery model based on the porous electrode theory is used in the paper, which can comprehensively depict the internal state of the battery. The effect of battery key parameters (the radius of particle, electrochemical reaction rate constant, solid/electrolyte diffusion coefficient, conductivity) to the simulated impedance spectroscopy are discussed. Based on the EIS analysis, a lithium-ion battery optimized equivalent circuit model is built. The parameters in the equivalent circuit model have more clear physical meaning. The reliability of the optimized equivalent circuit model is verified by compared the model and experiments. The relationship between the external condition and internal resistance could be studied according to the optimized equivalent circuit model. Thus the internal process of the power battery is better understood.
2015-04-14
Technical Paper
2015-01-1196
Jeremy S. Neubauer, Eric Wood
Abstract Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and to quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios.
2015-04-14
Technical Paper
2015-01-1195
Kiyotaka Maeda, Masashi Takahashi
Abstract To verify the appropriateness of the vibration test conditions of ISO 12405, we performed tailoring to derive power spectrum densities and test durations as vibration test conditions. Vehicles used for tailoring included two electric vehicles and one plug-in hybrid electric vehicle. Those vehicles were equipped with accelerometers and were run on seven different road types at different speeds while data on the acceleration of the battery packs were recorded. The power spectrum densities for three axes that were derived from the obtained acceleration data were similar in form to the power spectrum densities of ISO 12405, and almost the same root mean square accelerations were obtained, confirming that they are appropriate. However, both experiments and theory suggest that the test duration for the Z-axis exceeds those of the X- and Y-axes.
2015-04-14
Technical Paper
2015-01-1183
Padmanaban Dheenadhayalan, Anush Nair, Mithun Manalikandy, Anurag Reghu, Jacob John, V S Rani
Abstract Hybrid and electric vehicles are becoming increasingly popular these days owing to concerns over exhaustion of conventional fuel sources, pollution from combustion, as well as high carbon foot print of these fuels. Lithium-ion batteries are widely preferred as the source of power for hybrid and electric vehicles because of their high monomer voltage and high energy density. Accurate estimation of the State of Charge (SoC) of battery is crucial in the electric vehicle. It provides the information on the range of operation of the vehicle. It also ensures the safety and reliability of the battery unit. Accurate State of Charge estimation also enables more optimized battery pack design for the electric vehicle. Conventional methods for State of Charge estimation such as Coulomb counting and Open Circuit Voltage (OCV) measurement suffer from inaccuracies and is affected by noise during the vehicle operation.
2015-04-14
Technical Paper
2015-01-1181
Zhihong Jin, Zhenli Zhang, Timur Aliyev, Anthony Rick, Brian Sisk
Abstract Power limit estimation of a lithium-ion battery pack can be employed by a battery management system (BMS) to balance a variety of operational considerations, including optimization of pulse capability while avoiding damage and minimizing aging. Consideration of cell-to-cell performance variability of lithium-ion batteries is critical to correct estimation of the battery pack power limit as well as proper sizing of the individual cells in the battery. Further, understanding of cell variability is necessary to protect the cell and other system components (e.g., fuse and contactor, from over-current damage). In this work, we present the use of an equivalent circuit model for estimation of the power limit of lithium-ion battery packs by considering the individual cell variability under current or voltage constraints. We compare the power limit estimation by using individual cell characteristics compared to the estimate found using only max/min values of cell characteristics.
2015-04-14
Technical Paper
2015-01-1182
Mehrdad Mastali Majdabadi Kohneh, Ehsan Samadani, Siamak Farhad, Roydon Fraser, Michael Fowler
Abstract Lithium-ion batteries (LIBs) are one of the best candidates as energy storage systems for automobile applications due to their high power and energy densities. However, durability in comparison to other battery chemistries continues to be key factor in prevention of wide scale adoption by the automotive industry. In order to design more-durable, longer-life, batteries, reliable and predictive battery models are required. In this paper, an effective model for simulating full-size LIBs is employed that can predict the operating voltage of the cell and the distribution of variables such as electrochemical current generation and battery state of charge (SOC). This predictive ability is used to examine the effect of parameters such as current collector thickness and tab location for the purpose of reducing non-uniform voltage and current distribution in the cell. It is identified that reducing the non-uniformities can reduce the ageing effects and increase the battery durability.
2015-04-14
Technical Paper
2015-01-1188
Seongjun Yun, SungJin Park, Daekwang Kim, Junyong Lee, Sejun Kim, Kwang-yeon Kim
Abstract The fuel economy of a vehicle can be improved by recuperating the kinetic energy when the vehicle is decelerated. However, if there is no electrical traction component, the recuperated energy can be used only by the other electrical systems of the vehicle. Thus, the fuel economy improvement can be maximized by balancing the recuperated energy and the consumed energy. Also, suitable alternator and battery management is required to maximize the fuel economy. This paper describes a design optimization process of the alternator and battery system equipped with recuperation control algorithms for a mid-sized sedan based on the fuel economy and system cost. A vehicle model using AVL Cruise is developed for cycle simulations and validated with experimental data. The validated model is used for the parametric study and design optimization of the alternator and battery systems with single and dual energy storage.
2015-04-14
Technical Paper
2015-01-1185
Brian Sisk, Timur Aliyev, Zhenli Zhang, Zhihong Jin, Negin Salami, Kem Obasih, Anthony Rick
Abstract Competitive engineering of battery packs for vehicle applications requires a careful alignment of function against vehicle manufacturer requirements. Traditional battery engineering practices focus on flow down of requirements from the top-level system requirements through to low-level components, meeting or exceeding each requirement at every level. This process can easily produce an over-engineered, cost-uncompetitive product. By integrating the key limiting factors of battery performance, we can directly compare battery capability to requirements. Here, we consider a power-oriented microhybrid battery system using coupled thermal and electrochemical modeling. We demonstrate that using dynamic resistance acquired from drive cycle characteristics can reduce the total size of the pack compared to typical static, fixed-duration resistance values.
2015-04-14
Technical Paper
2015-01-1186
Michael Safoutin, Jeff Cherry, Joseph McDonald, SoDuk Lee
Abstract While equivalent circuit modeling is an effective way to model the performance of automotive Li-ion batteries, in some applications it is more convenient to refer to round-trip energy efficiency. Energy efficiency of either cells or full packs is seldom documented by manufacturers in enough detail to provide an accurate impression of this metric over a range of operating conditions. The energy efficiency of a full battery pack may also be subject to more variables than would be represented by extrapolating results obtained from a single cell, and can be more demanding to measure in an accurate and consistent manner. Roundtrip energy efficiency of a 22.8-kWh A123 Li-ion (Lithium Iron Phosphate, LiFePO4) battery pack was measured by applying a fixed quantity of charge and discharge current between 0.2C and 2C rates and at SOCs between 10% and 90% at an average temperature of 23°C.
2015-04-14
Technical Paper
2015-01-1180
Letao Zhu, Zechang Sun, Haifeng Dai, Xuezhe Wei
Abstract This paper aims at accurately modeling the nonlinear hysteretic relationship between open circuit voltage (OCV) and state of charge (SOC) for LiFePO4 batteries. The OCV-SOC hysteresis model is based on the discrete Preisach approach which divides the Preisach triangle into finite squares. To determine the weight of each square, a linear function system is constructed including a series of linear equations formulated at every sample time. This function system can be solved by computer offline. When applying this approach online, the calculated square weight vector is pre-stored in advance. Then through multiple operations with hysteresis state vector of squares updated online at every sampling time, the SOC considering the influence of OCV-SOC hysteresis is predicted.
2015-04-14
Technical Paper
2015-01-1179
Christopher J. Brooks, Eric Kreidler
Abstract Significant research has been underway for many years to develop technologies to electrochemically power vehicles with limited success. Unfortunately, most technologies fail to achieve theoretical performance and/or are prohibitively too expensive for mass marketed vehicles. Most of the issues with electrochemical technologies can ultimately be attributed to materials issues, whether it is cost, durability, or activity. A broad examination of potential electrochemical technologies is provided identifying key materials issues with each. Included are the results of recent research involving lithium-oxygen batteries. The observations from this research have identified the electrochemical product, lithium peroxide, and its properties to be the most pressing material issue for lithium-oxygen battery. A future research vision is proposed counter to the current research trend of electrocatalyst/electrolyte development.
2015-04-14
Technical Paper
2015-01-1154
Benjamin Black, Tomohiro Morita, Yusuke Minami, David Farnia
Abstract Test and validation of control systems for hybrid vehicle power trains provide a unique set of challenges. Not only does the electronic control unit (ECU), or pair of ECUs, need to smoothly coordinate power flow between two or more power plants, but it also must handle the power electronics' high-speed dynamics due to PWM signals frequently in the 10-20 kHz range. The trend in testing all-electric and hybrid-electric ECUs has moved toward using field-programmable gate arrays (FPGAs) as the processing node for simulating inverter and electric motor dynamics in real time. Acting as a purpose-built processor colocated with analog and digital input and output, the FPGA makes it possible for real-time simulation loop rates on the order of one microsecond.
2015-04-14
Technical Paper
2015-01-0575
SongAn Zhang, Qing Zhou, Yong Xia
Abstract Small lightweight electric vehicle (SLEV) is an approach for compensating low energy density of the current battery. However, small lightweight vehicle presents technical challenges to crash safety design. One issue is that mass of battery pack and occupants is a significant portion of vehicle's total weight, and therefore, the mass distribution has great influence on crash response. This paper presents a parametric analysis using finite element modeling. We first build LS-DYNA model of a two-seater SLEV with curb weight of 600 kg. The model has no complex components and can provide reasonable crash pulses under full frontal rigid barrier crash loading and offset deformable barrier (ODB) crash loading.
Viewing 91 to 120 of 21705

Filter