Display:

Results

Viewing 1 to 30 of 12186
2017-04-11
Journal Article
2017-01-9076
Ioannis Karakitsios, Evangelos Karfopoulos, Nikolay Madjarov, Aitor Bustillo, Marc Ponsar, Dionisio Del Pozo, Luca Marengo
Abstract The aim of this paper is to introduce a complete fast dynamic inductive charging infrastructure from the back-office system (EV management system) up to the Electric Vehicle (EV) (inductive power transfer module, positioning mechanism, electric vehicle modifications) and the EV user (User interface). Moreover, in order to assess the impact of the additional demand of inductive charging on the grid operation, an estimation of the 24-hour power profile of dynamic inductive charging is presented considering, apart from the road traffic, the probability of the need for fast charging, as well as the specifications of the proposed solution. In addition, an energy management system is presented enabling the management of the operation of the inductive charging infrastructure, the interaction with the EV users and the provision of demand response services to different stakeholders.
2017-04-11
Journal Article
2017-01-9625
Souhir Tounsi
Abstract In this paper, we present a design and control methodology of an innovated structure of switching synchronous motor. This control strategy is based on the pulse width modulation technique imposing currents sum of a continuous value and a value having a shape varying in phase opposition with respect to the variation of the inductances. This control technology can greatly reduce vibration of the entire system due to the strong fluctuation of the torque developed by the engine, generally characterizing switching synchronous motors. A systemic design and modelling program is developed. This program is validated following the implementation and the simulation of the control model in the simulation environment Matlab-Simulink. Simulation results are with good scientific level and encourage subsequently the industrialization of the global system.
2017-03-28
Technical Paper
2017-01-0960
Pankaj Kumar, Imad Makki
Traditionally, a three-way catalyst (TWC) is controlled to a set heated exhaust gas oxygen (HEGO) sensor voltage (typically placed after the monitored catalyst) that corresponds to optimal catalyst efficiency. This limits the control action, as we rely on emissions breakthrough at the HEGO sensor to infer the state of catalyst. In order to robustly meet the super ultra-low emission regulations, a more precise TWC control around the oxidation level of catalyst is desirable. In this work, we developed a comprehensive set of models to predict the oxygen storage capacity using measured in-vehicle signals only. This is accomplished by developing three models; the first model is a linear in parameter regression model to predict the feed gas emissions from measured signals like engine speed and air-to-fuel ratio (A/F). The second model is a low-dimensional physics based model of the three-way catalyst to predict the exhaust emissions and oxidation state of the catalyst.
2017-03-28
Technical Paper
2017-01-0020
Mark Zachos
Since 2001, all sensitive information by U.S. Federal Agencies has been protected by strong encryption mandated by the Federal Information Processing Standards (FIPS)140-2 Security Requirements. Today, this same strong security protection has become possible for vehicle networks using modern, cost-effective hardware. This paper describes strong FIPS 140-2 encryption for vehicle communications, using as an example the J1939 protocol. The encrypted J1939 data and commands are tamper-proof, since they cannot be changed or altered -- accidentally or otherwise. The encrypted J1939 data and proprietary commands can be stored and transported securely, giving no unauthorized read access. The examples will show J1939 encryption, including both wired and wireless communication. Two-factor authentication is achieved, since both the hardware and a decryption key are need to decrypt.
2017-03-28
Technical Paper
2017-01-1619
Charles Loucks
The introduction of floating point math in Embedded Application ECU’s has made the implementation of complex math functions less error prone but not error proof. This paper shall focus on raising awareness of the pitfalls that come from the use of the basic floating point arithmetic operations, that is, Divide, Multiply, Add and Subtract. Due to the known pitfalls inherent in these basic math operations, it is proposed that a standard library with common functions appropriate for Powertrain Embedded applications (but not limited to Powertrain) be identified. This paper shall explore what these common functions will look like for both standard C code as well as the equivalent versions in Matlab™ Simulink™ One lesson the author of this paper has learned in his career is that companies are slow to adopt common standardized approaches to the basic functionality discussed here (as well as other possible common functions not discussed here.)
2017-03-28
Technical Paper
2017-01-1645
Marjorie Myers
Harness and terminal manufacturers are working to support the Automotive industry’s need to reduce energy consumption (and costs) via weight savings initiatives by converting from Cu to Al electrical cables within the traditional open style cable harness termination manufacturing environment. As the Automotive industry is fully aware, terminating nominally same sized Al cable to existing Cu cable designed terminals is neither a functional, nor a reliable, equivalent option – termination design changes are required to be able successfully qualify any such Al cable to Cu terminal connections for Automotive applications. In addition, the harness industry are looking for any new Al ‘open’ crimp termination designs to work well within the existing manufacturing and connector/harness design environment; e.g., ‘open’ crimp termination, on par termination process speed, no post-treatment, etc.
2017-03-28
Technical Paper
2017-01-0058
Dajiang Suo, Sarra Yako, Mathew Boesch, Kyle Post
Developing requirements for automotive electric/electronic systems is challenging as they are becoming increasingly software-intensive. Increasingly, designs must account for unintended interactions among software features, combined with unforeseen environmental factors. In addition, engineers have to make architectural tradeoff and assign responsibilities to each component in the system before developing safety requirements. ISO 26262 is an industry standard for the functional safety of automotive electric/electronic systems. It specifies various processes and procedures for ensuring functional safety, but does not limit the methods that can be used for hazard and safety analysis. System Theoretic Process Analysis (STPA) is a new technique for hazard analysis in the sense that hazards are caused by unsafe interactions between components (including humans) as well as component failures and faults.
2017-03-28
Technical Paper
2017-01-0065
Bülent Sari, Hans-Christian Reuss
Safety is becoming more and more important with the ever increasing level of safety related E/E Systems built into the cars. Increasing functionality of vehicle systems through electrification of power train and autonomous driving leads to complexity in designing system, hardware, software and safety architecture. The application of multicore processors in the automotive industry is becoming necessary because of the needs for more processing power, more memory and higher safety requirements. Therefore it is necessary to investigate the safety solutions particularly for ASIL-D-Systems. This brings additional challenges because of additional requirements of ISO 26262 for ASIL-D safety concepts. The ISO 26262 provides the possibility to apply decomposition approach for ASIL-D safety requirements. An appropriate decomposition has the advantage to reduce the ASIL rating of the top events.
2017-03-28
Technical Paper
2017-01-0051
Jean GODOT, Adil ALIF, Sébastien Saudrais, Bertrand BARBEDETTE, Cherif LAROUCI
The assessment of the safety and the reliability for embedded systems is mainly performed early in the design cycle, at system level. The objective is to detect the potential failures which could lead to an undesirable event. Given the increasing critical aspect of the functions executed by the software in automotive and aeronautics, it becomes necessary to perform safety analysis at lower level of the design cycle such as at implementation stage. But, software models at this stage are complex and heterogeneous so the analysis are often manually realized. As the software models are also very large (thousands of basic software components), the analysis is labor-intensive and error-prone so it is not obvious to obtain relevant results. Therefore, the analysis on software models at implementation stage is often neglected.
2017-03-28
Technical Paper
2017-01-0629
John Kuo, George Garfinkel
Abstract Thermal modeling of liquid-cooled vehicle traction battery assemblies using Computational Fluid Dynamics (CFD) usually involves large models to accurately resolve small cooling channel details, and intensive computation to simulate drive-cycle transient solutions. This paper proposes a segregated method to divide the system into three parts: the cells, the cold plate and the interface between them. Each of the three parts can be separated and thermally characterized and then combined to predict the overall system thermal behavior for both steady-state and transient operating conditions. The method largely simplifies battery thermal analysis to overcome the limitations of using large 3D CFD models especially for pack level dynamic drive cycle simulations.
2017-03-28
Technical Paper
2017-01-0631
David C. Ogbuaku, Timothy Potter, James M. Boileau
Abstract The need to increase the fuel-efficiency of modern vehicles while lowering the emission footprint is a continuous driver in automotive design. This has given rise to the use of engines with smaller displacements and higher power outputs. Compared to past engine designs, this combination generates greater amounts of excess heat which must be removed to ensure the durability of the engine. This has resulted in an increase in the number and size of the heat exchangers required to adequately cool the engine. Further, the use of smaller, more aerodynamic front-end designs has reduced the area available in the engine compartment to mount the heat exchangers. This is an issue, since the reduced engine compartment space is increasingly incapable of supporting an enlarged rectangular radiator system.
2017-03-28
Technical Paper
2017-01-0445
Muthukumar Arunachalam, Arunkumar S, PraveenKumar Sampath, Abdul Haiyum, Yash Khakhar
Abstract In recent years, there is increasing demand for every CAE engineer on their confidence level of the virtual simulation results due to the upfront robust design requirement during early stage of an automotive product development. Apart from vehicle feel factor NVH characteristics, there are certain vibration target requirements at system or component level which need to be addressed during design stage itself in order to achieve the desired functioning during vehicle operating conditions. Vehicle passive safety system is one which primarily consists of acceleration sensors, control module and air-bag deployment system. Control module’s decision is based on accelerometer sensor signals so that its mounting locations should meet the sufficient inertance or dynamic stiffness performance in order to avoid distortion in signals due to its structural resonances.
2017-03-28
Technical Paper
2017-01-0432
Bing Zhu, Zhipeng Liu, Jian Zhao, Weiwen Deng
Abstract Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
2017-03-28
Technical Paper
2017-01-0433
Yang Xing, Chen Lv, Wang Huaji, Hong Wang, Dongpu Cao
Abstract Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
2017-03-28
Technical Paper
2017-01-0190
Neelakandan Kandasamy, Steve Whelan
Abstract The range of Plug-In Electric Vehicles (EVs) is highly influenced by the electric power consumed by various sub systems, the major part of the power being used for vehicle climate control strategies in order to ensure an acceptable level of thermal comfort for the passengers. Driving range decreases with low temperatures in particular because cabin heating system requires significant amount of electric power. Range also decreases with high ambient temperatures because of the air conditioning system with electrically-driven compressor. Both thermal systems reduce EV driving range under real life operating cycles, which can be a barrier against market penetration. The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature.
2017-03-28
Journal Article
2017-01-0290
Veera Aditya Yerra, Srikanth Pilla
Abstract The advancements in automation, big data computing and high bandwidth networking has expedited the realization of Industrial Internet of Things (IIoT). IIoT has made inroads into many sectors including automotive, semiconductors, electronics, etc. Particularly, it has created numerous opportunities in the automotive manufacturing sector to realize the new aura of platform concepts such as smart material flow control. This paper provides a thought provoking application of IIoT in automotive composites body shop. By creating a digital twin for every physical part, we no longer need to adhere to the conventional manufacturing processes and layouts, thus opening up new opportunities in terms of equipment and space utilization. The century-old philosophy of the assembly line might not be the best layout for vehicle manufacturing, thus proposing a novel assembly grid layout inspired from a colony of ants working to accomplish a common goal.
2017-03-28
Journal Article
2017-01-0267
Tomasz Haupt, Gregory Henley, Angela Card, Michael S. Mazzola, Matthew Doude, Scott Shurin, Christopher Goodin
Abstract The Powertrain Analysis and Computational Environment (PACE) is a powertrain simulation tool that provides an advanced behavioral modeling capability for the powertrain subsystems of conventional or hybrid-electric vehicles. Due to its origins in Argonne National Lab’s Autonomie, PACE benefits from the reputation of Autonomie as a validated modeling tool capable of simulating the advanced hardware and control features of modern vehicle powertrains. However, unlike Autonomie that is developed and executed in Mathwork’s MATLAB/Simulink environment, PACE is developed in C++ and is targeted for High-Performance Computing (HPC) platforms. Indeed, PACE is used as one of several actors within a comprehensive ground vehicle co-simulation system (CRES-GV MERCURY): during a single MERCURY run, thousands of concurrent PACE instances interact with other high-performance, distributed MERCURY components.
2017-03-28
Technical Paper
2017-01-0275
N. Obuli Karthikeyan, N. Prajitha, P. Sethu Madhavan
Abstract As technology gets upgraded every day, automotive manufacturers are paying more attention towards delivering a highly reliable product which performs its intended function throughout its useful life (without any failure). To develop a reliable product, accelerated combined stress testing should be conducted in addition to the conventional design validation protocol for the product. It brings out most of the potential failure modes of the product, so that necessary actions can be taken for the reliability improvement. This paper discusses about the field failure simulation and reliability estimation of automotive headlamp relays using accelerated combined stress testing. To analyze various field failure modes, performance and tear down analysis were carried out on the field failure samples. Field data (i.e. electrical, thermal and vibration signals) were acquired to evaluate normal use conditions.
2017-03-28
Journal Article
2017-01-0317
James Henry Wrock, Pengying Niu, Huairui Guo
Abstract Automobiles have a high degree of mechanical and electrical complexity. However, product complexity has the accompanying effect of requiring high levels of design and process oversight. The net result is a product creation process which is prone to creating failures. These failures typically have their origin in an overall lack of complete understanding of the system in terms of materials, geometries and energy flows. Despite all of the engineering intentions, failures are inevitable, common, and must be dealt with accordingly. In the worst case, if a failure manifests itself into an observable failure the customer may have a negative experience. Therefore, it is imperative that design engineers, suppliers along with reliability professionals be able to assess the design risk. One approach to assess risk is the use of degradation analysis.
2017-03-28
Technical Paper
2017-01-0916
Mohammad Hijawi, Shirin Badiei, Nicole M. Waters
Abstract On-Board Diagnostic (OBD) system development matures throughout the phases of the vehicle program. Ensuring a robust design of OBD system is critical to meeting the regulatory requirements and avoiding customer dissatisfaction. Therefore, it is crucial to demand comprehensive testing of the system that captures all potential events. In this paper, we outline a methodology for evaluating the maturity of the OBD system throughout the development process. Determining critical monitors and establishing solid targets for performance of each monitor is the initial stage of the process. Measuring the maturity of the system by utilizing a reliability growth model is demonstrated in this paper. The results of this assessment are used for evaluating the readiness of the system prior to launch.
2017-03-28
Journal Article
2017-01-1008
Antti Rostedt, Leonidas D. Ntziachristos, Pauli Simonen, Topi Rönkkö, Zissis C. Samaras, Risto Hillamo, Kauko Janka, Jorma Keskinen
Abstract In this article we present a design of a new miniaturized sensor with the capacity to measure exhaust particle concentrations on board vehicles and engines. The sensor is characterized by ultra-fast response time, high sensitivity, and a wide dynamic range. In addition, the physical dimensions of the sensor enable its placement along the exhaust line. The concentration response and temporal performance of a prototype sensor are discussed and characterized with aerosol laboratory test measurements. The sensor performance was also tested with actual engine exhaust in both chassis and engine dynamometer measurements. These measurements demonstrate that the sensor has the potential to meet and even exceed any requirements around the world in terms of on-board diagnostic (OBD) sensitivity and frequency of monitoring.
2017-03-28
Technical Paper
2017-01-0975
Pankaj Kumar, Imad Makki
Abstract A three-way catalytic converter (TWC) is an emissions control device, used to treat the exhaust gases in a gasoline engine. The conversion efficiency of the catalyst, however, drops with age or customer usage and needs to be monitored on-line to meet the on board diagnostics (OBD II) regulations. In this work, a non-intrusive catalyst monitor is developed to diagnose the track the remaining useful life of the catalyst based on measured in-vehicle signals. Using air mass and the air-fuel ratio (A/F) at the front (upstream) and rear (downstream) of the catalyst, the catalyst oxygen storage capacity is estimated. The catalyst capacity and operating exhaust temperature are used as an input features for developing a Support Vector Machine (SVM) algorithm based classifier to identify a threshold catalyst. In addition, the distance of the data points in hyperspace from the calibrated threshold plane is used to compute the remaining useful life left.
2017-03-28
Technical Paper
2017-01-1065
Douglas R. Martin, Benjamin Rocci
Abstract Exhaust temperature models are widely used in the automotive industry to estimate catalyst and exhaust gas temperatures and to protect the catalyst and other vehicle hardware against over-temperature conditions. Modeled exhaust temperatures rely on air, fuel, and spark measurements to make their estimate. Errors in any of these measurements can have a large impact on the accuracy of the model. Furthermore, air-fuel imbalances, air leaks, engine coolant temperature (ECT) or air charge temperature (ACT) inaccuracies, or any unforeseen source of heat entering the exhaust may have a large impact on the accuracy of the modeled estimate. Modern universal exhaust gas oxygen (UEGO) sensors have heaters with controllers to precisely regulate the oxygen sensing element temperature. These controllers are duty cycle based and supply more or less current to the heating element depending on the temperature of the surrounding exhaust gas.
2017-03-28
Technical Paper
2017-01-1068
Jonathan Tigelaar, Krista Jaquet, David Cox, Albert Peter
Turbocharging is significantly changing design and control strategies for Diesel and gasoline engines. This paper will review new advances in the turbocharger speed measurement. Until recently, the highly accurate and fast turbocharger speed data, based on the physical speed sensor signal, has been mainly used to safely decrease conservative safety margins for turbocharger speed and surge limits. In addition to significantly increasing power and low end torque, new generation sensor technology is providing new opportunities to utilize turbocharger speed data.
2017-03-28
Journal Article
2017-01-1046
Christian Binder, Fahed Abou Nada, Mattias Richter, Andreas Cronhjort, Daniel Norling
Abstract Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
2017-03-28
Technical Paper
2017-01-1199
Khalid Khan, Bin Zhou, Amir Rezaei
Abstract A high voltage battery is an essential part of hybrid electric vehicles (HEVs). It is imperative to precisely estimate the state of charge (SOC) and state of health (SOH) of battery in real time to maintain reliable vehicle operating conditions. This paper presents a method of estimating SOC and SOH through the incorporation of current integration, voltage translation, and Ah-throughput. SOC estimation utilizing current integration is inadequate due to the accumulation of errors over the period of usage. Thus voltage translation of SOC is applied to rectify current integration method which improves the accuracy of estimation. Voltage translation data is obtained by subjecting the battery to hybrid pulse power characterization (HPPC) test. The Battery State of Health was determined by semi-empirical model combined with accumulated Ah-throughput method. Battery state of charge was employed as an input to estimate damages accumulated to battery aging through a real-time model.
2017-03-28
Technical Paper
2017-01-1200
Vijay Saharan, Kenji Nakai
Abstract Electric vehicles have a strong potential to reduce a continued dependence on fossil fuels and help the environment by reducing pollution. Despite the desirable advantage, the introduction of electrified vehicles into the market place continues to be a challenge due to cost, safety, and life of the batteries. General Motors continues to bring vehicles to market with varying level of hybrid functionality. Since the introduction of Li-ion batteries by Sony Corporation in 1991 for the consumer market, significant progress has been made over the past 25 years. Due to market pull for consumer electronic products, power and energy densities have significantly increased, while costs have dropped. As a result, Li-ion batteries have become the technology of choice for automotive applications considering space and mass is very critical for the vehicles.
2017-03-28
Journal Article
2017-01-1201
Zhenli Zhang, Zhihong Jin, Perry Wyatt
Abstract Lithium plating is an important failure factor for lithium ion battery with carbon-based anodes and therefore preventing lithium plating has been a critical consideration in designs of lithium ion battery and battery management system. The challenges are: How to determine the charging current limits which may vary with temperature, state of charge, state of health, and battery operations? Where are the optimization rooms in battery design and management system without raising plating risks? Due to the complex nature of lithium plating dynamics it is hard to detect and measure the plating by any of experimental means. In this work we developed an electrochemical model that explicitly includes lithium plating reaction. It enables both determination of plating onset and quantification of plated lithium. We have studied the effects of charging pulses on homogenous plating in order to provide guidance for lithium ion battery design in hybrid applications.
2017-03-28
Technical Paper
2017-01-1202
Ben Tabatowski-Bush
Abstract The Battery Monitoring Integrated Circuit (BMIC) is a key technology for Battery Electronics in the electrification of vehicles. Generally speaking, every production hybrid, plug-in hybrid, and battery electric vehicle uses some type of BMIC to monitor the voltage of each lithium battery cell. In order to achieve Functional Safety for the traction battery packs for these electrified vehicles, most designs require higher ASIL ratings for the BMIC such as C or D. For the entire market of available BMIC’s, there is a generic feature set that can be found on almost every IC on the market, such as a front end multiplexer, one or more precision references, one or more Analog to Digital (A/D) converters, a power supply, communications circuits, and window comparators. There is also a fairly consistent suite of self-diagnostics, available on just about every available BMIC, to detect failures and enable achievement of the appropriate ASIL rating.
2017-03-28
Technical Paper
2017-01-1194
Qiaohua Fang, Xuezhe Wei, Haifeng Dai
Abstract Parallel-connected modules have been widely used in battery packs for electric vehicles nowadays. Unlike series-connected modules, the direct state inconsistency caused by parameter inconsistency in parallel modules is current and temperature non-uniformity, thus resulting in the inconsistency in the speed of aging among cells. Consequently, the evolution pattern of parameter inconsistency is different from that of series-connected modules. Since it’s practically impossible to monitor each cell’s current and temperature information in battery packs, considering cost and energy efficiency, it’s necessary to study how the parameter inconsistency evolves in parallel modules considering the initial parameter distribution, topology design and working condition. In this study, we assigned cells of 18650 format into several groups regarding the degree of capacity and resistance inconsistency. Then all groups are cycled under different environmental temperature and current profile.
Viewing 1 to 30 of 12186