Display:

Results

Viewing 1 to 30 of 13447
2016-06-15
Journal Article
2016-01-1825
Jung-Han Woo, Da-Young Kim, Jeong-Guon Ih
Abstract To hear the powerful and spectrally rich sound in a car is costly, because the usual car audio system adopts small loudspeakers. Also, the available positions of the loudspeakers are limited, that may cause the reactive effect from the backing cavity and the sound distortion. In this work, a part of the roof panel of a passenger car is controlled by array actuators to convert the specified large area to be a woofer. An analogous concept of the acoustic holography is employed to be projected as the basic concept of an inverse rendering for achieving a desired vibration field. The vibration of the radiating zone is controlled to be in a uniform phase, and the other parts outside it are to be made a no-change zone in vibration. The latter becomes a baffle for the woofer, and the backing cavity is virtually infinite if the sound radiation into the passenger cabin is only of concern.
2016-06-15
Technical Paper
2016-01-1781
Matthew Maunder, Phil Grant, Duncan Mawdsley
Abstract Engine sound quality is a key attribute for sporty cars - it powerfully conveys the brand image to the driver/passengers and onlookers, and provides driver involvement by giving instant feedback about how a car is operating. Providing this has become more difficult with tighter pass-by noise regulations and the near-universal adoption of turbocharging. In the last two decades, sporty sound inside the cabin has been regained using intake sound generator systems that transfer sound more directly to the vehicle interior. The high cost of these systems is more recently driving a move towards electronic Active Sound Design with systems delivering synthetic sound through loudspeakers. However, the purist sports car market perceives this approach to be fake or artificial. An alternative approach is provided by a system for Realistic Augmented Sound by Ricardo (RAS-R) that offers a choice of two realistic engine sound sources.
2016-06-15
Technical Paper
2016-01-1783
Oliver Engler
Mercedes-AMG GmbH specializes in unique, high-performance vehicles. The image of AMG as the successful performance brand of Mercedes-Benz is reflected in its impressive successes in the world of motorsport and its unique vehicles. One of these vehicles is the SLS AMG Coupé Electric Drive. After an elaborate series of tests as well as numerous test drives, we have created the SLS eSound which captures the exceptional dynamism of this unique super sports car with electric drive. Starting with a characteristic start-up sound, which rings out on pressing the "Power" button on the AMG DRIVE UNIT, the occupants can experience a tailor-made driving sound for each driving situation: incredibly dynamic when accelerating, subdued when cruising and as equally characteristic during recuperation. The sound is not only dependent on road speed, engine speed and load conditions, but also reflects the driving situation and the vehicle's operating state with a suitable driving noise.
2016-06-15
Journal Article
2016-01-1844
Jonathan Millitzer, Dirk Mayer, Roman Kraus, Matthias Schmidt
Abstract Current developments in the automotive industry such as downsizing, the use of cylinder deactivation and consistent lightweight construction increasingly enable the application of active control systems for the further reduction of noise and vibration in vehicles. In the past few years, different configurations of actuators and sensors for the realization of an active control system have been investigated and evaluated experimentally. Active engine mounts, inertial mass actuators and structural integrated actuators can be used to reduce either structural vibrations or the interior noise level. As a result, a variety of different topology concepts for the realization of an active control system arises. These can be divided into an active vibration control scenario, the direct influence of the sound field with loudspeakers or the application of structural actuators for the reduction of the interior sound pressure.
2016-06-15
Technical Paper
2016-01-1836
Sylvestre Lecuru, Pascal Bouvet, Jean-Louis Jouvray, Shanjin Wang
Abstract The recent use of electric motors for vehicle propulsion has stimulated the development of numerical methodologies to predict their noise and vibration behavior. These simulations generally use models based on an ideal electric motor. But sometimes acceleration and noise measurements on electric motors show unexpected harmonics that can generate acoustic issues. These harmonics are mainly due to the deviation of the manufactured parts from the nominal dimensions of the ideal machine. The rotor eccentricities are one of these deviations with an impact on acoustics of electric motors. Thus, the measurement of the rotor eccentricity becomes relevant to understand the phenomenon, quantify the deviation and then to use this data as an input in the numerical models. An innovative measurement method of rotor eccentricities using fiber optic displacement sensors is proposed.
2016-05-18
Journal Article
2016-01-9043
Timo van Overbrueggen, Marco Braun, Michael Klaas, Wolfgang Schroder
Abstract The interaction of biofuel sprays from an outward opening hollow cone injector and the flow field inside an internal combustion engine is analyzed by Mie-Scattering Imaging (MSI) and high-speed stereoscopic particle-image velocimetry (stereo-PIV). Two fuels (ethanol and methyl ethyl ketone (MEK)), four injection pressures (50, 100, 150, and 200 bar), three starting points of injection (60°, 277°, and 297° atdc), and two engine speeds (1,500 rpm and 2,000 rpm) define the parameter space of the experiments. The MSI measurements determine the vertical penetration length and the spray cone angle of the ethanol and MEK spray. Stereo-PIV is used to investigate the interaction of the flow field and the ethanol spray after the injection process for a start of injection at 60° atdc. These measurements are compared to stereo-PIV measurements without fuel injection performed in the same engine [19].
2016-05-01
Journal Article
2015-01-9132
Husain Kanchwala, Harutoshi Ogai
Abstract Japan is suffering from the problem of an ageing society. In Kitakyushu city more than a quarter of people are aged above 65 years. The roads in this region are narrow with steep gradient and vulnerable roadbed. A big ratio of elderly people are living on their own. These characteristics make driving unsuitable. The problem is magnified by infrequent public transportation. A need-assessment survey for an autonomous vehicle at a community event suggested the applicability of small electric vehicle Toyota COMS. The vehicle is then equipped with features like automatic driving and platooning. The autonomous drive system is built to develop an intelligent transport system (ITS) using various sensors and actuators. Stereo camera and ultrasonic sensors were used to get a judgment of obstacle. Google earth and GPS were used to generate the target path using the Bezier curve method and optimized route is chosen.
2016-05-01
Journal Article
2015-01-9145
Abdullah AL-Refai, Osamah Rawashdeh, Rami Abousleiman
Abstract Lithium-Ion batteries are the standard portable power solution to many consumers and industrial applications. These batteries are commonly used in laptop computers, heavy duty devices, unmanned vehicles, electric and hybrid vehicles, cell phones, and many other applications. Charging these batteries is a delicate process because it depends on numerous factors such as temperature, cell capacity, and, most importantly, the power and energy limits of the battery cells. Charging capacity, charging time and battery pack temperature variations are highly dependent on the charging method used. These three factors can be of special importance in applications with strict charging time requirements or with limited thermal management capabilities. In this paper, three common charging methods are experimentally studied and analyzed. Constant-current constant-voltage, the time pulsed charging method, and the multistage constant current charging methods were considered.
2016-05-01
Journal Article
2015-01-9148
Saeed Asgari, Shailendra Kaushik
Abstract A linear parameter varying (LPV) reduced order model (ROM) is used to approximate the volume-averaged temperature of battery cells in one of the modules of the battery pack with varying mass flow rate of cooling fluid using uniform heat source as inputs. The ROM runs orders of magnitude faster than the original CFD model. To reduce the time it takes to generate training data, used in building LPV ROM, a divide-and-conquer approach is introduced. This is done by dividing the battery module into a series of mid-cell and end-cell units. A mid-cell unit is composed of a cooling channel sandwiched in between two half -cells. A half-cell has half as much heat capacity as a full-cell. An end-cell unit is composed of a cooling channel sandwiched in between full-cell and a half-cell. A mass flow rate distribution look-up-table is generated from a set of steady-state simulations obtained by running the full CFD model at different inlet manifold mass flow rate samples.
2016-05-01
Journal Article
2015-01-9147
Zhiyun Zhang, Miaohua Huang, Yupu Chen, Shuanglong Zhu
Abstract In the field of Electric Vehicle (EV), what the driver is most concerned with is that whether the value of the battery's capacity is less than the failure threshold because of the degradation. And the failure threshold means instability of the battery, which is of great danger for drives and passengers. So the capacity is an important indicator to monitor the state of health (SOH) of the battery. In laboratory environment, standard performance tests can be carried out to collect a number of related data, which are available for regression prediction in practical application, such as the on-board battery pack. Firstly, we make use of the NASA battery data set to form the observed data sequence for regression prediction. And a practical method is proposed to determine the minimum embedding dimension and get the recurrence formula, with which a capacity model is built.
2016-04-05
Journal Article
2015-01-9152
André Lundkvist, Arne Nykänen, Roger Johnsson
Abstract Many of the information systems in cars require visual attention, and a way to reduce both visual and cognitive workload could be to use sound. An experiment was designed in order to determine how driving and secondary task performance is affected by the use of information sound signals and their spatial positions. The experiment was performed in a driving simulator utilizing Lane Change Task as a driving scenario in combination with the Surrogate Reference Task as a secondary task. Two different signal sounds with different spatial positions informed the driver when a lane change should be made and when a new secondary task was presented. Driving performance was significantly improved when both signal sounds were presented in front of the driver. No significant effects on secondary task performance were found. It is recommended that signal sounds are placed in front of the driver, when possible, if the goal is to draw attention forward.
2016-04-05
Journal Article
2015-01-9153
André Lundkvist, Arne Nykänen
Abstract The number of advanced driver assistance systems is constantly increasing. Many of the systems require visual attention, and a way to reduce risks associated with inattention could be to use multisensory signals. A driver's main attention is in front of the car, but inattention to surrounding areas beside and behind the car can be a risk. Therefore, there is a need for driver assistance systems capable of directing attention to the sides. In a simulator study, combined visual, auditory and vibrotactile signals for directional attention capture were designed for use in driver assistance systems, such as blind spot information, parking assistance, collision warnings, navigation, lane departure warning etc. An experiment was conducted in order to measure the effects of the use of different sensory modalities on directional attention (left/right) in driver assistance systems.
2016-04-05
Technical Paper
2016-01-0054
Eduard Lyubimov, Sergey Gladyshev, Dmitriy Istselemov, Nikolay Belyaev
The synchronous electrical machines are used in regular cars, electrical, and hybrid cars as generators or motors. They need to be tested after fabrication and also during maintenance. For this purpose can be used suggested measurement complex. The software structure of the considered measurement complex was defined according: Russian, IEC, and IEEE standards for testing synchronous machines. The software of measurement complex was designed by using Lab VIEW development modules and is orientated to work with National Instruments hardware. It consist of nine interconnected Virtual Instruments (VIs) to carry out: the no-load test, the sustained short-circuit test, the V-curve test, the load angle test, to plot Potier diagram, the sudden short circuit test, to acquire the transient response characteristic and determine optimal PID controller parameters, to generate test report, to control the testing process.
2016-04-05
Technical Paper
2016-01-1050
Vikas V Thorat, Girish Khairnar, Saurav Chatterjee, Jagrit Shrivas, Vishwakarma Diwakar, Sandip Chaudhari
In India, there is a constant rise in demand for three wheelers as they are cheap and convenient mode of transport and also suitable for heavy city traffic & narrow roads due to their small and modular vehicle structure. From last few decades, Greaves is playing a major role in providing single cylinder engines (Diesel/ CNG) for three wheelers in the market. In view of the changing dynamics of fuel prices in India, where the gap between diesel and petrol prices are shrinking, people are once again shifting their preferences towards the gasoline vehicles to en-cash a better cost advantage as compared to diesel vehicles. By considering this market Scenario, Greaves has developed dedicated Gasoline engine compliance with BS-III emission norms for three wheeler application. In the era of electronization, demand for electrical auxiliaries on engine is considerably expanding. To cater to this requirement, higher output Flywheel mounted alternator (FMA) is explored and introduced.
2016-04-05
Technical Paper
2016-01-0168
Domenic J. Belgiovane, Chi-Chen Chen
Rapidly developing autonomous vehicle technologies aim to reduce roadway fatalities and promote driver comfort. Such autonomous vehicle are mostly empowered by optical and radar sensors. Collision avoidance systems are becoming a common a standard safety feature in newer or future cars. Some automotive radar sensors have been successfully used in parking, lane changing, and blind spot detection. Newer 76-78 GHz radars are being developed and tested by car makers for extending these safety features to pedestrian and bicyclist detection. However, using cost effective vehicular radars in reliably detecting pedestrian and bicyclist with low false alarm rate still poses challenging due to many possible variations of these targets as well as the presence of other road objects. To improve detection methods, real scenario testing in currently being implemented where hundreds of tests can be performed on mannequins which mimic pedestrians and bicyclists both optically and to and radar.
2016-04-05
Technical Paper
2016-01-1566
Liangyao Yu, Xiaoxue Liu, Kefeng Yang, Xiaohui Liu, Shuhao Huo
This paper focuses on reviewing the existing studies of in-tire energy harvesting systems. Energy harvesting systems are widely applied in different areas. But studies in the application of energy harvesters embedded in tires for vehicle control are still rare, most of which focus on solving the problem of power supply of tire pressure sensors. Traditionally the sensors are powered by an embedded battery, which must be changed periodically due to the limited energy storage. Furthermore, the number of in-tire sensors will increase as safety of vehicles has drawn more attention, requiring more in tire electricity supply. So a substitution of the battery, the in-tire energy harvesting system, is worth studying. Currently introduced methods of in-tire energy harvesting principles include piezoelectric, electromagnetic and electrostatic. The source of the energy can be in tire vibration, deformation, rotation and so on.
2016-04-05
Technical Paper
2016-01-1170
George Dixon, Thomas Steffen, Richard Stobart
Abstract The TC48 project is developing a state-of-the-art, exceptionally low cost, 48V Plug-in hybrid electric (PHEV) demonstration drivetrain suitable for electrically powered urban driving, hybrid operation, and internal combustion engine powered high speed motoring. This paper explains the motivation for the project, and presents the layout options considered and the rationale by which these were reduced. The vehicle simulation model used to evaluate the layout options is described and discussed. The modelling work was used in order to support and justify the design choices made. The design of the vehicle's control systems is discussed, presenting simulation results. The physical embodiment of the design is not reported in this paper. The paper describes analysis of small vehicles in the marketplace, including aspects of range and cost, leading to the justification for the specification of the TC48 system.
2016-04-05
Journal Article
2016-01-1161
Akira Mori
Abstract In 2007, researchers at the Massachusetts Institute of Technology successfully completed a Wireless Power Transfer (WPT) experiment. Ever since, interest in WPT has been growing. At Toyota, we have been developing the underlying technology of a WPT system. Simultaneously we have been working with regulatory committees to create a standard for WPT. In particular, there are concerns that WPT’s radiated emissions could cause harm to humans and the neighboring electronic equipment. There are many challenges that need to be overcome, but a key concern is understanding WPT’s electromagnetic compatibility (EMI: Electro-Magnetic Interference and EMF: Electro-Magnetic Field). In this paper, we show the technical issues, the evaluation method, and the development status of EMI and EMF on PHVs/EVs when using WPT. For Electromagnetic interference (EMI) performance, we investigated both an open area test site and an electromagnetic anechoic chamber as evaluation environments.
2016-04-05
Technical Paper
2016-01-1155
Toru Nakamura, Takahiro Misawa, Yusuke Futakuchi, Kensuke Kamichi
Abstract Toyota Motor Corporation (TMC) began a wireless charging field test in February 2014. A wireless charging system was installed at the residences of test subjects with the aim of identifying issues related to convenience and installation in daily usage. The test vehicle was fabricated by installing a wireless charging system into a Prius PHV (Plug-in Hybrid Vehicle). The installed system had the same charging power as the cable charging system used on the base vehicle, and had a charging time of 1.5 hours. A high-frequency 85 kHz power supply and primary coil were produced for the charging infrastructure. To identify differences in charging behavior, the test subjects were asked to use the cable charging system for the first month before changing to the wireless charging system for two months. Data acquisition was performed by an on-board data logger and through interviews with the test subjects.
2016-04-05
Technical Paper
2016-01-1158
Toshiaki Watanabe, Masaya Ishida
Abstract Wireless charging systems for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) employing the resonant magnetic coupling method and using induction coils have been intensively studied in recent years. Since this method requires kW class high power to be transmitted using resonant magnetic coupling in the high frequency range, it is necessary to pay attention to the leakage of the magnetic field generated by the coil current, and to its influence on surrounding objects, particularly human bodies. Noting that acceptable values for human body exposure to electromagnetic fields have previously been issued by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) as guidelines, we have developed a method for predicting product compliance with those guidelines at the basic design development stage.
2016-04-05
Technical Paper
2016-01-1182
Andrej Ivanco, Balan Mariappan Selvaraj, Kawshik Murali, Arjun Narayanan, Avik Sarkar, Aviral Singh, Akshay Soni, Mark Benton, Prasanth Muralidharan, Johnell Brooks, Paul Venhovens, Craig Payne
Abstract The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the sixth generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development and implementation of a dual-purpose powertrain system enabling vehicle propulsion as well as stationary activities of the Deep Orange 6 vehicle concept. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish vehicle target and subsystem requirement, which formed the foundation of the Unique Selling Points (USPs) of the concept.
2016-04-05
Journal Article
2016-01-1179
Adrian Patzak, Florian Bachheibl, Andreas Baumgardt, Gurakuq Dajaku, Oleg Moros, Dieter Gerling
Abstract State-of-the-art electrical drives for electric vehicles (EV) run on a battery voltage above 60 V (HV). This paper presents an alternative approach for use in future EVs: The Intelligent Stator Cage Drive (ISCAD) - an extra-low voltage drive for highest performance at battery voltages below 60 V (LV). First of all, the novel drive components are introduced with references to previously published papers on more concept details. A highly parallel set-up is chosen for maximum current capability and extremely low resistances. The novel 60-phase induction machine is made of solid aluminum bars instead of copper windings in the stator and a common squirrel cage rotor. The MOSFET-based inverter individually supplies every single stator bar in order to shape an extraordinarily smooth air gap magnetic field.
2016-04-05
Technical Paper
2016-01-1177
Aditya Dhand, Keith Pullen
Abstract There are different types of energy storage devices which are used in today’s hybrid and electric vehicles. Batteries, ultra capacitors and high speed flywheels are the most commonly used ones. While batteries and supercapacitors store energy in the form of electric energy, the flywheel (FW) is the only device that keeps the energy stored in the original form of mechanical energy the same as the moving vehicle. The flywheel needs to be coupled to the driveshaft of the vehicle in a manner which allows it to vary its speed independently of the moving vehicle in order to vary its energy content. In other words a continuously variable transmission (CVT) is needed. The common mechanical variators used in automotive applications, namely the rolling traction drives and the belt drives, have the disadvantage that their speed ratio range defined as the maximum to minimum speed ratio is generally not sufficient for flywheel energy storage system (FESS).
2016-04-05
Journal Article
2016-01-1176
Karim Hamza, Ken Laberteaux
Abstract This work presents a modeling approach for estimation of the equivalent greenhouse gas (GHG) emissions of plugin hybrid electric vehicles (PHEVs) for real driving patterns and charging behaviors. In general, modeling of the equivalent GHG for a trip made by a PHEV not only depends on the trip trace in question, but also on the electric range of the vehicle and energy consumption in previous trips since the last charging event. This can significantly increase the necessary computational burden of estimating the GHG emissions using numerical simulation tools, which are already computationally-expensive. The proposed approach allows a trip numerical simulation starting with a fully charged battery to be re-used for GHG estimation of a trip that starts with any initial state of charge by re-allocating the appropriate amount electric energy to an equivalent gas consumption.
2016-04-05
Technical Paper
2016-01-1207
Hiroki Nagai, Masahiro Morita, Koichi Satoh
Abstract Toyota introduced the first generation Prius in 1997. The vehicle was conceived, designed and launched as a dedicated, mass-produced global hybrid vehicle platform, the first of its kind. The introduction of the 2nd and 3rd generation Prius (2003, 2009) saw vehicles with significantly improved performance, including fuel efficiency. The Prius Alpha (Japan/EU), launched in 2011, represented Toyota first foray with Li-ion battery in a strong hybrid configuration. For the Prius Alpha, the adoption of a compact Li-ion battery resulted in sufficient cabin space to allow a 3rd row of seats while maintaining high fuel efficiency. Before and after the launch of the Prius Alpha, an extensive list of tests was performed on the Li-ion battery pack, including electrical, electrochemical, mechanical, and safety. The evaluations were performed in the lab, in the field (demonstration fleets) and by acquiring vehicles used by customers.
2016-04-05
Technical Paper
2016-01-1205
Chih-Hung (Erik) Yen, Taeyoung Han, Shailendra Kaushik, Bahram Khalighi
Abstract As one of many pack-level battery simulation approaches developed within the General Motors-led Computer-Aided Engineering of Automotive Batteries (CAEBAT) Phase 1 project, the system approach treats the entire battery pack as a dynamic system which includes multiple engineering disciplines for simulation. It is the most efficient approach of all the CAEBAT battery pack-level approaches in terms of computational time and resources. This paper reports the application of the system approach for a 24-cell liquid-cooled prototype battery pack. It also summarizes the verification of the approach by comparing the simulation results with the measurement data. The results using the system approach are found to have a very good agreement with the measurements.
2016-04-05
Technical Paper
2016-01-1204
Dongchang Pan, Sichuan Xu, Chunjing Lin, Guofeng Chang
Abstract As one of the most crucial components in electric vehicles, power batteries generate abundant heat during charging and discharging processes. Thermal management system (TMS), which is designed to keep the battery cells within an optimum temperature range and to maintain an even temperature distribution from cell to cell, is vital for the high efficiency, long calendar life and reliable safety of these power batteries. With the desirable features of low system complexity, light weight, high energy efficiency and good battery thermal uniformity, thermal management using composite phase change materials (PCMs) has drawn great attention in the past fifteen years. In the hope of supplying helpful guidelines for the design of the PCM-based TMSs, this work begins with the summarization of the most commonly applied heat transfer enhancement methods (i.e., the use of thermally conductive particles, metal fin, expanded graphite matrix and metal foam) for PCMs by different researchers.
2016-04-05
Technical Paper
2016-01-1203
Zhang Qiao, Weiwen Deng, Jian Wu, Feng Ju, Jingshan Li
Abstract This paper describes a novel power management control strategy of battery and supercapacitor hybrid energy storage system to improve system efficiency and battery lifetime. In the presented research, the high and low frequency power demand in the load is separated by a Haar wavelet transform algorithm to overcome the problem of battery overload work and associated degeneration in battery lifetime resulting from an ineffective distribution between battery and supercapacitor. The purpose of frequency distribution is that the supercapacitor is used to share high frequency power components of load power demand to smooth the power demand applied to battery. However, the sole frequency control often fails to realize the optimal utilization of supercapacitor because of the uncertain variation in the driving cycle.
2016-04-05
Technical Paper
2016-01-1202
Jihas Khan
Abstract With the advent of hybrid and electric cars battery monitoring systems and battery management systems have become bundled with more and more sophisticated algorithms and specifications. The validation of these systems are a head ache for OEMs and Tier ones considering the massive battery, high voltage and the current involved with the real loads directly or in directly connected to them. This paper is aimed at providing an intuitive explanation of these challenges and solutions which employ HILS for the component level validation of the above units. . Conventional validation for these systems produce test results much later in the embedded product development life cycle which calls for an additional over head of cost, resource, time and effort. A Proposed solution is to find the accuracy of SOC, SOH estimation algorithm in the battery monitoring sensor which usually will be clamped to the real battery itself.
2016-04-05
Technical Paper
2016-01-1200
Zhiyun Zhang, Miaohua Huang, Yupu Chen, Dong Gao
Abstract Whether the available energy of the on-board battery pack is enough for the driver’s next trip is a major contributor in slowing the growth rate of Electric Vehicles (EVs). What’s more, the actual capacity of the battery pack depend on so many factors that a real-time estimation of the state of charge of the battery pack is often difficult. We proposed a big-data based algorithm to build a battery pack dynamic model for the online state of charge estimation and a stochastic model for the energy consumption prediction. And the good performance of sensors, high-bandwidth communication systems and cloud servers make it convenient to measure and collect the related data, which are grouped into three categories: standard, historical and real-time data. First a resistance-capacitance ( RC )-equivalent circuit is taken consideration to simplify the battery dynamics.
Viewing 1 to 30 of 13447