Display:

Results

Viewing 271 to 300 of 22745
2016-04-05
Technical Paper
2016-01-1447
Qiang Yi, Stanley Chien, Jason Brink, Wensen Niu, Lingxi Li, Yaobin Chen, Chi-Chen Chen, Rini Sherony, Hiroyuki Takahashi
Abstract As part of active safety systems for reducing bicyclist fatalities and injuries, Bicyclist Pre-Collision System (BPCS), also known as Bicyclist Autonomous Emergency Braking System, is being studied currently by several vehicles manufactures. This paper describes the development of a surrogate bicyclist which includes a surrogate bicycle and a surrogate bicycle rider to support the development and evaluation of BPCS. The surrogate bicycle is designed to represent the visual and radar characteristics of real bicyclists in the United States. The size of bicycle surrogate mimics the 26 inch adult bicycle, which is the most popular adult bicycle sold in the US. The radar cross section (RCS) of the surrogate bicycle is designed based on RCS measurement of the real adult sized bicycles.
2016-04-05
Technical Paper
2016-01-1445
Jonathan Dobres, Bryan Reimer, Bruce Mehler, James Foley, Kazutoshi Ebe, Bobbie Seppelt, Linda Angell
Abstract Driving behaviors change over the lifespan, and some of these changes influence how a driver allocates visual attention. The present study examined the allocation of glances during single-task (just driving) and dual-task highway driving (concurrently tuning the radio using either visual-manual or auditory-vocal controls). Results indicate that older drivers maintained significantly longer single glance durations across tasks compared to younger drivers. Compared to just driving, visual-manual radio tuning was associated with longer single glance durations for both age groups. Off-road glances were subcategorized as glances to the instrument cluster and mirrors (“situationally-relevant”), “center stack”, and “other”. During baseline driving, older drivers spent more time glancing to situationally-relevant targets. During both radio tuning task periods, in both age groups, the majority of glances were made to the center stack (the radio display).
2016-04-05
Technical Paper
2016-01-1446
Rini Sherony, Qiang Yi, Stanley Chien, Jason Brink, Mohammad Almutairi, Keyu Ruan, Wensen Niu, Lingxi Li, Yaobin Chen, Hiroyuki Takahashi
Abstract According to the U.S. National Highway Traffic Safety Administration, 743 pedal cyclists were killed and 48,000 were injured in motor vehicle crashes in 2013. As a novel active safety equipment to mitigate bicyclist crashes, bicyclist Pre-Collision Systems (PCSs) are being developed by many vehicle manufacturers. Therefore, developing equipment for evaluating bicyclist PCS is essential. This paper describes the development of a bicycle carrier for carrying the surrogate bicyclist in bicyclist PCS testing. An analysis on the United States national crash databases and videos from TASI 110 car naturalistic driving database was conducted to determine a set of most common crash scenarios, the motion speed and profile of bicycles. The bicycle carrier was designed to carry or pull the surrogate bicyclist for bicycle PCS evaluation. The carrier is a platform with a 4 wheel differential driving system.
2016-04-05
Technical Paper
2016-01-1443
Nazan Aksan, Lauren Sager, Sarah Hacker, Benjamin Lester, Jeffrey Dawson, Matthew Rizzo
Abstract We examined relative effectiveness of heads-up visual displays for lane departure warning (LDW) 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The LDW included yellow “advisory” visuals in the center screen when the driver started drifting toward the adjacent lane. The visuals turned into red “imminent” when the tires overlapped with the lane markers. The LDW was turned off if the driver activated the turn signal. The visuals could be easily segregated from the background scene, making them salient but not disruptive to the driver’s forward field of view. The visuals were placed adjacent to the left and right lane markers in the lower half of the center screen.
2016-04-05
Technical Paper
2016-01-1442
David Miller, Mishel Johns, Hillary Page Ive, Nikhil Gowda, David Sirkin, Srinath Sibi, Brian Mok, Sudipto Aich, Wendy Ju
Abstract Age and experience influence driver ability to cope with transitions between automated and manual driving, especially when drivers are engaged in media use. This study evaluated three age cohorts (young/new drivers, adults, and seniors) on their performance in transitions from automated driving to manual vehicle control in a laboratory driving simulator. Drivers were given three tasks to perform during the automated driving segments: to watch a movie on a tablet, to read a story on a tablet, or to supervise the car's driving. We did not find significant differences in people's driving performance following the different tasks. We also did not find significant differences in driving performance between the people in each age group who successfully completed the study; however, the rejection rate of the senior age group was over 30% because many of the people in this age group had difficulty hearing instructions, understanding tasks, or remembering what to do.
2016-04-05
Technical Paper
2016-01-1440
Julia Seeanner, Johnell Brooks, Mary Mossey, Casey Jenkins, Paul Venhovens, Constance Truesdail
Abstract While motorcycle safety frequently focuses on topics like helmet use and engineering aspects such as anti-lock braking systems, little research has investigated aging riders’ use of technologies (i.e., phones, navigation systems, etc.) or the characteristics of older riders (defined as above the age of 40) who use them. This study surveyed a convenience sample of typical motorcycle riders in the United States in order to provide an overview of the types of technologies that riders of different age groups use while riding, problems or concerns about those technologies, as well as rider demographics and riding habits. The sample included 97 riders (84 males and 13 females) between the ages of 20 and 71 years (M= 50.9, SD= 10.6) who were divided into three age groups (under 40 years, between 40 and 50 years, 50 years and older).
2016-04-05
Technical Paper
2016-01-1478
William T. Neale, David Hessel, Daniel Koch
Abstract This paper presents a methodology for determining the position and speed of objects such as vehicles, pedestrians, or cyclists that are visible in video footage captured with only one camera. Objects are tracked in the video footage based on the change in pixels that represent the object moving. Commercially available programs such as PFTracktm and Adobe After Effectstm contain automated pixel tracking features that record the position of the pixel, over time, two dimensionally using the video’s resolution as a Cartesian coordinate system. The coordinate data of the pixel over time can then be transformed to three dimensional data by ray tracing the pixel coordinates onto three dimensional geometry of the same scene that is visible in the video footage background.
2016-04-05
Technical Paper
2016-01-1469
Craig Luker
High image quality video surveillance systems have proliferated making it more common to have collision-related video footage that is suitable for detailed analysis. This analysis begins by using variety of methods to reconstruct a series of positions for the vehicle. If the frame rate is known or can be estimated, then the average travel speed between each of those vehicle positions can be found. Unfortunately with video surveillance systems, the frame rates are typically low and the vehicle may be hidden from view for multiple frames. As a result there are often relatively large time steps between known vehicle positions and the average speed between known positions becomes less useful. The method outlined here determines the instantaneous speed and acceleration time history of the vehicle that was required for it to arrive at the known positions, at the known times.
2016-04-05
Technical Paper
2016-01-1472
Dietmar Otte, Martin Urban, Heiko Johannsen
Abstract Estimating the potential benefit of advanced safety systems by simulation has become increasingly important during the last years. All over the world OEMs and suppliers carry out benefit estimations by simulations via computer models. Such simulations should, of course, be based on real world scenario such as the pre-crash phase of real world accidents. Several methodologies for building up accident scenarios have been developed in the past. This paper shows a new method for generating pre-crash scenarios directly from the reconstruction of the accident by using the software PC-Crash1. The new method was developed by the Medical University Hannover (MHH) and the Fraunhofer Institute for Transportation Dresden (Fraunhofer IVI). It is based on transferring all information (participant-, vehicle-, environment- and motion-data) from the reconstruction file into a scenario-database.
2016-04-05
Technical Paper
2016-01-1467
Neal Carter, Alireza Hashemian, Nathan A. Rose, William T.C. Neale
Abstract Improvements in computer image processing and identification capability have led to programs that can rapidly perform calculations and model the three-dimensional spatial characteristics of objects simply from photographs or video frames. This process, known as structure-from-motion or image based scanning, is a photogrammetric technique that analyzes features of photographs or video frames from multiple angles to create dense surface models or point clouds. Concurrently, unmanned aircraft systems have gained widespread popularity due to their reliability, low-cost, and relative ease of use. These aircraft systems allow for the capture of video or still photographic footage of subjects from unique perspectives. This paper explores the efficacy of using a point cloud created from unmanned aerial vehicle video footage with traditional single-image photogrammetry methods to recreate physical evidence at a crash scene.
2016-04-05
Technical Paper
2016-01-1363
Nobuhiro Ide, Jun Hioki, Hiroki Okada
Abstract Because of its convenience, electronic key systems are adopted by many automakers. Ensuring the performance of low frequency (LF) and ultra-high frequency (UHF) electromagnetic waves is a critical part of system development. One of the most important performance aspects of this system is ensuring communication in the required area, and the tuning process is a key factor in the development phase. Conventionally, a large amount of work hours and cost is required for this tuning process, which usually adopts a cut-and-try approach based on technical experience to satisfy the required specifications in the LF band. The development process was successfully shortened by applying the newly developed LF electromagnetic simulation technique described in this paper.
2016-04-05
Technical Paper
2016-01-1426
Lex Fridman, Joonbum Lee, Bryan Reimer, Bruce Mehler
Abstract The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
2016-04-05
Technical Paper
2016-01-1425
Thomas McWilliams, Daniel Brown, Bryan Reimer, Bruce Mehler, Jonathan Dobres
Abstract Advanced driver assistance systems (ADAS) are an increasingly common feature of modern vehicles. The influence of such systems on driver behavior, particularly in regards to the effects of intermittent warning systems, is sparsely studied to date. This paper examines dynamic changes in physiological and operational behavior during lane departure warnings (LDW) in two commercial automotive systems utilizing on-road data. Alerts from the systems, one using auditory and the other haptic LDWs, were monitored during highway driving conditions. LDW events were monitored during periods of single-task driving and dual-task driving. Dual-task periods consisted of the driver interacting with the vehicle’s factory infotainment system or a smartphone to perform secondary visual-manual (e.g., radio tuning, contact dialing, etc.) or auditory-vocal (e.g. destination address entry, contact dialing, etc.) tasks.
2016-04-05
Technical Paper
2016-01-1428
Bruce Mehler, Bryan Reimer, Jonathan Dobres, James Foley, Kazutoshi Ebe
Abstract This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
2016-04-05
Technical Paper
2016-01-1416
Rambabu Radakrishnan, Ganesh Dharmar, Mohanraj Balakrishnan, Sarath Padattil
Abstract Infotainment screens have become critical interface between occupant and Vehicle. Historical development of In-vehicle infotainment (IVI) has shown us the growth of interface size and usability is tremendously increased. The basic small segmented displays of past decades have transformed into large touch screen interface [1]. Earlier small screen interfaces had minimal information and less driver assist functions. It was mainly entertainment based information, which does not require much attention from driver. But recently it has changed from glancing the screen to seeing the screen, due to increased driver assist functions like GPS navigation etc. The amount of information displayed is also increased tremendously [2]. This scenario demands that the infotainment screen positioning inside the vehicle should be free from any visual obscuration, reflection and direct illumination on the infotainment screen due to ambient lighting.
2016-04-05
Technical Paper
2016-01-1419
Helen S. Loeb, Sam Chamberlain, Yi-Ching Lee
Abstract Motor vehicles crashes are the leading cause of injury and death of US teens. Driving simulators offer a way to safely expose drivers to specific events in a controlled and repeatable manner. They empower researchers by enabling them to compare different groups and driving behaviors and assess the cognitive and attention skills that are essential to safe driving. Classically, assessment of eye glances and gaze duration relies largely on time-consuming data reduction and video coding. In addition, the synchronization of eye tracker and simulator data is essential to a valid analysis of the eye glances patterns in relation to the driving scenario. To better understand and quantify eye glances in relation to a driving scene, Eyesync was developed as a synchronization bridge between an eye tracker and a driving simulator. It allows the real time synchronization and logging of eye tracking and simulator data. The design of the software is presented in this paper.
2016-04-05
Technical Paper
2016-01-1422
Tarek Ouali, Nirav Shah, Bill Kim, David Fuente, Bo Gao
Abstract This paper introduces a new method for driving style identification based on vehicle communication signals. The purpose of this method is to classify a trip, driven in a vehicle, into three driving style categories: calm, normal or aggressive. The trip is classified based on the vehicle class, the type of road it was driven on (urban, rural or motorway) and different types of driving events (launch, accelerating and braking). A representative set of parameters, selected to take into consideration every part of the driver-vehicle interaction, is associated to each of these events. Due to the usage of communication signals, influence factors, other than vehicle speed and acceleration (e.g. steering angle or pedals position), can be considered to determine the level of aggressiveness on the trip. The conversion of the parameters from physical values to dimensionless score is based on conversion maps that consider the road and vehicle types.
2016-04-05
Technical Paper
2016-01-1421
Sean Seaman, Li Hsieh, Richard Young
Abstract This study investigated driver glances while engaging in infotainment tasks in a stationary vehicle while surrogate driving: watching a driving video recorded from a driver’s viewpoint and projected on a large screen, performing a lane-tracking task, and performing the Tactile Detection Response Task (TDRT) to measure attentional effects of secondary tasks on event detection and response. Twenty-four participants were seated in a 2014 Toyota Corolla production vehicle with the navigation system option. They performed the lane-tracking task using the vehicle’s steering wheel, fitted with a laser pointer to indicate wheel movement on the driving video. Participants simultaneously performed the TDRT and a variety of infotainment tasks, including Manual and Mixed-Mode versions of Destination Entry and Cancel, Contact Dialing, Radio Tuning, Radio Preset selection, and other Manual tasks. Participants also completed the 0-and 1-Back pure auditory-vocal tasks.
2016-04-05
Journal Article
2016-01-1402
Jeffrey Hurlbut, Daniel Cashen, Emily Robb, Lora L. Spangler, Jim Eckhart
Abstract Head-up display (HUD) technology creates inherent driver safety advantages by displaying critical information directly in the driver’s line of sight, reducing eyes off road and accommodation time. This is accomplished using a system of relay optics and windshield reflection to generate a virtual image that appears to hover over the hood near the bumper. The windshield is an integral optical component of the HUD system, but unfortunately the windshield-air interface causes a double image ghost effect as a result of refractive index change, reducing HUD image clarity. Current technology uses a constant angle wedged PVB windshield interlayer to eliminate double image at a single driver height. However, the HUD double image persists for all other viewing locations. Eastman Chemical Company has developed a new interlayer technology which eliminates the double image at all driver locations by tuning the wedge angle as a function of driver occupant seated height.
2016-04-05
Technical Paper
2016-01-1290
J. Groenewald, James Marco, Nicholas Higgins, Anup Barai
Abstract While a number of publications have addressed the high-level requirements of remanufacturing to ensure its commercial and environmental sustainability, considerably less attention has been given to the technical data and associated test strategies needed for any evidence-based decision as to whether a vehicle energy storage system should be remanufactured - extending its in-vehicle life, redeployed for second-life (such as domestic or grid storage) or decommissioned for recycling. The aim of this paper is to critically review the strategic requirements for data at the different stages of the battery value-chain that is pertinent to an Electric Vehicle (EV) battery remanufacturing strategy. Discussed within the paper is the derivation of a feasible remanufacturing test strategy for the vehicle battery system.
2016-04-05
Technical Paper
2016-01-1289
Francis Assadian, Kevin R. Mallon, Bo Fu
Abstract Heavy-duty electric powertrains provide a potential solution to the high emissions and low fuel economy of trucks, buses, and other heavy-duty vehicles. However, the high-capacity batteries needed to power these vehicles are both cost and weight prohibitive. One possible method of supplementing battery power is to mount flexible solar panel modules to the roof of these vehicles, thereby allowing for a smaller battery (reducing battery cost and weight) or extended vehicle range. Electric buses identified as the type of vehicle that would derive the most benefit from roof-mounted solar panels due to their low operating speed (including frequent idling) and large available surface area. In this paper, the performance of an electric bus with combined battery and photovoltaic power sources is simulated on the Orange County Bus Cycle for average weather in Davis, CA.
2016-04-05
Technical Paper
2016-01-1319
Kimitoshi Tsuji, Katsuhiko Yamamoto
Abstract It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration using virtual engine specifications and a virtual vehicle frame. In our former study, we showed the 1D physical power plant model with electrical starter, battery that can predict combustion transient torque, combustion heat energy and fuel efficiency. The simulation result agreed with measured data. For idling stop system, the noise and vibration during start up is important factor for salability of the vehicle. In this paper, as an application of the 1D physical power plant model (engine model), we will show the result of analysis that is starter shaft resonance and the effect on the engine mount vibration of restarting from idle stop. First, an engine model for 3.5L 6cyl NA engine was developed by energy-based model using VHDL-AMS. Here, VHDL-AMS is modeling language registered in IEC international standard (IEC61691-6) to realize multi physics on 1D simulation.
2016-04-05
Technical Paper
2016-01-0010
Gopal Athani, Kapil Dongare, Srinivasa Raju Gavarraju, Shashi Kulkarni, Prasad Yerraguntla
Abstract Micro hybrid Systems are emerging as a promising solution to reduce the fuel consumption and greenhouse gas emissions in emerging markets, where the strict emission requirements are being enforced gradually. Micro hybrid Systems reduce the fuel consumption and greenhouse gas emissions in a conventional vehicle with 12 V electrical system, by optimizing the electrical energy generation, storage, and distribution, with functions like Intelligent Alternator Control, Engine Stop/Start, and Load Management. With the advent of Connected Car Systems, information about the vehicle is seamlessly provided to the customer not just through the Human Machine Interface systems within the vehicle, but to other mobile devices used by the customers.
2016-04-05
Technical Paper
2016-01-0012
Sebastian Voss, Johannes Eder, Bernhard Schaetz
Abstract The growing complexity of functionalities in automotive vehicles and their safety-criticality, including timing requirements, demands sound and scalable approaches to deal with the increasing design space. Most often, such complex automotive systems are composed of a set of functions that are characterized by multi-period timing behaviors, e.g., due to environment constraints limiting sensing/acting frequencies, or various worst case execution times of software components. As safety-critical systems must perform the desired behavior within guaranteed time bounds, a valid system configuration is needed including a time-correct schedule that fulfills all timing requirements. This contribution proposes a systematic and correct schedule synthesis of complex multi-rate automotive software systems that ensures precise timing behavior of software components.
2016-04-05
Technical Paper
2016-01-0007
Gopal Athani, Kapil Dongare, Rajesh Balusu, Subhabrata Gupta, Srinivasa Raju Gavarraju
Abstract Micro Hybrid Systems are essentially first step towards the electrification of the powertrains. They are aimed at improving the fuel efficiency of the conventional gasoline and diesel power trains with conventional 12 V electrical system, and thus reduce the CO2 emissions as well. Various technologies like Engine Stop-Start, Intelligent Alternator Control, and Electrical Energy Management Systems are included in the bracket of micro hybrid systems. These system functions demand a totally different approach for managing the SLI battery, which is a total departure from the conventional approach. Particularly, the Alternator Shutdown function of Intelligent Alternator Control maintains a calibrated average level of State of Charge, which is typically around 80%, to ensure that the battery can accept more current, during the energy recuperation, which indirectly improves fuel economy.
2016-04-05
Technical Paper
2016-01-0018
Rupesh Sonu Kakade, Sushovan Basu
Abstract Development of the software using fixed-point arithmetic is known to be tedious and error-prone. Difficulty of selecting the correct data type can outwear software developers. The common retreats often sought after include manual calculation of the approximate ranges, exhaustive simulations with extreme input values and conservative development approach by using excessive word length. The first two retreats - manual calculation and exhaustive simulations - increase the software development time, and the third retreat - conservative development - leads to the excessive memory (RAM and ROM) utilization by the software. The model-based development environment such as the Simulink has graphical nature to the software with flow of data defined by connecting signal lines. The model-based software therefore gives an opportunity to trace signal flow in the software.
2016-04-05
Technical Paper
2016-01-0020
Eric Woestman, Jeremias Sauceda
Abstract Over the last decade, the automotive industry has embraced model-based development for control systems. Many of these companies have chosen Simulink from MathWorks to design and simulate these models. However, a remaining issue is the fact that many control systems were initially written in C and are still being used. Some companies have attempted to manually convert these C systems to Simulink models but have found this method to be too costly, error-prone, and time consuming. EnSoft decided to tackle this problem by providing a semi-automated conversion using our Atlas for C tool. Atlas is a tool that maps software and creates a relation map for all parts of the program. It then offers the developer tools to query and visualize this graph. We have developed Modelify, a tool built on this framework that performs the necessary queries on a C project and creates equivalent Simulink models and subsystems.
2016-04-05
Technical Paper
2016-01-0013
Sujit S. Phatak, Heming Chen, Yuan Xiao, Can Wang, Donald McCune, Simon Schliecker, Maurice Sebastian, Victor Reyes, David Balland
Abstract Automotive vehicles today consist of very complex network of electronic control units (ECU) connected with each other using different network implementations such as Controller Area Network (CAN), FlexRay, etc. There are several ECUs inside a vehicle targeting specific applications such as engine, transmission, body, steering, brakes, infotainment/navigation, etc. comprising on an average more than 50 ECUs executing more than 50 million lines of software code. It is expected to increase exponentially in the next few years. Such complex electric/electronic (E/E) architecture and software calls for a comprehensive, flexible and systematic development and validation environment especially for a system level or vehicle level development. To achieve this goal, we have built a virtual multi-ECU high fidelity cyber-physical multi-rate cosimulation that closely resembles a realistic hardware based automotive embedded system.
2016-04-05
Technical Paper
2016-01-0016
Jörg Schäuffele
Abstract The functions provided by the E/E system of modern vehicles can be assigned to the classical domains of powertrain, chassis, body and multimedia. Upcoming functions are forming new domains for advanced driver assistance and cloud integration. Therefore networking of functions is not limited to the vehicle but includes also the cloud. These trends imply major changes like the introduction of Ethernet as onboard networking technology or increasing safety and security needs. To design the best E/E architecture three groups of optimization targets are most relevant: Global vehicle targets, E/E targets derived from the implemented vehicle functions and product line targets for an E/E architecture. The PREEvision approach for E/E architecture design and optimization is a model based approach - inspired by the relevant and widely accepted automotive standards. Import and export filters allow the easy integration with PREEvision and complementation of existing tool chains.
2016-04-05
Technical Paper
2016-01-0015
Eldad Palachi, Fariz Saracevic, Amit Fisher
Abstract Connected vehicles provide suppliers and OEMs new opportunities to improve their customer experience and offer new services. Yet, in this new era of Internet of Things (IoT), OEMs and suppliers are expected to expand their engineering efforts beyond the vehicle itself. We present a new Rapid Application Development (RAD) service offered by IBM, called IBM Internet of Things Workbench. This is a visual tool, offered as an IBM Bluemix service that allows engineers to design and simulate the overall architecture and interactions between the various IoT entities such as devices, cloud applications and services, mobile clients and asset management systems. IoT Workbench abstracts the messaging details and generates code skeletons for the cloud applications as well as for simulating devices. It also provides the device simulation to allow for the application testing before the actual devices are available and the requirements for the various devices are validated.
Viewing 271 to 300 of 22745

Filter