Criteria

Text:
Sector:
Content:
Display:

Results

Viewing 1 to 30 of 1350
2017-12-13
WIP Standard
J1772
This SAE Standard covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
2017-12-07
WIP Standard
J1711
This Society of Automotive Engineers (SAE) Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) that are designed to be driven on public roads. The procedure provides instructions for measuring and calculating the exhaust emissions and fuel economy of HEVs driven on the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), as well as the exhaust emissions of HEVs driven on the US06 Driving Schedule (US06) and the SC03 Driving Schedule (SC03). However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. Furthermore, this document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester.
CURRENT
2017-12-07
Standard
J2945_201712
This SAE Standard serves as the guidance document for the J2945/x family of standards as illustrated in Figure 7. It contains cross-cutting material which applies to the other J2945/x standards, including recommended practice for the use of Systems Engineering (SE) and generic DSRC interface requirements content. The scope for the DSRC system environment is to provide for the information exchange between a host vehicle and another DSRC enabled device, a device worn by or otherwise attached to a traveler, a roadside device, or a management center, to address safety, mobility, and environmental system needs. The audience for this document includes the technical teams of developers of the J2945/x documents and the implementers of the applications which are based on the J2945/x documents.
2017-12-04
WIP Standard
J2962/3
This document covers the requirements for Ethernet PHY qualification. Requirements stated in this document will provide a minimum standard level of performance for the Ethernet PHY block in the IC to which all compatible Automotive PHYs shall be designed. No other features in the IC are tested or qualified as part of this recommended practice. This will assure robust serial data communication among all connected devices regardless of supplier.
2017-12-04
WIP Standard
J2954
The SAE Recommended Practice J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety and testing for wireless charging of light duty electric and plug-in electric vehicles. The current version addresses unidirectional charging, from grid to vehicle, but bidirectional energy transfer may be evaluated for a future standard. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3 with some variations. A standard for wireless power transfer (WPT) based on these charge levels will enable selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging, and ease of customer use. The specification supports home (private) charging and public wireless charging.
CURRENT
2017-11-30
Standard
J3088_201711
The current document is a part of an effort of the Active Safety Systems Committee, Active Safety Systems Sensors Task Force whose objectives are to: a. Identify the functionality and performance you could expect from active safety sensors b. Establish a basic understanding of how sensors work c. Establish a basic understanding of how sensors can be tested d. Describe an exemplar set of acceptable requirements and tests associated with each technology e. Describe the key requirements/functionality for the test targets f. Describe the unique characteristics of the targets or tests This document will cover items (a) and (b).
CURRENT
2017-11-27
Standard
J2954_201711
The SAE Recommended Practice J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety and testing for wireless charging of light duty electric and plug-in electric vehicles. The current version addresses unidirectional charging, from grid to vehicle, but bidirectional energy transfer may be evaluated for a future standard. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3 with some variations. A standard for wireless power transfer (WPT) based on these charge levels will enable selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging, and ease of customer use. The specification supports home (private) charging and public wireless charging.
2017-11-15
WIP Standard
J1939DA
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use.
2017-11-12
WIP Standard
J1699/3
The main purpose of this Recommended Practice is to verify that vehicles are capable of communicating a minimum subset of information, in accordance with the diagnostic test services specified in SAE J1979: E/E Diagnostic Test Modes, or the equivalent document ISO 15031-5: Communication Between Vehicle and External Equipment for Emissions-Related Diagnostics – Part 5: Emissions-related diagnostic services. Any software meeting these specifications will utilize the vehicle interface that is defined in SAE J2534, Recommended Practice for Pass-Thru Vehicle Programming.
CURRENT
2017-11-08
Standard
J1113/12_201711
This SAE Standard establishes test methods for the evaluation of devices and equipment in vehicles against transient transmission by coupling via lines other than the power supply lines. The test methods demonstrates the immunity of the instrument, device, or equipment to coupled fast transient disturbances, such as those caused by switching of inductive loads, relay contact bouncing, etc. Four test methods are presented in SAE J1113-12: 1.) The capacitive coupling clamp (CCC) method 2.) The direct capacitive coupling (DCC) method 3.) The inductive coupling clamp (ICC) method 4.) The capacitive/inductive coupling (CIC) method
CURRENT
2017-11-07
Standard
J551/5_201711
This SAE Recommended Practice specifies measurement procedures and performance levels for magnetic and electric field emissions and conducted power mains emissions over the frequency range 150 kHz to 30 MHz, for vehicles incorporating electric propulsion systems, e.g., battery, hybrid, or plug-in hybrid electric vehicles. Conducted emission measurements in this document are applicable only to battery-charging systems which utilize a switching frequency above 9 kHz, are mounted on the vehicle, and whose power is transferred by metallic conductors. Conducted emission requirements apply only during charging of the batteries from AC power lines. Conducted and radiated emissions measurements of battery-charging systems that use an induction power coupling device are not covered by this document. The measurement of electromagnetic disturbances for frequencies from 30 MHz to 1000 MHz is covered in CISPR 12.
2017-11-02
WIP Standard
J1495
This SAE Standard details procedures for testing lead-acid SLI (starting, lighting, and ignition), Heavy-Duty, EV (electric vehicle) and RV (recreational vehicle) batteries to determine the effectiveness of the battery venting system to retard the propagation of an externally ignited flame of battery gas into the interior of the battery where an explosive mixture can be present. NOTE: At this time 2011, there is no known comparable ISO Standard.
2017-10-30
WIP Standard
J3016
This Recommended Practice provides a taxonomy for motor vehicle driving automation systems that perform part or all of the dynamic driving task (DDT) on a sustained basis and that range in level from no driving automation (level 0) to full driving automation (level 5). It provides detailed definitions for these six levels of driving automation in the context of motor vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on roadways. These level definitions, along with additional supporting terms and definitions provided herein, can be used to describe the full range of driving automation features equipped on motor vehicles in a functionally consistent and coherent manner.
2017-10-19
WIP Standard
J2980
This SAE Recommended Practice presents a method and example results for determining the Automotive Safety Integrity Level (ASIL) for automotive electrical and electronic (E/E) systems. This activity is required by ISO 26262-3:2011 [1], and it is intended that the process and results herein are consistent with ISO 26262:2011 [1]. The technical focus of this document is on vehicle motion control systems. It is limited to passenger cars weighing up to 3.5 metric tons. Furthermore, the scope of this recommended practice is limited to collision-related hazards. ISO 26262:2011 [1] has a wider scope than SAE J2980, covering other functions and accidents (not just motion control or collisions as in SAE J2980).
CURRENT
2017-10-13
Standard
J1772_201710
This SAE Standard covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
2017-10-12
WIP Standard
J2931/7
This SAE Information Report J2931/7 establishes the security requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility, ESI, Advanced Metering Infrastructure (AMI) and/or Home Area Network (HAN).
2017-10-10
WIP Standard
J1678
This standard covers ultra thin wall low voltage primary cable intended for use at a nominal system voltage of 60 V DC (60 V AC rms) or less in surface vehicle electrical systems. The tests are intended to qualify cables for normal applications with limited exposure to fluids and physical abuse. This standard covers SAE conductor sizes which usually differ from ISO conductor sizes.
CURRENT
2017-10-10
Standard
J1113/27_201710
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. The reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continuous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
CURRENT
2017-10-10
Standard
J1939DA_201710
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use.
CURRENT
2017-10-10
Standard
J551/16_201710
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
CURRENT
2017-10-09
Standard
J2809_201710
This Technical Information Report defines the proprietary diagnostic communication protocol for ABS or VSA ECU (Electronic Control Unit) implemented on some Honda vehicles. This protocol does not apply to all Honda vehicles. This document should be used in conjunction with SAE J2534-2 in order to fully implement the communication protocol in an enhanced SAE J2534 interface. The purpose of this document is to specify the requirements necessary to implement the communication protocol in an enhanced SAE J2534 interface.
CURRENT
2017-10-02
Standard
J2931/7_201710
This SAE Information Report J2931/7 establishes the security requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility, ESI, Advanced Metering Infrastructure (AMI) and/or Home Area Network (HAN).
2017-09-28
WIP Standard
J2600
SAE J2600 applies to the design and testing of Compressed Hydrogen Surface Vehicle (CHSV) fueling connectors, nozzles, and receptacles. Connectors, nozzles, and receptacles must meet all SAE J2600 requirements and pass all SAE J2600 testing to be considered as SAE J2600 compliant. This document applies to devices which have Pressure Classes of H11, H25, H35, H50 or H70. 1.1 Purpose SAE J2600 is intended to: • Prevent vehicles from being fueled with a Pressure Class greater than the vehicle Pressure Class; • Allow vehicles to be fueled with Pressure Class equal to or less than the vehicle Pressure Class, • Prevent vehicles from being fueled by other compressed gases dispensing stations; • Prevent other gaseous fueled vehicles from being fueled by hydrogen dispensing stations.
2017-09-26
WIP Standard
J2691
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742 “Combination 11 Conductors and 4 Pairs ECBS Cable”. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
CURRENT
2017-09-22
Standard
J1752/3_201709
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
2017-09-18
WIP Standard
J1939/73
SAE J1939-73 Diagnostics Application Layer defines the SAE J1939 messages to accomplish diagnostic services and identifies the diagnostic connector to be used for the vehicle service tool interface. Diagnostic messages (DMs) provide the utility needed when the vehicle is being repaired. Diagnostic messages are also used during vehicle operation by the networked electronic control modules to allow them to report diagnostic information and self-compensate as appropriate, based on information received. Diagnostic messages include services such as periodically broadcasting active diagnostic trouble codes, identifying operator diagnostic lamp status, reading or clearing diagnostic trouble codes, reading or writing control module memory, providing a security function, stopping/starting message broadcasts, reporting diagnostic readiness, monitoring engine parametric data, etc.
CURRENT
2017-09-15
Standard
J2938_201709
This SAE Recommended Practice provides the methods of measurements for electrical and photometric characteristics of LED packages. It provides procedures, requirements, and guidelines for the methods of the measurement of luminous flux and color maintenance of LED devices (packages, arrays, and modules) for ground vehicle lighting applications.
CURRENT
2017-09-13
Standard
J1699/2_201709
To define test cases for the OBD-II interface on external test equipment (such as an OBD-II Scan Tool, Inspection/Maintenance Tester, etc.) which can be used to verify compliance with the applicable standards such as SAE J1978 and SAE J1979 for Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles and Engines (OBD II).
2017-09-06
WIP Standard
J2185
This SAE Standard applies to lead-acid 12 V heavy-duty storage batteries as described in SAE J537 and SAE J930 for uses in starting, lighting and ignition (SLI) applications on motor vehicles and/or off-road machines. These applications have some of the following characteristics:
2017-08-22
WIP Standard
J2357
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes performance requirements, design requirements and design guidelines for electronic devices.
Viewing 1 to 30 of 1350