Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 189
2016-09-19
Book
This is the electronic format of the Journal.
2016-07-01
Book
Joerg Schaeuffele, Thomas Zurawka
Since the early seventies, the development of the automobile has been characterized by a steady increase in the deploymnet of onboard electronics systems and software. This trend continues unabated and is driven by rising end-user demands and increasingly stringent environmental requirements. Today, almost every function onboard the modern vehicle is electronically controlled or monitored. The software-based implementation of vehicle functions provides for unparalleled freedoms of concept and design. However, automobile development calls for the accommodation of contrasting prerequisites – such as higher demands on safety and reliability vs. lower cost ceilings, longer product life cycles vs. shorter development times – along with growling proliferation of model variants. Automotive Software Engineering has established its position at the center of these seemingly conflicting opposites.
2016-07-01
Book
Eric Walter, Richard Walter
Modern vehicles have electronic control units (ECUs) to control various subsystems such as the engine, brakes, steering, air conditioning, and infotainment. These ECUs (or simply ‘controllers’) are networked together to share information, and output directly measured and calculated data to each other. This in-vehicle network is a data goldmine for improved maintenance, measuring vehicle performance and its subsystems, fleet management, warranty and legal issues, reliability, durability, and accident reconstruction. The focus of Data Acquisition from HD Vehicles Using J1939 CAN Bus is to guide the reader on how to acquire and correctly interpret data from the in-vehicle network of heavy-duty (HD) vehicles. The reader will learn how to convert messages to scaled engineering parameters, and how to determine the available parameters on HD vehicles, along with their accuracy and update rate. Written by two specialists in this field, Richard (Rick) P. Walter and Eric P.
2016-06-15
Book
John Turner
Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles.
2016-05-20
Book
This is the electronic format of the Journal.
2016-05-16
Book
Ahmad A. Pesaran
This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: • Long calendar life (greater than 10 years) • Sufficient cycle life • Reliable operation under hot and cold temperatures • Safe performance under extreme conditions • End-of-life recycling To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.
2016-04-15
Book
The introduction of 48-volt technology enables traditionally parasitic applications that run off the engine to be replaced with electrically driven systems, resulting in improvements in performance and efficiency. In the first of a series of reports produced jointly by ABOUT Automotive and SAE International, this comprehensive Executive Report analyses major engineering challenges facing the industry, and the solution strategies key players are beginning to adopt.
2016-04-08
Book
In “EV Charging and the Vehicle-to-Grid Potential” (10:29), engineers from NextEnergy show how users can take advantage of electric vehicles not only as green transportation, but also as power suppliers. The case study of a bi-directional vehicle-to-home charging project is presented in detail. Qualcomm’s Halo technology for wireless EV charging is also demonstrated in this episode. This episode highlights: • NextHome, an experiment that makes bi-directional charging a reality • How to integrate energy systems to manage energy flows from the car, the house and the grid • How to manage the way we can purchase energy for different purposes when prices are the most affordable
2016-04-08
Book
In “Dynamic Wireless Charging Technology”, NextEnergy in Detroit, Michigan explains the difference between static and dynamic electric vehicle charging, and a professor from the Korea Advanced Institute of Science and Technology describes their experience with dynamically charging buses already in use in their campus. This episode highlights: • The technology allowing vehicles to be charged while in motion, through wireless power transfer • Why this type of technology will help make vehicles more efficient and easier to charge, as they will require smaller batteries • How the OLEV (Online Electric Vehicle) works following the trail of power transmitting coils
2016-01-01
Book
“Spotlight on Design” features video interviews and case studies, focusing on technology breakthroughs, hands-on testimonials, and the importance of fundamentals. Viewers are virtually taken to industry labs and research centers to learn how design engineers solve real-life problems. These challenges include enhancing product performance, reducing cost, improving quality and safety, while decreasing environmental impact, and achieving regulatory compliance. In the episode “Automotive Charging Infrastructure: Vehicle and Grid Integration” (21:00), engineers from NextEnergy and an infrastructure expert from General Motors explain how technologies are rapidly converging to power electric vehicles and support the overall electric grid.
2015-11-23
Book
John Day
Sophisticated infotainment systems, lane departure warning, adaptive cruise control, and blind-spot monitoring are increasingly common in cars today. The proliferation of automotive electronics and other “smart” features has increased the market for automotive semiconductor devices and the number of sensors per vehicle. Yet, more chips and greater functionality translate to further networking/communications activity within the car, and that raises the prospect of potentially serious errors.
2015-11-09
Book
Kevin Jost
Development of higher-voltage electrical systems in vehicles has been slowly progressing over the past few decades. However, tightening vehicle efficiency and emissions regulations and increasing demand for onboard electrical power means that higher voltages, in the form of supplemental 48 V subsystems, may soon be nearing production as the most cost-effective way to meet regulations. The displacement of high-wattage loads to more efficient 48 V networks is expected to be the next step in the development of a new generation of mild hybrid vehicles. In addition to improved fuel economy and reduced emissions, 48 V systems could potentially save costs on new electrical features and help better address the emerging needs of future drivers. Challenges to 48 V system implementation remain, leading to discussions by experts from leading car makers and suppliers on the need for an international 48 V standard. Initial steps toward a proposed standard have already been taken.
2015-09-08
Book
Victor Giurgiutiu
Beginning with a description of the different types of composite damage, which differ fundamentally from the damage states encountered in metallic airframes, the book moves on to describe the SHM methods and sensors currently under consideration before giving application examples related to specific composites, SHM sensors, and detection methods. Expert author Victor Giurgiutiu closes with a valuable discussion of the advantages and limitations of various sensors and methods, helping you to make informed choices in your structure research and development.
2015-09-03
Book
Samir Khan, Ian K. Jennions, Paul Phillips, Chris Hockley
Today, we are all strongly dependent on the correct functioning of technical systems. They fail, and we become vulnerable. Disruptions due to degradation or anomalous behavior can negatively impact safety, operations, and brand name, reducing the profitability of all elements of the value chain. This can be tolerated if the link between cause and effect is understood and remedied. Anomalous behavior, which indicates systems or subsystems not acting in accordance with design intent, is a much more serious problem. It includes unwanted system responses and faults whose root cause can’t be properly diagnosed, leading to costly, and sometimes unnecessary, component replacements. The title No Fault Found: The Search for the Root Cause was developed to propose solutions to this technical and business challenge, which has become less and less acceptable to the commercial aviation industry globally.
2015-08-24
Book
Robert Kyle Schmidt
The aircraft landing gear system is relatively unique on board an aircraft—it is both structure and machine, supporting the aircraft on the ground, yet providing functions such as energy absorption during landing, retraction, steering, and braking. Advances in Aircraft Landing Gear is a collection of eleven hand-picked technical papers focusing on the significant advancements that have occurred in this field concerning numeric modeling, electric actuation, and composite materials. Additionally, papers discussing self-powered landing gear and more electrical overall aircraft architectures have been included. The content of Advances in Aircraft Landing Gear is divided into two sections: Analysis and Design Methods; and Electric Actuation, Control, and Taxi.
2015-06-14
Book
Jolanta Swiatowska, Alexandre Chagnes
This book presents, for the first time, the most recent developments and state-of-the-art of lithium production, lithium-ion batteries, and their recycling. It provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries, including terminology related to these two fields. It is of particular interest to electrochemists who usually have no knowledge in hydrometallurgy and hydro-metallurgists not familiar with electrochemistry applied to Li-ion batteries. It is also useful for both teachers and students, presenting an overview on lithium production, Li-ion battery technologies, and lithium battery recycling processes. The information is accompanied by numerous graphical presentations of different battery systems and their electrochemical performances.
2015-06-08
Book
In-Soo Suh
Around the world, the major automakers are developing their strategies for conductive and wireless charging technologies, with concerted efforts to establish technical standards on wireless electric vehicle charging, mainly focused on the safety considerations and inter-operability. Wireless Charging Technology and the Future of Electric Transportation covers the current status of wireless power transfer (WPT) technology and its potential applications to the future road and rail transportation systems. Focusing on the applications of WPT technology to electric vehicle charging and the future green transportation field, Wireless Charging Technology and the Future of Electric Transportation was written collaboratively by nine experts in the field, led by Dr. In-Soo Suh, a professor and researcher from the Korean Advanced Institute of Technology (KAIST).
2015-05-25
Book
Jurgen Garche, Werner Tillmetz, Bruno Scrosati
Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, thoroughly presenting the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries.
2015-05-23
Book
John Warner
The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This title provides you with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, The Handbook of Lithium-Ion Battery Pack Design will you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System.
2015-05-20
Book
This is the electronic format of the Journal.
2015-05-15
Book
This is the electronic format of the Journal.
2015-04-15
Book
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention” (21:04), Delphi engineers explain how they leverage the growing number of sensors and computing power in vehicles to diagnose and proactively solve emerging mechanical or electronic problems, before a breakdown occurs. This video also looks at the next generation of automotive telematics, with HEM Data demonstrating how in-vehicle data acquisition is used to monitor the inner workings of vehicles.
2015-04-15
Book
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Automated driving is made possible through the data acquisition and processing of many different kinds of sensors working in unison. Sensors, cameras, radar, and lidar must work cohesively together to safely provide automated features. In the episode “Automated Vehicles: Converging Sensor Data” (8:01), engineers from IAV Automotive Engineering discuss the challenges associated with the sensor data fusion, and one of Continental North America’s technical teams demonstrate how sensors, radars, and safety systems converge to enable higher levels of automated driving.
Viewing 1 to 30 of 189