Criteria

Text:
Sector:
Content:
Display:

Results

Viewing 1 to 30 of 1299
2017-03-23
WIP Standard
J2602/1
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. The goal of SAE J2602-1 is to improve the interoperability and interchangeability of LIN devices within a network by resolving those LIN 2.0 requirements that are ambiguous, conflicting, or optional. Moreover, SAE J2602-1 provides additional requirements that are not present in LIN 2.0 (e.g., fault tolerant operation, network topology, etc.). This document is to be referenced by the particular vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. Primarily, the performance of the physical layer is specified in this document.
CURRENT
2017-03-21
Standard
J2945/9_201703
This document provides recommendations of safety message minimum performance requirements between a Vulnerable Road User (VRU) and a vehicle. It addresses the transmission of Personal Safety Messages (PSM) from road user devices carried by pedestrians, bicycle riders and public safety personnel, to provide driver and vehicle system awareness and potentially offer safety alerts to VRUs. This document includes the recommendation of standards profiles, function descriptions and minimum performance requirements for transmitting the SAE J2735-defined PSM [1] over a Dedicated Short Range Communications (DSRC) Wireless communication link as defined in the Institute of Electrical and Electronics Engineers (IEEE) 1609 and the IEEE 802.11 Standards [[1]-[5]].
CURRENT
2017-03-17
Standard
J3083_201703
This document should be used as guidance for non-handbook based reliability predictions conducted on automotive electronics products. It presents a method that utilizes warranty and field repair data to calculate the failure rates of individual electronic components and predict the reliability of the entire electronic system. It assumes that the user has access to a database containing field return data with classification of components, times to failure, and a total number of components operating in the field.
2017-03-15
WIP Standard
J2990
xEVs involved in incidents present unique hazards associated with the high voltage system (including the battery system). These hazards can be grouped into 3 categories: chemical, electrical, and thermal. The potential consequences can vary depending on the size, configuration and specific battery chemistry. Other incidents may arise from secondary events such as garage fires and floods. These types of incidents are also considered in the recommended practice (RP). This RP aims to describe the potential consequences associated with hazards from xEVs and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred with an electrified vehicle. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
CURRENT
2017-03-15
Standard
J2302_201703
This procedure measures the resistance to radiant heat flow of insulating materials in sleeve, tubing or tape (collectively referred to as “sleeve”) form. The sleeve’s effectiveness (SE) is determined by measuring the difference in surface temperature of a flat black, single-diameter ceramic cylinder with and without the standard diameter sleeve at the specified temperature, position, and distance from the radiant heat source.
CURRENT
2017-03-09
Standard
J1939/81_201703
SAE J1939-81 Network Management defines the processes and messages associated with managing the source addresses of applications communicating on an SAE J1939 network. Network management is concerned with the management of source addresses and the association of those addresses with an actual function and with the detection and reporting of network related errors. Due to the nature of management of source addresses, network management also specifies initialization processes, requirements for reaction to brief power outages and minimum requirements for ECUs on the network.
CURRENT
2017-03-09
Standard
J915_201703
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks. This generally refers to left hand drive mechanical shift applications.
CURRENT
2017-03-07
Standard
J1930DA_201703
This Digital Annex contains all of the information previously found within the SAE J1930 tables, including diagnostic terms applicable to electrical/electronic systems and related mechanical terms, definitions, abbreviations, and acronyms.
CURRENT
2017-03-07
Standard
J1930_201703
This SAE Recommended Practice supersedes SAE J1930 Apr 2002, and is technically equivalent to ISO 15031-2. This document is applicable to all light-duty gasoline and diesel passenger vehicles and trucks, and to heavy-duty gasoline vehicles. Specific applications of this document include diagnostic, service and repair manuals, bulletins and updates, training manuals, repair data bases, underhood emission labels, and emission certification applications. This document should be used in conjunction with SAE J1930-DA Digital Annexes, which contains all of the information previously contained within the SAE J1930 tables. These documents focus on diagnostic terms applicable to electrical/electronic systems, and therefore also contains related mechanical terms, definitions, abbreviations, and acronyms.
2017-03-03
WIP Standard
J180
This SAE document describes alternator physical, performance and application requirements for heavy-duty electrical charging systems for off road work machines including those defined in SAE J1116. The purpose of this SAE document is to provide information on which to base machine and component design and to establish minimum requirements which will result in the most satisfactory operation of charging systems in construction, agricultural, and industrial machinery environments.
2017-03-02
WIP Standard
J1113/11
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
2017-02-21
WIP Standard
J1939DA
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
2017-02-16
WIP Standard
J3138
On-Board Diagnostic (OBD) regulations require passenger cars, and light and medium duty trucks, to provide a Data Link Connector to support communication of diagnostic information to off-board devices. Legislated diagnostic information is also required to be communicated in a timely fashion to the off-board devices. Many vehicle manufacturers also provide access to enhanced diagnostic information and vehicle systems/subsystems via this connector. Generally, there are two forms of communication methodologies used in current vehicles: a. Open access to communication busses b. Communication busses isolated via a gateway This document provides guidelines for securing communications with any off-board device for vehicles utilizing either methodology.
CURRENT
2017-02-16
Standard
J1979_201702
SAE J1979/ISO 15031-5 set includes the communication between the vehicle's OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD.
CURRENT
2017-02-16
Standard
J1979DA_201702
On-Board Diagnostic (OBD) regulations require passenger cars, and light and medium duty trucks, to support communication of a minimum set of diagnostic information to off-board “generic” test equipment. This document specifies the diagnostic data which may be required to be supported by motor vehicles and external test equipment for diagnostic purposes which pertain to motor vehicle emission-related data. SAE J1979 was originally developed to meet U.S. OBD requirements for 1996 and later model year vehicles. ISO 15031 5 was based on SAE J1979 and was intended to combine the U.S. requirements with European OBD requirements for 2000 and later model year vehicles.
2017-02-10
WIP Standard
J2899
This SAE Recommended Practice applies to S-CAM, Wedge, and Disc air brake actuators where the stroke can be measured without disassembly from the brake.
2017-02-10
WIP Standard
J3076-1
This document is a recommended practice and intended to provide a minimum set of implementation requirements of the Clock Extension Peripheral Interface (CXPI) protocol. This document specifies the parameter requirements of the CXPI protocol. The CXPI protocol provides some selected features of the Controller Area Network (CAN) protocol implemented on a UART-based data link for mainly HMI (Human Machine Interface) of road vehicles electric systems.
CURRENT
2017-02-09
Standard
J1939DA_201702
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
CURRENT
2017-01-26
Standard
J2808_201701
The Lane Departure Warning (LDW) system is a crash-avoidance technology which warns drivers if they are drifting (or have drifted) out of their lane or from the roadway. This warning system is designed to reduce the possibility of a run off road crash. This system will not take control of the vehicle; it will only let the driver know that he/she needs to steer back into the lane. An LDW is not a lane-change monitor, which addresses intentional lane changes, or a blind spot monitoring system which warns of other vehicles in adjacent lanes. This informational report applies to OEM and after-market Lane Departure Warning systems for light-duty vehicles (gross vehicle weight rating of no more than 8500 pounds) on relatively straight roads with a radius of curvature of 500 m or more, and under good weather conditions.
2017-01-17
WIP Standard
J2192
This SAE Recommended Practice describes the recommended methods for testing flexible harness coverings for use on ground vehicle electrical distribution systems. This Recommended Practice shall apply to all tapes, extruded tube and textile tube.
2017-01-11
WIP Standard
J1128
This standard covers low voltage primary cable intended for use at a nominal system voltage of 60 V DC (25 V AC) or less in surface vehicle electrical systems. The tests are intended to qualify cables for normal applications with limited exposure to fluids and physical abuse.
2017-01-11
WIP Standard
J1127
This standard covers low voltage battery cable intended for use at a nominal system voltage of 60 V DC (25 V AC) or less in surface vehicle electrical systems. The tests are intended to qualify cables for normal applications with limited exposure to fluids and physical abuse.
CURRENT
2016-12-13
Standard
J2012_201612
This document supersedes SAE J2012 DEC2007, and is technically equivalent to ISO 15031-6:2010 with the exceptions described in 1.2. This document is intended to define the standardized Diagnostic Trouble Codes (DTC) that On-Board Diagnostic (OBD) systems in vehicles are required to report when malfunctions are detected. SAE J2012 may also be used for decoding of enhanced diagnostic DTCs and specifies the ranges reserved for vehicle manufacturer specific usage.
CURRENT
2016-12-13
Standard
J2012DA_201612
The J2012 Digital Annex of Diagnostic Trouble Code Definitions Spreadsheet provides DTC information in an excel format for use in your organization's work processes. The column headings include the same information as contained in the J2012 standard.

There is also a column heading denoting which DTC have been updated in the current version.

CURRENT
2016-12-08
Standard
J3114_201612
The aim of this Information Report is to provide terms and definitions that are important for the user’s interaction with L2 through L4 driving automation system features per SAE J3016, which provides a basis for this document.
2016-12-07
WIP Standard
J983
This SAE Recommended Practice applies to mobile, construction type, crane and cable excavator hand and foot controls. It should not be construed to limit the use of, or to apply to combination controls, automatic controls, or any other special operating control requirements.
CURRENT
2016-12-06
Standard
J2601_201612
SAE J2601 establishes the protocol and process limits for hydrogen fueling of light duty vehicles. These process limits (including the fuel delivery temperature, the maximum fuel flow rate, the rate of pressure increase and the ending pressure) are affected by factors such as ambient temperature, fuel delivery temperature and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601 establishes standard fueling protocols based on either a look-up table approach utilizing a fixed pressure ramp rate, or a formula based approach utilizing a dynamic pressure ramp rate continuously calculated throughout the fill. Both protocols allow for fueling with communications or without communications. The table-based protocol provides a fixed end-of-fill pressure target, whereas the formula-based protocol calculates the end-of-fill pressure target continuously.
CURRENT
2016-11-30
Standard
USCAR17-5
1.0 SCOPE 1. This document contains procedures for testing performance of SMB-style electrical terminals, connectors and components for coaxial cable connection systems intended for road vehicle applications. These are often called FAKRA II designs. This specification does not apply to the Non RF portion of a Hybrid RF connection system. 2. The intent of this specification is to qualify sealed and unsealed RF connectors that operate at frequencies from DC to 6 GHz. The characteristic impedance of the SMB/FAKRA connection system is 50 ohms however this specification does not exclude the use of these RF connectors on non-50 ohm cables or systems. 3. This specification does not apply to single conductor wire or twisted pair connection systems. 4. This specification (along with SAE/USCAR 18) is designed to provide the mechanical and electrical data required to insure that assemblies from various manufacturers will perform reliably in actual conditions.
CURRENT
2016-11-29
Standard
J2284/3_201611
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 500 kbps High-Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the HSC implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the Electronic Control Unit (ECU) requirements defined in Section 6 are met, then the system level attributes should be obtainable.
CURRENT
2016-11-22
Standard
J2284/2_201611
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 250 kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 250 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the Electronic Control Unit (ECU) requirements defined in Section 6 are met, then the system level attributes should be obtainable.
Viewing 1 to 30 of 1299