Display:

Results

Viewing 61 to 90 of 22709
2016-04-07
Magazine
Defying the disruptors and driving innovation Four top engineering executives discuss how their "traditional" companies are finding new technology opportunities and business growth amid the start-ups-and are even doing some disrupting themselves. Preparing for a 48-volt revival The quest to improve fuel economy is not waning, nor is the desire to achieve higher mpg through the use of just the right lightweight material for the right vehicle application. Additive manufacturing enhances GTDI pistons Selective Laser Melting may help manufacture future gasoline-engine pistons with enhanced heat-transfer properties and reduced weight.
2016-04-06
Standard
J2202_201604
This SAE Recommended Practice provides general guidelines on the material selection, construction and qualification of components and wiring systems used to construct wiring systems for Heavy Duty Vehicles The guidelines are limited to primary wiring systems of less than 50 V and includes cable sizes American Wire Gage 20 to AWG 4 on heavy-duty on-highway trucks. The document identifies appropriate operating performances requirements. This document excludes the male to female connection of the SAE J560 connectors.
2016-04-05
Journal Article
2015-01-9152
André Lundkvist, Arne Nykänen, Roger Johnsson
Abstract Many of the information systems in cars require visual attention, and a way to reduce both visual and cognitive workload could be to use sound. An experiment was designed in order to determine how driving and secondary task performance is affected by the use of information sound signals and their spatial positions. The experiment was performed in a driving simulator utilizing Lane Change Task as a driving scenario in combination with the Surrogate Reference Task as a secondary task. Two different signal sounds with different spatial positions informed the driver when a lane change should be made and when a new secondary task was presented. Driving performance was significantly improved when both signal sounds were presented in front of the driver. No significant effects on secondary task performance were found. It is recommended that signal sounds are placed in front of the driver, when possible, if the goal is to draw attention forward.
2016-04-05
Journal Article
2015-01-9153
André Lundkvist, Arne Nykänen
Abstract The number of advanced driver assistance systems is constantly increasing. Many of the systems require visual attention, and a way to reduce risks associated with inattention could be to use multisensory signals. A driver's main attention is in front of the car, but inattention to surrounding areas beside and behind the car can be a risk. Therefore, there is a need for driver assistance systems capable of directing attention to the sides. In a simulator study, combined visual, auditory and vibrotactile signals for directional attention capture were designed for use in driver assistance systems, such as blind spot information, parking assistance, collision warnings, navigation, lane departure warning etc. An experiment was conducted in order to measure the effects of the use of different sensory modalities on directional attention (left/right) in driver assistance systems.
2016-04-05
WIP Standard
J2945/11
This effort will be a recommend best practices document outlining how to use the J2735 Signal Request and Signal Status messages in the standard relating to signalized systems status. It primary content will deal with explaining and demonstrating by small working examples how these messages are constructed and used to meet operational needs of user. Particular attention will be paid to the interaction between the SAE work and the relevant NTCIP standards used in the signal control system. [The SAE J2735 document, being a data dictionary and not a guide, allowed only a brief summary of this sort of material.] The intended audience for this effort are those developing new deployment using these messages in connection with intersection safety applications. This will be a recommend practice, not a standard.
2016-04-05
Technical Paper
2016-01-0054
Eduard Lyubimov, Sergey Gladyshev, Dmitriy Istselemov, Nikolay Belyaev
The synchronous electrical machines are used in regular cars, electrical, and hybrid cars as generators or motors. They need to be tested after fabrication and also during maintenance. For this purpose can be used suggested measurement complex. The software structure of the considered measurement complex was defined according: Russian, IEC, and IEEE standards for testing synchronous machines. The software of measurement complex was designed by using Lab VIEW development modules and is orientated to work with National Instruments hardware. It consist of nine interconnected Virtual Instruments (VIs) to carry out: the no-load test, the sustained short-circuit test, the V-curve test, the load angle test, to plot Potier diagram, the sudden short circuit test, to acquire the transient response characteristic and determine optimal PID controller parameters, to generate test report, to control the testing process.
2016-04-05
Technical Paper
2016-01-1050
Vikas V Thorat, Girish Khairnar, Saurav Chatterjee, Jagrit Shrivas, Vishwakarma Diwakar, Sandip Chaudhari
In India, there is a constant rise in demand for three wheelers as they are cheap and convenient mode of transport and also suitable for heavy city traffic & narrow roads due to their small and modular vehicle structure. From last few decades, Greaves is playing a major role in providing single cylinder engines (Diesel/ CNG) for three wheelers in the market. In view of the changing dynamics of fuel prices in India, where the gap between diesel and petrol prices are shrinking, people are once again shifting their preferences towards the gasoline vehicles to en-cash a better cost advantage as compared to diesel vehicles. By considering this market Scenario, Greaves has developed dedicated Gasoline engine compliance with BS-III emission norms for three wheeler application. In the era of electronization, demand for electrical auxiliaries on engine is considerably expanding. To cater to this requirement, higher output Flywheel mounted alternator (FMA) is explored and introduced.
2016-04-05
Standard
J3071_201604
This SAE Battery Identification and Cross Contamination Prevention document is intended to provide information that may be applicable to all types of Rechargeable Energy Storage System (RESS) devices. It is important to develop a system that can facilitate sorting by chemistry. The recycler is interested in the chemistry of the RESS. This is true for the recyclers of Lead Acid, Lithium Ion, Nickel Cadmium etc. Thus recyclers of RESS will receive RESS from automotive, commercial, and industrial applications. These RESS have the potential to be contaminated with a RESS of an incompatible chemistry. It is recognized that mitigation methods to reduce or eliminate the introduction of incompatible chemistries into a given recycling stream would also benefit safety and the environment.
2016-04-05
Technical Paper
2016-01-0168
Domenic J. Belgiovane, Chi-Chen Chen
Rapidly developing autonomous vehicle technologies aim to reduce roadway fatalities and promote driver comfort. Such autonomous vehicle are mostly empowered by optical and radar sensors. Collision avoidance systems are becoming a common a standard safety feature in newer or future cars. Some automotive radar sensors have been successfully used in parking, lane changing, and blind spot detection. Newer 76-78 GHz radars are being developed and tested by car makers for extending these safety features to pedestrian and bicyclist detection. However, using cost effective vehicular radars in reliably detecting pedestrian and bicyclist with low false alarm rate still poses challenging due to many possible variations of these targets as well as the presence of other road objects. To improve detection methods, real scenario testing in currently being implemented where hundreds of tests can be performed on mannequins which mimic pedestrians and bicyclists both optically and to and radar.
2016-04-05
Technical Paper
2016-01-1566
Liangyao Yu, Xiaoxue Liu, Kefeng Yang, Xiaohui Liu, Shuhao Huo
This paper focuses on reviewing the existing studies of in-tire energy harvesting systems. Energy harvesting systems are widely applied in different areas. But studies in the application of energy harvesters embedded in tires for vehicle control are still rare, most of which focus on solving the problem of power supply of tire pressure sensors. Traditionally the sensors are powered by an embedded battery, which must be changed periodically due to the limited energy storage. Furthermore, the number of in-tire sensors will increase as safety of vehicles has drawn more attention, requiring more in tire electricity supply. So a substitution of the battery, the in-tire energy harvesting system, is worth studying. Currently introduced methods of in-tire energy harvesting principles include piezoelectric, electromagnetic and electrostatic. The source of the energy can be in tire vibration, deformation, rotation and so on.
2016-04-05
Standard
EIA649-2
This Standard applies to all products produced by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers. This Standard may also apply to the Jet Propulsion Laboratory and suppliers/service providers to the extent specified in their agreements with NASA. This Standard may be cited in the CM requirements of NASA Headquarters, NASA Centers, Programs, Projects, and Supplier agreements.
2016-04-05
WIP Standard
J2945/10
This effort will be a recommend best practices document outlining how to use the current MAP and SPAT message content found in the recently published J2735. It’s primary content will deal with better explaining and demonstrating by small working examples of how suitable messages are constructed and used to meet operational needs of user. [The SAE J2735 document, being a data dictionary and not a guide, allowed only a briefs summary of this sort of material.] The intended audience for this effort are those developing new deployment using these messages in connection with intersection safety applications. This will be a recommend practice, not a standard.
2016-04-05
Standard
J537_201604
This SAE Standard serves as a guide for testing procedures of automotive 12 V storage batteries. The ratings submitted are to be based on procedures described in this document. The ratings submitted must be of a level that when any subsequent significant sample is tested in accordance with this document, that at least 90% of the batteries shall meet the ratings. The choice of 90% compliance recognizes that batteries consist of many plates and require chemical-electrical formation procedures and small variations in test conditions and procedures can affect the performance of individual batteries. Future Considerations - In order to expedite the release of this revision of the Standard, several topic areas were deferred for consideration in future revisions. These items include, but may not be limited to, the following: post dimension modifications and a new, more application relevant charge acceptance test.
2016-04-05
Technical Paper
2016-01-0865
R. Lockett, Mahesh Jeshani, Kassandra Makri, Richard Price
Abstract High-speed planar laser Mie scattering and Laser Induced Fluorescence (PLIF) were employed for the determination of Sauter Mean Diameter (SMD) distribution in non-evaporating diesel sprays. The effect of rail pressure, distillation profile, and consequent fuel viscosity on the drop size distribution developing during primary and secondary atomization was investigated. Samples of conventional crude-oil derived middle-distillate diesel and light distillate kerosene were delivered into an optically accessible mini-sac injector, using a customized high-pressure common rail diesel fuel injection system. Two optical channels were employed to capture images of elastic Mie and inelastic LIF scattering simultaneously on a high-speed video camera at 10 kHz. Results are presented for sprays obtained at maximum needle lift during the injection. These reveal that the emergent sprays exhibit axial asymmetry and vorticity.
2016-04-05
Technical Paper
2016-01-0706
Shui Yu, Meiping Wang, Ming Zheng
Abstract The present work investigates the efficacy of distributed electrical discharge to increase the ignition volume by means of multipole spark discharge and radio frequency (RF) corona discharge. A range of ignition strategies are implemented to evaluate the efficacy of distributed ignition. The multipole spark igniter design has multiple high-voltage electrodes in close proximity to each other. This distributed spark ignition concept has the ability to generate multiple flame kernels either simultaneously or in a staggered mode. A novel elastic breakdown ignition strategy in responsive distribution (eBIRD) high frequency discharge is also implemented via the multipole igniter. The RF corona discharge is generated through an in-house developed ignition system. A form of distributed ignition is initiated along the streamer filaments.
2016-04-05
Journal Article
2016-01-0714
Anders N. Johansson, Petter Dahlander
Abstract Boosting and stratified operation can be used to increase the fuel efficiency of modern gasoline direct-injected (GDI) engines. In modern downsized GDI engines, boosting is standard to achieve a high power output. However, boosted GDI-engines have mostly been operated in homogenous mode and little is known about the effects of operating a boosted GDI-engine in stratified mode. This study employed optical and metal engines to examine how boosting influences combustion and particulate emission formation in a spray-guided GDI (SGDI), single cylinder research engine. The setup of the optical and metal engines was identical except the optical engine allowed optical access through the piston and cylinder liner. The engines were operated in steady state mode at five different engine operating points representing various loads and speeds. The engines were boosted with compressed air and operated at three levels of boost, as well as atmospheric pressure for comparison.
2016-04-05
Journal Article
2016-01-0730
Ryan K. Gehmlich, Cosmin E. Dumitrescu, Yefu Wang, Charles J. Mueller
Abstract Leaner lifted-flame combustion (LLFC) is a mixing-controlled combustion strategy for compression-ignition (CI) engines that does not produce soot because the equivalence ratio at the lift-off length is less than or equal to approximately two. In addition to completely preventing soot formation, LLFC can simultaneously control emissions of nitrogen oxides because it is tolerant to the use of exhaust-gas recirculation for lowering in-cylinder temperatures. Experiments were conducted in a heavy-duty CI engine that has been modified to provide optical access to the combustion chamber, to study whether LLFC is facilitated by an oxygenated fuel blend (T50) comprising a 1:1 mixture by volume of tri-propylene glycol mono-methyl ether with an ultra-low-sulfur #2 diesel emissions-certification fuel (CFA). Results from the T50 experiments are compared against baseline results using the CFA fuel without the oxygenate.
2016-04-05
Technical Paper
2016-01-0725
P.C. Bakker, R.C. Willems, N.J. Dam
Abstract Laser-induced incandescence (LII) is a well-established technique for tracking soot, potentially enabling soot volume fraction determination. To obtain crank angle resolved data from a single cycle, a multi-kHz system should be applied. Such an approach, however, imposes certain challenges in terms of application and interpretation. The present work intends to apply such a high-speed system to an optically-accessible, compression ignition engine. Possible problems with sublimation, local gas heating or other multishot effects have been studied on an atmospheric co-flow burner prior to the engine experiments. It was found that, in this flame, fluences around 0.1 J/cm2 provide the best balance between signal-tobackground ratio, and soot sublimation. This fluence is well below the plateau regime of LII, which poses additional problems with interpretation of the signal.
2016-04-05
Journal Article
2016-01-0723
Ted Lind, Zheming Li, Carlos Micó, Nils-Erik Olofsson, Per-Erik Bengtsson, Mattias Richter, Öivind Andersson
Abstract The effects of injection pressure and swirl ratio on the in-cylinder soot oxidation are studied using simultaneous PLIF imaging of OH and LII imaging of soot in an optical diesel engine. Images are acquired after the end of injection in the recirculation zone between two adjacent diesel jets. Scalars are extracted from the images and compared with trends in engine-out soot emissions. The soot emissions decrease monotonically with increasing injection pressure but show a non-linear dependence on swirl ratio. The total amount of OH in the images is negatively correlated with the soot emissions, as is the spatial proximity between the OH and soot regions. This indicates that OH is an important soot oxidizer and that it needs to be located close to the soot to perform this function. The total amount of soot in the images shows no apparent correlation with the soot emissions, indicating that the amount of soot formed is a poor predictor of the emission trends.
2016-04-05
Technical Paper
2016-01-0735
J. Javier Lopez, Jaime Martin, Antonio Garcia, David Villalta, Alok Warey, Vicent Domenech
Abstract Engine-out soot emissions are the result of a complex balance between in-cylinder soot formation and oxidation. Soot is formed in the diffusion flame, just after the lift-off length (LOL). Size and mass of soot particles increase through the diffusion flame and finally they are partially oxidized at the flame front. Therefore, engine-out soot emissions depend on the amount of soot formed and oxidized inside the combustion chamber. There is a considerable amount of work in the literature on characterization of soot formation. However, there is a clear lack of published research related to the characterization of soot oxidation. Thus, the main objective of the current research is to provide more knowledge and insight into the soot oxidation processes. For this purpose, a combination of theoretical and experimental tools were used. In particular, in-cylinder optical thickness (KL) was quantified with an optoelectronic sensor that uses two-color pyrometry.
2016-04-05
Technical Paper
2016-01-0163
Thomas Rothermel, Jürgen Pitz, Hans-Christian Reuss
Abstract This paper proposes a framework for semi-autonomous longitudinal guidance for electric vehicles. To lower the risk for pedestrian collisions in urban areas, a velocity trajectory which is given by the driver is optimized with respect to safety aspects with the help of Nonlinear Model Predictive Control (NMPC). Safety aspects, such as speed limits and pedestrians on the roadway, are considered as velocity and spatial constraints within prediction horizon in NMPC formulation. A slack variable is introduced to enable overshooting of velocity constraints in situations with low risk potential to rise driver acceptance. By changing the weight of slack variable, the control authority can be shifted continuously from driver to automation. Within this work, a prototypical real-time implementation of the longitudinal guidance system is presented and the potential of the approach is demonstrated in human-in-the-loop test drives in the Stuttgart Driving Simulator.
2016-04-05
Technical Paper
2016-01-0165
Padmanaban Dheenadhayalan
Abstract Innovation in the field of intelligent autonomous systems of the automotive sector has been ever increasing. Accurate tracking of vehicles is an important aspect in the design of applications such as smart route planning or collision avoidance systems. In practical applications, tracking of vehicle using radar technology suffers from serious problem due to noisy measurements. It introduces major limit on the accuracy of the tracking system. This paper discusses a case study scenario where the robustness of vehicle tracking can be improved using Extended Kalman Filtering. Noisy radar measurement is simulated through model based design (MBD) using MATLAB. Analysis and design of Extended Kalman Filter to mitigate the noise is discussed. An efficient system architecture to implement the algorithm in autonomous smart vehicle tracking system is also identified.
2016-04-05
Technical Paper
2016-01-0197
Ravi Ranjan, Kaushal Kumar Jha, Lakshmaiah Brahmasani, Parvej Khan
Abstract The traditional approach of engine thermal behavior of engine during startup has largely been dependent on experimental studies and high fidelity simulations like CFD. However, these techniques require considerable effort, cost and time. The low fidelity simulations validated with experimental results are becoming more popular due to their ease in handling the several parameters such as cost effectiveness and quick predictive results. A four point mass model of engine thermal behavior during cold start has been developed to study the engine warm up temperature behavior. The four point mass model considers the lumped mass of coolant, mass of engine directly associated with the coolant, mass of engine oil and mass of engine directly associated with the engine oil. The advantage of four point model is to predict the coolant temperature as well as lubricant temperature during the transient warm up cycle of the engine.
2016-04-05
Technical Paper
2016-01-0201
Armin Traussnig, Wilko Jansen, Heinz Petutschnig, Sepp Steiner, Petra Gruen
Abstract In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Global vehicle simulation is already a well-established tool to support the vehicle development process. In contrast to conventional vehicles, electrified powertrains offer an additional challenge to the thermal conditioning: the durability of E-components is not only influenced by temperature peaks but also by the duration and amplitude of temperature swings as well as temperature gradients within the components during their lifetime. Keeping all components always at the preferred lowest temperature level to avoid ageing under any conditions (driving, parking, etc.) will result in very high energy consumption which is in contradiction to the efficiency targets.
2016-04-05
Technical Paper
2016-01-0216
Ramanand Singh, Remesh Kuzhikkali, Nitesh Shet, Sekarapandian Natarajan, Govind Kizhedath, Murugan Arumugam
Fogging (i.e. condensation of water vapor) in headlamps in severe weather conditions present both a performance and potential safety concern for automotive companies. Conventional headlamps are based on incandescent bulbs. In recent times, LED lighting has increasingly become the norm. However, LED based headlamps are prone to higher levels of fogging because they inherently produce less heat than the conventional incandescent or halogen bulbs. A headlamp design must be able to dispose all the formed condensate/fog in a fixed time even under severe thermal conditions. It is of great importance for the car manufacturer to be able to simulate the risk of condensation early in the design stage with an eye on the overall cost reduction. The combined use of experimental studies and numerical modelling is important to optimize headlamp design and to produce high-performance headlamps.
2016-04-05
Journal Article
2016-01-0215
Amey Y. Karnik, Adrian Fuxman, Phillip Bonkoski, Mrdjan Jankovic, Jaroslav Pekar
Abstract An advanced powertrain cooling system with appropriate control strategy and active actuators allows greater flexibility in managing engine temperatures and operating near constraints. An organized controls development process is necessary to allow comparison of multiple configurations to select the best way forward. In this work, we formulate, calibrate and validate a Model Predictive Controller (MPC) for temperature regulation and constraint handling in an advanced cooling system. A model-based development process was followed; where the system model was used to develop and calibrate a gain scheduled linear MPC. The implementation of MPC for continuous systems and the modification related to implementing switching systems has been described. Multiple hardware configurations were compared with their corresponding control system in simulations.
Viewing 61 to 90 of 22709

Filter