Display:

Results

Viewing 1 to 30 of 21712
2015-09-20
Book
This is the electronic format of the Journal.
2015-06-22
Book
In-Soo Suh
Around the world, the major automakers are developing their strategies for conductive and wireless charging technologies, with concerted efforts to establish technical standards on wireless electric vehicle charging, mainly focused on the safety considerations and inter-operability. Wireless Charging Technology and the Future of Electric Transportation covers the current status of wireless power transfer (WPT) technology and its potential applications to the future road and rail transportation systems. Focusing on the applications of WPT technology to electric vehicle charging and the future green transportation field, Wireless Charging Technology and the Future of Electric Transportation was written collaboratively by nine experts in the field, led by Dr. In-Soo Suh, a professor and researcher from the Korean Advanced Institute of Technology (KAIST).
2015-06-15
Technical Paper
2015-01-2086
Matthew Grzych, Terrance Tritz, Jeanne Mason, Melissa Bravin, Anna Sharpsten
Abstract The significant problem of engine power-loss and damage associated with ice crystal icing (ICI) was first formally recognized by the industry in a 2006 publication [1]. Engine events described by the study included: engine surge, stall, flameout, rollback, and compressor damage; which were triggered by the ingestion of ice crystals in high concentrations generated by deep, moist convection. Since 2003, when ICI engine events were first identified, Boeing has carefully analyzed event conditions documenting detailed pilot reports and compiling weather analyses into a database. The database provides valuable information to characterize environments associated with engine events. It provides boundary conditions, exposure times, and severity to researchers investigating the ICI phenomenon. Ultimately, this research will aid in the development of engine tests and ICI detection/avoidance devices or techniques.
2015-06-15
Technical Paper
2015-01-2112
Thomas Schlegl, Michael Moser, Hubert Zangl
Abstract We present a wireless sensor system for temperature measurement and icing detection for the use on aircraft. The sensors are flexible (i.e. bendable), truly wireless, do not require scheduled maintenance, and can be attached easily to almost any point on the aircraft surface (e.g. wings, fuselage, rudder, elevator, etc.). With a sensor thickness of less than two millimeters at the current state of development, they hardly affect the aero dynamical behavior of the structure. In this paper, we report laboratory and field results for temperature measurement and icing detection.
2015-06-15
Technical Paper
2015-01-2153
David Serke, Michael King, Andrew Reehorst
In early 2015, a field campaign was conducted at the NASA Glenn Research Center in Cleveland, Ohio, USA. The purpose of the campaign is to test several prototype algorithms meant to detect the location and severity of in-flight icing (or icing aloft, as opposed to ground icing) within the terminal airspace. Terminal airspace for this project is currently defined as within 25 kilometers horizontal distance of the terminal, which in this instance is Hopkins International Airport in Cleveland. Two new and improved algorithms that utilize ground-based remote sensing instrumentation have been developed and were operated during the field campaign. The first is the ‘NASA Icing Remote Sensing System’, or NIRSS. The second algorithm is the ‘Radar Icing Algorithm’, or RadIA.
2015-06-15
Technical Paper
2015-01-2279
Giovanni Rinaldi, Chris Moon, Bret Engels
A unique Matlab-based coded engineering software tool (Time-Frequency Analyzer Core) was developed that allows users to process acquired time data to help in identifying sources and paths of noise and vibration (in the experience of the authors). The Time-Frequency Analyzer Core (TFAC) software does not replace commercial off the shelf software/hardware NV specific tools such as modal analysis, ODS, acoustic mapping, order tracking, etc., rather it aims at providing basic, yet powerful data inspection and comparison techniques in a single software tool that facilitate drawing conclusions and identifying most effective next steps. The features and advantages of using this software tool will be explained, along with a description of its application to a few different cases (automotive and off highway/agricultural).
2015-06-15
Technical Paper
2015-01-2095
Wolfgang Hassler, Reinhard F.A. Puffing, Andreas Tramposch
Abstract This paper deals with thermal ice protection of electrically heated restraining grids designed for applications in the environmental control system (ECS) of passenger aircraft. The restraining grids described in the paper consist of strung, electrically insulated wire and are - in certain operation modes of the ECS - exposed to an airstream containing supercooled water droplets and/or ice particles. Heat is generated in the wire by an electric current, and the temperature of the wire is controlled with the aid of an electronic control system. A substantial question for laying out the controller and for operating the grids is the following: What minimum heating power is required to prevent ice accretion on the surface of the wire, i.e., what is the least heating power that is necessary to keep a grid being exposed to specific icing conditions devoid of ice? This problem is studied for a simple model system first and is then examined for restraining grids.
2015-06-15
Journal Article
2015-01-2106
Mark Ray, Kaare Anderson
Abstract Cloud phase discrimination, coupled with measurements of liquid water content (LWC) and ice water content (IWC) as well as the detection and discrimination of supercooled large droplets (SLD), are of primary importance in aviation safety due to several high-profile incidents over the past two decades. The UTC Aerospace Systems Optical Ice Detector (OID) is a prototype laser sensor intended to discriminate cloud phase, to quantify LWC and IWC, and to detect SLD and differentiate SLD conditions from those of Appendix C. Phase discrimination is achieved through depolarization scattering measurements of a circularly polarized laser beam transmitted into the cloud. Optical extinction measurements indicate the liquid and ice water contents, while the differential backscatter from two distinct probe laser wavelengths implies an effective droplet size.
2015-06-15
Technical Paper
2015-01-2152
Earle Williams, Michael F. Donovan, David J. Smalley, Robert G. Hallowell, Elaine P. Griffin, Kenta T. Hood, Betty J. Bennett, Mengistu Wolde, Alexei V. Korolev
MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated campaign of in situ flights in winter storms. During the month of February in 2012 and 2013, the CONVAIR 580 aircraft operated by the National Research Council of Canada was used for in situ validation of snowstorm characteristics under simultaneous observation by NEXRAD radars in Cleveland, Ohio and Buffalo, New York. The most anisotropic and easily distinguished winter targets to dual pol radar are ice crystals.
2015-06-15
Technical Paper
2015-01-2256
Colin Troth
Abstract This paper considers important aspects of rigid body dynamics of power trains with respect to noise and vibration (by definition a power train (PT) term here is an engine plus transmission). Flexibility of PT's and their ancillaries leads to unwanted levels of noise and vibration. By employing rigid body concepts we can assess the levels of unwanted flexibility of whole PT's and their ancillaries e.g. mounting brackets. Using dedicated software based on rigid body theory it is possible to define vibration and noise ‘entitlement’ i.e. minimum vibration and noise that can theoretically be achieved. Targets can then be to set based upon these entitlements. This can then lead to better more robust designs to achieve higher levels of refinement. The use of generic 3 and 4 cylinder one liter in-line PT's modes are used within the software to aid this study.
2015-06-15
Technical Paper
2015-01-2248
Florian Pignol, Emiel Tijs, Daniel Fernandez Comesana, Daewoon Kim
Abstract In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
2015-06-15
Journal Article
2015-01-2222
Nikos Zafeiropoulos, Marco Ballatore, Andy Moorhouse, Andy Mackay
Road noise forces can excite different structural resonances of the vehicle hence a high number of sensors required for observing and separating all the vibrations that are coherent with the cabin noise. Current reference sensor selection methods for feedforward road noise control result to high number of sensors. Therefore there is a necessity for reducing the number of sensors without degrading the performance of an ANC system. In the past coherence function analysis has been found to be useful for optimising the sensor location. Thus, in this case coherence function mapping was performed between an array of vibration sensors and a microphone in order to identify the locations on the structure with highly correlated with road bands in the compartment. A vehicle with an advanced suspension system was used for applying the method and defining some locations as reference signals for feedforward active road noise control.
2015-06-15
Journal Article
2015-01-2335
Scott Amman, Francois Charette, Paul Nicastri, John Huber, Brigitte Richardson, Gint Puskorius, Yuksel Gur, Anthony Cooprider
Quantifying Hands-free Call Quality in an Automobile Hands-free phone use is the most utilized use case for vehicles equipped with infotainment systems with external microphones that support connection to phones and implement speech recognition. Critically then, achieving hands-free phone call quality in a vehicle is problematic due to the extremely noisy nature of the vehicle environment. Noise generated by wind, mechanical and structural, tire to road, passengers, engine/exhaust, HVAC air pressure and flow are all significant contributors and sources of noise. Other factors influencing the quality of the phone call include microphone placement, cabin acoustics, seat position of the talker, noise reduction of the hands-free system, etc. This paper describes the work done to develop procedures and metrics to quantify the effects that influence the hands-free phone call quality.
2015-06-15
Journal Article
2015-01-2281
Shrirang Deshpande, Randall Allemang
Spectral maps and order tracks are tools which are susceptible to improper sensor location on rotating machinery and to measurement noise. On a complex/large rotating system, the major behavior in a particular direction cannot be observed by using standard digital signal processing averaging techniques on different sensor outputs. Also, measurement noise cannot be reduced by applying averaging - due to the slew rate of the system. A newly developed technique tested on experimental data, is presented which uses singular value decomposition (SVD) as its basis to improve the observability of rotating systems. By using data acquired from multiple accelerometers on a machine, singular values – obtained from a SVD of the cross-power matrix at each 2-D point in the frequency-RPM domain – can be plotted in a color-map format similar to a RPM spectral map.
2015-06-15
Journal Article
2015-01-2215
Thomas L. Lago
Abstract How to decrease noise and vibration exposure has been of interest for many years. Empirical data have indicated that too high dose values can create multiple problems to a human body - often severe. Some years back, the European Machinery Directive has increased the responsibility for manufacturers and employers to make sure limits are complying with legislation. Classical technology often consists of passive solutions aiming at trying to cut back on noise and vibration levels. For low frequency, these methods are often lacking the needed performance especially if weight should be considered at the same time. A smart combination of passive and active techniques can make a real difference. Today, with possibilities for low cost and embedded electronics and the rapid development of new actuators, a vast range of applications are possible for this combined combat approach, with a financial advantage as well.
2015-06-15
Technical Paper
2015-01-2283
Andrew Smith
Abstract iOS devices, including iPhones and iPads, are being used increasingly for professional and scientific applications. Using an iOS device for noise and vibration measurements is an application with many advantages, given its small size, availability, cost, and ease of operation. A system for measuring noise level, logging noise over time, doing FFT frequency analysis of sound, and measuring speech intelligibility has been created. This platform has been developed to use either an iPhone or iPad as a host device. This provides a portable, cost-effective and easy to deploy test and measurement system. The main area of system performance concern is the transducer. The typical transducer in an iOS device is designed with speech analysis in mind, rather than wide-band acoustical analysis. Additionally, the iOS device gyroscope has been optimized to recognize gross movement, rather than detailed fine movement. The strategy for addressing these set of issues has been two-fold.
2015-06-01
Journal Article
2015-01-9042
Timo van Overbrueggen, Michael Klaas, Björn Bahl, Wolfgang Schroeder
Abstract New combustion processes require an understanding of the highly three-dimensional flow field to effectively decrease fuel consumption and pollutant emission. Due to the complex spatial character of the flow the knowledge of the development of the flow in an extended volume is necessary. Previous investigations were able to visualize the discrete three-dimensional flow field through multi-plane stereoscopic PIV. In this study, cycle resolved tomographic particle-image velocimetry measurement have been performed to obtain a fully resolved representation of the three-dimensional flow structures at each instant. The analysis is based on the measurements at 80°, 160°, and 240° after top dead center(atdc) such that the velocity distributions at the intake, the end of the intake, and the compression stroke at an engine speed of 1,500 rpm are discussed in detail.
2015-05-29
Article
Taiwan’s automotive electronics industry is seeing steady growth as companies focus on selling to OEMs and the growing market in mainland China.
2015-05-27
Article
Lewis Hamilton, the reigning world champion Formula One racer, dominated the Monaco Grand Prix on May 24, performing flawlessly until a lapse in data transmission and its interpretation by the Mercedes AMG Petronas technical team cost him the victory.
2015-05-26
Article
Connected vehicles bring many of the benefits gained with Internet access, but they also bring security issues including the threat of cyber attacks. That’s forcing design teams throughout the automotive supply chain to focus on a broad range of security technologies that create a holistic defense strategy. Defense in depth is the watchword.
2015-05-26
Article
Molex Inc. has introduced the Super Sabre Power Connector System for all high-current applications where flexible wire-to-wire and wire-to-board configurations are required.
2015-05-26
Article
Sensors gather information about the vehicle, its performance, and the surrounding environment. In this episode of SAE Eye on Engineering, Senior Editor Lindsay Brooke looks at the sensors and microprocessors on the 2016 Ford GT. 
2015-05-26
Standard
J1647_201505
This SAE Recommended Practice provides test methods and requirements to evaluate the suitability of plastic optical materials for possible use in discharge forward lighting (DFL) devices in motor vehicles. These materials are typically used for lenses and reflectors. Separate testing is required for each combination of material, industrial coating, DFL light source, and device focal length. The tests are intended to determine physical and optical characteristics of the materials and coatings. Performance expectations of finished assemblies, including plastic components, are to be based on tests for lighting devices, as specified in SAE Standards and Recommended Practices for motor vehicle lighting equipment. Optical components exposed to weathering should also be subject to SAE J576.
2015-05-26
WIP Standard
J2735
This SAE Standard specifies a message set, and its data frames and data elements specifically for use by applications intended to utilize the 5.9 GHz Dedicated Short Range Communications for Wireless Access in Vehicular Environments (DSRC/WAVE, referenced in this document simply as “DSRC”), communications systems. Although the scope of this Standard is focused on DSRC, this message set, and its data frames and data elements have been designed, to the extent possible, to also be of potential use for applications that may be deployed in conjunction with other wireless communications technologies. This Standard therefore specifies the definitive message structure and provides sufficient background information to allow readers to properly interpret the message definitions from the point of view of an application developer implementing the messages according to the DSRC Standards.
2015-05-20
WIP Standard
AIR6894
This document describes laser wire stripping technologies and recommendations to strip electrical single conductor and shielded cable intended for aerospace applications. These recommendations concern: - Laser stripping process safety (for the wire or cable) - Laser stripping quality - Tool qualification - Tool inspection - User health and safety
2015-05-20
Book
This is the electronic format of the Journal.
2015-05-19
Article
Lockheed Martin is currently under contract to build eight GPS III satellites at its GPS III Processing Facility near Denver, a factory specifically designed to streamline satellite production.
2015-05-19
WIP Standard
ARP6063
This SAE Aerospace Recommended Practice (ARP) provides guidance for the verification and certification of a “commercial” fixed wing aircraft fuel tank inerting system (FTIS) and will provide technical references and data regarding ground and flight testing of an FTIS. The intent of this ARP is to address issues associated with the verification requirements based on current regulatory guidance per AC25.981-2C
2015-05-19
Standard
J3072_201505
This SAE Standard J3072 establishes interconnection requirements for a utility-interactive inverter system which is integrated into a plug-in electric vehicle (PEV) and connects in parallel with an electric power system (EPS) by way of conductively-coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems and IEEE 1547.1 Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.
Viewing 1 to 30 of 21712

Filter