Display:

Results

Viewing 271 to 300 of 21999
2015-06-22
Standard
AS81969/15
SCOPE IS UNAVAILABLE.
2015-06-22
WIP Standard
J1939DA
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
2015-06-19
Standard
J1611_201506
This SAE Standard applies to horizontal earthboring machines of the following types: a. Auger Machines b. Pipe Pushers c. Rotary Rod Machines d. Impact Machines e. Horizontal Directional Drilling Machines Additional information on machines of this type may be found in SAE J2022 and SAE J2305. This document does not apply to specialized mining machinery such as conveyors, tunnel-boring machines, pipe-jacking systems, and microtunnelers.
2015-06-18
Article
Accenture took some time recently to talk about how it recently delivered with Airbus a proof-of-concept, using wearable technology, to help Airbus operators reduce the complexity of assembling cabin seats and decrease the time required to complete the task.
2015-06-18
WIP Standard
AS33700B
No scope available.
2015-06-18
WIP Standard
AS33703B
No scope available.
2015-06-18
Standard
J2364_201506
This document applies to both Original Equipment Manufacturer and aftermarket route-guidance and navigation system functions for passenger vehicles. It establishes two alternative procedures, a static method and an interrupted vision method, for determining which navigation and route guidance functions should be accessible to the driver while the vehicle is in motion. These methods apply only to the presentation of visual information and the use of manual control inputs to accomplish a navigation or route guidance task. The document does not apply to visual monitoring tasks which do not require a manual control input, such as route following. Voice-activated controls or passenger operation of controls are also excluded. There are currently no compelling data that would support the extension of this document to in-vehicle systems other than navigation systems.
2015-06-15
Technical Paper
2015-01-2112
Thomas Schlegl, Michael Moser, Hubert Zangl
Abstract We present a wireless sensor system for temperature measurement and icing detection for the use on aircraft. The sensors are flexible (i.e. bendable), truly wireless, do not require scheduled maintenance, and can be attached easily to almost any point on the aircraft surface (e.g. wings, fuselage, rudder, elevator, etc.). With a sensor thickness of less than two millimeters at the current state of development, they hardly affect the aero dynamical behavior of the structure. In this paper, we report laboratory and field results for temperature measurement and icing detection.
2015-06-15
Technical Paper
2015-01-2095
Wolfgang Hassler, Reinhard F.A. Puffing, Andreas Tramposch
Abstract This paper deals with thermal ice protection of electrically heated restraining grids designed for applications in the environmental control system (ECS) of passenger aircraft. The restraining grids described in the paper consist of strung, electrically insulated wire and are - in certain operation modes of the ECS - exposed to an airstream containing supercooled water droplets and/or ice particles. Heat is generated in the wire by an electric current, and the temperature of the wire is controlled with the aid of an electronic control system. A substantial question for laying out the controller and for operating the grids is the following: What minimum heating power is required to prevent ice accretion on the surface of the wire, i.e., what is the least heating power that is necessary to keep a grid being exposed to specific icing conditions devoid of ice? This problem is studied for a simple model system first and is then examined for restraining grids.
2015-06-15
Technical Paper
2015-01-2086
Matthew Grzych, Terrance Tritz, Jeanne Mason, Melissa Bravin, Anna Sharpsten
Abstract The significant problem of engine power-loss and damage associated with ice crystal icing (ICI) was first formally recognized by the industry in a 2006 publication [1]. Engine events described by the study included: engine surge, stall, flameout, rollback, and compressor damage; which were triggered by the ingestion of ice crystals in high concentrations generated by deep, moist convection. Since 2003, when ICI engine events were first identified, Boeing has carefully analyzed event conditions documenting detailed pilot reports and compiling weather analyses into a database. The database provides valuable information to characterize environments associated with engine events. It provides boundary conditions, exposure times, and severity to researchers investigating the ICI phenomenon. Ultimately, this research will aid in the development of engine tests and ICI detection/avoidance devices or techniques.
2015-06-15
Journal Article
2015-01-2106
Mark Ray, Kaare Anderson
Abstract Cloud phase discrimination, coupled with measurements of liquid water content (LWC) and ice water content (IWC) as well as the detection and discrimination of supercooled large droplets (SLD), are of primary importance in aviation safety due to several high-profile incidents over the past two decades. The UTC Aerospace Systems Optical Ice Detector (OID) is a prototype laser sensor intended to discriminate cloud phase, to quantify LWC and IWC, and to detect SLD and differentiate SLD conditions from those of Appendix C. Phase discrimination is achieved through depolarization scattering measurements of a circularly polarized laser beam transmitted into the cloud. Optical extinction measurements indicate the liquid and ice water contents, while the differential backscatter from two distinct probe laser wavelengths implies an effective droplet size.
2015-06-15
Technical Paper
2015-01-2152
Earle Williams, Michael F. Donovan, David J. Smalley, Robert G. Hallowell, Elaine P. Griffin, Kenta T. Hood, Betty J. Bennett, Mengistu Wolde, Alexei V. Korolev
Abstract MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars* for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated campaign of in situ flights in winter storms. During the month of February in 2012 and 2013, the Convair-580 aircraft operated by the National Research Council of Canada was used for in situ validation of snowstorm characteristics under simultaneous observation by NEXRAD radars in Cleveland, Ohio and Buffalo, New York. The most anisotropic and easily distinguished winter targets to dual pol radar are ice crystals.
2015-06-15
Technical Paper
2015-01-2153
David Serke, Michael King, Andrew Reehorst
In early 2015, a field campaign was conducted at the NASA Glenn Research Center in Cleveland, Ohio, USA. The purpose of the campaign is to test several prototype algorithms meant to detect the location and severity of in-flight icing (or icing aloft, as opposed to ground icing) within the terminal airspace. Terminal airspace for this project is currently defined as within 25 kilometers horizontal distance of the terminal, which in this instance is Hopkins International Airport in Cleveland. Two new and improved algorithms that utilize ground-based remote sensing instrumentation have been developed and were operated during the field campaign. The first is the ‘NASA Icing Remote Sensing System’, or NIRSS. The second algorithm is the ‘Radar Icing Algorithm’, or RadIA.
2015-06-15
Technical Paper
2015-01-2248
Florian Pignol, Emiel Tijs, Daniel Fernandez Comesana, Daewoon Kim
Abstract In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
2015-06-15
Technical Paper
2015-01-2256
Colin Troth
Abstract This paper considers important aspects of rigid body dynamics of power trains with respect to noise and vibration (by definition a power train (PT) term here is an engine plus transmission). Flexibility of PT's and their ancillaries leads to unwanted levels of noise and vibration. By employing rigid body concepts we can assess the levels of unwanted flexibility of whole PT's and their ancillaries e.g. mounting brackets. Using dedicated software based on rigid body theory it is possible to define vibration and noise ‘entitlement’ i.e. minimum vibration and noise that can theoretically be achieved. Targets can then be to set based upon these entitlements. This can then lead to better more robust designs to achieve higher levels of refinement. The use of generic 3 and 4 cylinder one liter in-line PT's modes are used within the software to aid this study.
2015-06-15
Technical Paper
2015-01-2279
Giovanni Rinaldi, Chris Moon, Bret Engels
Abstract A unique Matlab-based coded engineering software tool (Time-Frequency Analyzer Core®) was developed that allows users to process acquired time data to help in identifying sources and paths of noise and vibration (in the experience of the authors). The Time-Frequency Analyzer Core (TFAC) software does not replace commercial off the shelf software/hardware NV specific tools such as modal analysis, ODS, acoustic mapping, order tracking, etc., rather it aims at providing basic, yet powerful data inspection and comparison techniques in a single software tool that facilitates drawing conclusions and identifying most effective next steps. The features and advantages of using this software tool will be explained, along with a description of its application to a few different cases (automotive and off highway/agricultural).
2015-06-15
Technical Paper
2015-01-2283
Andrew Smith
Abstract iOS devices, including iPhones and iPads, are being used increasingly for professional and scientific applications. Using an iOS device for noise and vibration measurements is an application with many advantages, given its small size, availability, cost, and ease of operation. A system for measuring noise level, logging noise over time, doing FFT frequency analysis of sound, and measuring speech intelligibility has been created. This platform has been developed to use either an iPhone or iPad as a host device. This provides a portable, cost-effective and easy to deploy test and measurement system. The main area of system performance concern is the transducer. The typical transducer in an iOS device is designed with speech analysis in mind, rather than wide-band acoustical analysis. Additionally, the iOS device gyroscope has been optimized to recognize gross movement, rather than detailed fine movement. The strategy for addressing these set of issues has been two-fold.
2015-06-15
Journal Article
2015-01-2215
Thomas L. Lago
Abstract How to decrease noise and vibration exposure has been of interest for many years. Empirical data have indicated that too high dose values can create multiple problems to a human body - often severe. Some years back, the European Machinery Directive has increased the responsibility for manufacturers and employers to make sure limits are complying with legislation. Classical technology often consists of passive solutions aiming at trying to cut back on noise and vibration levels. For low frequency, these methods are often lacking the needed performance especially if weight should be considered at the same time. A smart combination of passive and active techniques can make a real difference. Today, with possibilities for low cost and embedded electronics and the rapid development of new actuators, a vast range of applications are possible for this combined combat approach, with a financial advantage as well.
2015-06-15
Journal Article
2015-01-2222
Nikos Zafeiropoulos, Marco Ballatore, Andy Moorhouse, Andy Mackay
Abstract Axle forces from tire-road interaction can excite different structural resonances of the vehicle hence a high number of sensors is required for observing and separating all the vibrations dynamics that are coherent with the cabin noise. Feed-forward road noise control strategies adopted so far rely mainly on capturing these dynamics and thus the number of sensors constitutes one major limitation of this approach. Therefore there is a necessity for reducing the number of sensors without degrading the performance of an ANC system. In the past coherence function analysis has been found to be a useful tool for optimizing the sensor location. In this case coherence function mapping was performed between an array of vibration sensors and the headrest microphones in order to identify the locations on the structure that are highly correlated with road noise bands in the compartment.
2015-06-15
Journal Article
2015-01-2335
Scott Amman, Francois Charette, Paul Nicastri, John Huber, Brigitte Richardson, Gint Puskorius, Yuksel Gur, Anthony Cooprider
Abstract Hands-free phone use is the most utilized use case for vehicles equipped with infotainment systems with external microphones that support connection to phones and implement speech recognition. Critically then, achieving hands-free phone call quality in a vehicle is problematic due to the extremely noisy nature of the vehicle environment. Noise generated by wind, mechanical and structural, tire to road, passengers, engine/exhaust, HVAC air pressure and flow are all significant contributors and sources of noise. Other factors influencing the quality of the phone call include microphone placement, cabin acoustics, seat position of the talker, noise reduction of the hands-free system, etc. This paper describes the work done to develop procedures and metrics to quantify the effects that influence the hands-free phone call quality.
2015-06-15
Journal Article
2015-01-2281
Shrirang Deshpande, Randall Allemang
Abstract Spectral maps and order tracks are tools which are susceptible to improper sensor location on rotating machinery and to measurement noise. On a complex/large rotating system, the major behavior in a particular direction cannot be observed by using standard digital signal processing averaging techniques on different sensor outputs. Also, measurement noise cannot be reduced by applying averaging - due to the slew rate of the system. A newly developed technique tested on experimental data, is presented which uses singular value decomposition (SVD) as its basis to improve the observability of rotating systems. By using data acquired from multiple accelerometers on a machine, singular values - obtained from a SVD of the cross-power matrix at each 2-D point in the frequency-RPM domain - can be plotted in a color-map format similar to a RPM spectral map.
2015-06-12
WIP Standard
AIR6511
This document shall provide the fundamental safety considerations in pursuing the design of a 48/60 VDC aircraft electrical system. This departure from the current standard of 28 VDC will provide the benefits of reducing the operational weight and fuel consumption of the aircraft by increasing the DC system voltage level.
2015-06-12
Standard
AS28937A
SCOPE IS UNAVAILABLE.
Viewing 271 to 300 of 21999

Filter