Criteria

Text:
Content:
Display:

Results

Viewing 271 to 300 of 5902
CURRENT
2017-04-20
Standard
AS20708/78B
Scope is unavailable.
CURRENT
2017-04-20
Standard
AS20708/70B
No Scope Available
CURRENT
2017-04-20
Standard
AS20708/68B
Scope is unavailable.
CURRENT
2017-04-20
Standard
AS20708/62B
Scope is unavailable.
2017-04-20
WIP Standard
J1362
SAE J1362 presents graphical symbols for use on operator controls and other displays on off-road work machines as defined in SAE J1116 plus mobile cranes but excluding agricultural tractors. Symbols for agricultural tractors are covered by ASABE S304, ISO 3767-1, and ISO 3767-2.
CURRENT
2017-04-19
Standard
AS20708/80B
SCOPE IS UNAVAILABLE.
CURRENT
2017-04-19
Standard
AS20708/79B
No Scope Available
CURRENT
2017-04-19
Standard
AS20708/66B
No Scope Available
CURRENT
2017-04-18
Standard
AS20708/74B
No Scope Available
CURRENT
2017-04-18
Standard
AS20708/67B
No Scope Available
CURRENT
2017-04-14
Standard
J1298_201704
SAE J1298 covers the recommended diagnostic port sizes for use in measuring hydraulic fluid temperature, pressure, flow, and for obtaining fluid samples. See SAE J1502 for the detailed coupling specifications.
2017-04-14
WIP Standard
STD0016A
This document defines the requirements for developing a DMSMS Management Plan, hereinafter also called the Plan, to assure customers that the Plan owner is using a proactive DMSMS process for minimizing the cost and impact that part and material obsolescence will have on equipment delivered by the Plan owner. The technical requirements detailed in clause 5 ensure that the Plan owner can meet the requirement of having a process to address obsolescence as required by Industry Standards such as EIA-4899 "Standard for Preparing an Electronic Components Management Plan" and DoD Programs as required by MIL-STD-3018 "Parts Management". Owners of DMSMS Management Plans include System Integrators, Original Equipment Manufacturers (OEM), and logistics support providers.
2017-04-13
WIP Standard
AIR5875A
This SAE Aerospace Information Report (AIR) outlines comprehensive aircraft flight control system fault isolation methodology that has proven to be effective. The methodology presented in this Information Report has been used in several successful fault isolation efforts on military aircraft.
2017-04-12
WIP Standard
J2601
SAE J2601 establishes the protocol and process limits for hydrogen fueling of light dutyand medium duty vehicles. These process limits (including the fuel delivery temperature, the maximum fuel flow rate, the rate of pressure increase and the ending pressure) are affected by factors such as ambient temperature, fuel delivery temperature and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601 establishes standard fueling protocols based on either a look-up table approach utilizing a fixed pressure ramp rate, or a formula based approach utilizing a dynamic pressure ramp rate continuously calculated throughout the fill. Both protocols allow for fueling with communications or without communications. The table-based protocol provides a fixed end-of-fill pressure target, whereas the formula-based protocol calculates the end-of-fill pressure target continuously.
2017-04-11
WIP Standard
ARP6539
This SAE Aerospace Recommended Practice (ARP) provides a process for the verification and validation of monitors used in flight control, utility control, and related components and systems. It is intended to serve as a system specific companion document to SAE ARP 4754.
2017-04-11
WIP Standard
AIR6920
This AIR is for use by OEM's and Suppliers developing process gate checklists for highly integrated, complex flight control and vehicle management systems to support the life cycle development validation and verification activities prescribed by ARP4754.
2017-04-10
WIP Standard
J2848/3
This SAE recommended practice defines the system and component functions, measurement metrics, testing methodologies for evaluating the functionality and performance of ground vehicle CTIS. Systems of this type allow the driver to select the operational tire pressure set point (TPSP) based on off-highway conditions, and, upon returning to highway operations, maintain the inflation pressure to the vehicle specified level. These systems are recommended to address all serviceable tires as originally installed on a vehicle by the OEM and/or specialty vehicle manufacturer, and, for the aftermarket (including replacement or spare parts) are recommended (but optional) to address all tire/rim combinations installed after initial vehicle sale or in-use dates.
2017-04-06
WIP Standard
J2848/1
This SAE recommended practice defines the system and component functions, measurement metrics, testing methodologies for evaluating the functionality and performance of tire pressure systems, and recommended maintenance practices within the known operating environments. This document is applicable to all axle and all wheel combinations for single unit powered vehicles exceeding 7257 kg (16 000 US lb) gross vehicle weight rating (GVWR), and multi-unit vehicle combinations, up to three (3) towed units, which use an SAE J560 connector for power and/or communication, or equivalent successor connector technology, or which use a suitable capacity wireless solution. Examples of included single chassis vehicles would be – utility and delivery vans, tow trucks, rack trucks, buses, recreational vehicles, fuel trucks, trash trucks, dump trucks, cement trucks, and tractors.
2017-04-05
WIP Standard
ARP6078A
The Aerospace Recommended Practices of this document are intended for nitrogen-based Flammability Reduction Means (FRM) implemented on transport category, turbine powered airplanes. The recommended practices herein, therefore, relate only to the transport category aircraft, and focus specifically on contemporary inerting systems equipment. Such systems are referred to a Fuel Tank Inerting Systems (FTIS) in this document. This document does not cover the following: - Military aircraft applications - Air separation technologies other than hollow fiber membrane (HFM) and pressure swing adsorption (PSA) - Inerting of conventional unheated wing tanks or aircraft dry bays - Expected future technology solutions for the generation of inert gas. The advice contained in this document is aimed towards providing aircraft manufacturers with guidance on the key issues associated with contemporary aircraft fuel tank inerting systems to supplement the guidance in FAA Advisory Circular AC 25.981-2.
CURRENT
2017-04-04
Standard
J68_201704
This SAE Recommended Practice covers standardized basic tests, test methods, and requirements applicable to electromechanical switching devices which may be used on snowmobiles as defined in SAE J33.
CURRENT
2017-04-03
Standard
AIR6127
This SAE Aerospace Information Report (AIR) considers the issue of proper design guidance for high voltage electrical systems used in aerospace applications. This document is focused on electrical discharge mechanisms including partial discharge and does not address personnel safety. Key areas of concern when using high voltage in aerospace applications are power conversion devices, electrical machines, connectors and cabling/wiring. The interaction between components and subsystems will be discussed. The AIR is intended for application to high voltage systems used in aerospace vehicles operating to a maximum altitude of 30000 m (approximately 100000 feet), and maximum operating voltages of below 1500 VRMS (AC)/1500 V peak (DC). These upper voltage limits have been incorporated because this report focuses on extending the operating voltage of non-propulsive electrical systems beyond that of existing aerospace systems.
Viewing 271 to 300 of 5902